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A STOCHASTIC GRADIENT DESCENT METHOD FOR THE

DESIGN OF OPTIMAL RANDOM INTERFACE IN THIN-FILM

SOLAR CELLS
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Abstract. Random rough texture design can be used to find the optimal design of random
surfaces in thin film solar cells to increase their absorbing efficiency. We formulate the design
problem as an optimal control problem under a PDE constraint. To lower the computational cost,
the stochastic gradient method is employed to find the optimal surface. Numerical results show

that the optimally obtained random texture has a much higher absorption rate in comparison
with flat panels.
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1. Introduction

Solar energy may be the cleanest renewable energy among all kinds of energy at
present. With the traditional fossil fuel energy sources such as oil, coal, and gas
running out, the energy crisis is aggravating. On the other hand, the solar energy
can be used widely to meet the rapidly increasing energy demand [1].

Photovoltaics (often shortened as PV) is the conversion of solar light into elec-
tricity using semiconducting materials that exhibit the photovoltaic effect. A pho-
tovoltaic system converts the Sun’s radiation, in the form of light, into usable
electricity with the help of solar cell panels. Each of the solar cell panel contains a
number of solar cells. There are mainly two types of solar cells: crystalline silicon
and thin film solar cells.

Due to the high cost of crystalline silicon solar cells, the material purity and
manufacturing process are limited. Compared to crystalline silicon solar cells, the
lower cost of thin film solar cells undoubtedly provides favorable conditions for its
development. A typical thin film solar cells are coated with p-i-n semiconductor film
on the transparent conductive oxide film under the glass surface, and an electrode
plate is plated on the back. Thin film solar cells consume fewer materials and
only need tens of nanometers to hundreds of nanometers in thickness to achieve
photoelectric conversion. However, the thin film solar cells have lower efficiency.

Since the first reports on practical microcrystalline cells in 1994, much research
effort has been done worldwide into the development of both fundamental knowl-
edge and technological skills that are needed to improve thin film silicon multi-
junction solar cells. In addition, an efficient trapping structure can be designed to
make amorphous silicon films absorb and utilize sunlight as much as possible. The
absorption of more photons also provides a guarantee for improving the photoelec-
tric conversion efficiency of thin film cells. There are many ways to increase the
absorption efficiency of solar cells. The commonly used trapping techniques are:
surface velvet, antireflection film, surface plasmon, reflector on the back of battery ,
and so on [2, 3, 4]. Another type of way to increase the efficiency is using randomly
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Figure 1. A typical structure of thin-film solar cells.

textured interface to trap the optical light [5, 6, 7, 8]. When the random interface
is introduced into the contact surface of the solar cell, the light is reflected into the
cell for many times to increase the optical path. In this way, the optical thickness
of the thin film cell can be increased as much as possible without changing the
physical thickness of the thin film cell. It is worth mentioning that by controlling
the deposition parameters of TCO thin films sputtered on glass substrates, we can
realize the fabrication of TCO surface layer can greatly improve the efficiency of
thin film solar cells [9, 11]. The existing commercial solar cells have Asahi-U struc-
ture, Neuchatel structure and so on. Here we refer to some deterministic texture
optimization design [10, 12], as well as the following deterministic shape optimiza-
tion problems in physics and engineering. Most of the previous research on random
texture optimization is based on certain ad hoc schemes. Mainly by calculating the
absorption of several selected statistical parameters to select the parameter values
that produce the maximum absorptivity. The optimal solution obtained in this
way depends to a large extent on the selected set of statistical parameters. If the
optimal parameters are not in the set, we will not be able to find the corresponding
parameter values of the optimal solution.

There are two basic polarizations of light waves: transverse electric (TE) polar-
ization and transverse magnetic (TM) polarization. These two kinds of polarization
provide the basic for determining the light wave electric field and magnetic field at a
certain position in the solar cell structure. The TE model was studied in [8]. In this
paper, we focus on the transverse magnetic polarization. As in [8], we first reduce
the modeling problem to an optimization problem with a PDE constraint. Unlike
[8] where the gradient descent method was used to find the optimal interface mini-
mizing the radiation, in this study, we use the stochastic gradient descent method
(SGD) [13] for the same purpose. In the gradient descent method, the Monte-Carlo
method is used to approximate the expectation of the cost function, which makes
it extremely expensive when a large size of samples needs to be used to match the
error of discretizing the Helmholtz equation. On the other hand, only one sample
is used at each iteration for the SGD method. Our numerical experiment indicates
that, with the same accuracy, the cost of the SGD method is only a tiny fraction
of that for the gradient descent method.
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The rest of the paper is arranged as follows. In Section 2, we introduce the
mathematical model of the random rough surface problem. Section 3 focuses on
the optimization design problem and describes the gradient calculation of the ob-
jective function. Several numerical experiments are presented in Section 4 to to
demonstrate the efficiency of the stochastic gradient descent method and the opti-
mal interface.

2. Mathematical models

2.1. Scattering problem. We aim to use a two-dimensional model through the
theory of trapping structure in achieving the optimizing the efficiency of thin film
solar cells. Because the index contrast between the glass substrate and TCO surface
layer is not obvious, for simplicity, we do not explicitly consider the glass substrate.
We assume that the battery is composed of two layers as shown in Figure 2: a
transparent conducting oxide(TCO) layer on the top and an absorbing layer on the
bottom. Our goal is to find the interface between the TCO layer and absorption
layer which optimizes the collection rate of incident light by increasing the photon
optical path. Here we assume that the bottom edge of the model is a perfect
reflector; that is, there is no energy conversion on the bottom surface. For simplicity,
we also assume that the structure is periodic with period Λ. The contact surface
in the middle can be regarded as adding a random disturbance to the plane y = a.
Let (Ω,F ,P) be a complete probability space. For each sample ω ∈ Ω, denote the
interface as Γ(ω) := {(x, y) | y = h(x) = a + f(ω;x)}. We denote the TCO and
absorption layer as

D1(ω) := {(x, y) | x ∈ (0,Λ), 0 < y < h(ω;x)}
and

D2(ω) := {(x, y) | x ∈ (0,Λ), h(ω;x) < y < ∞}

Figure 2. Scattering problem in the bounded domain D.

In this paper, we consider the magnetic field H under transverse magnetic po-
larization; that is, H is of the form of (0, 0, u). Assume that the incident wave is
the time harmonic plane wave ui = e−ik0qy, where k0 is the free space wavenumber,
and q is the refractive index of the TCO layer. The total field u after the scattering
is composed of incident wave ui and scattered wave us, i.e., u = ui + us.

For any given sample ω, the total field u satisfies

(1)


∇ · (ε−1

r ∇u(ω; ·)) + k20u(ω; ·) = 0 in DΛ\Γ(ω),
u(ω; 0, y) = u(ω; Λ, y),

∂νu(ω;x, 0) = 0, 0 < x < Λ,
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where

εr =

{
εr,1, y < h(ω;x),
εr,2, y > h(ω;x).

Here ν is the outer normal vector, εr is the relative permittivity value, εr,1 and
εr,2 are the relative permittivity value of the absorption layer and the TCO layer,
respectively. The permittivity of the solar cell is ε = εr · ε0 , where ε0 is the
permittivity value in the vacuum. In addition, we assume that the continuity
conditions are satisfied along the interface:

u+(ω;x, h(ω, x)) = u−(ω;x, h(ω, x)),(2)

ε−1
r,2∂νu+(ω;x, h(ω, x)) = ε−1

r,1∂νu−(ω;x, h(ω, x)).(3)

To formulate the scattering optimization problem, we consider y = b as an
artificial upper boundary of the region, where b > max

0<x<Λ
h(ω;x). We will apply the

DtN mapping condition for the scattered field us given by

us(x, y) =
∑
n∈Z

ûs
n(ω; y)e

iαnx

where αn = 2πn
Λ , ûs

n(ω, y) =
1
Λ

∫ Λ

0
us(ω;x, y)e−iαnxdx.

Denote k = k0
√
εr,2. For a given sample ω , we have the expression of the

scattering filed above the random interface Γ(ω) given by

us(ω; ·) =
∑
n∈Z

ûs
n(ω; b)e

iαnx+iηn(y−b),

where

ηn =


√

k20εr,2 − α2
n, k > αn,

i
√
α2
n − k20εr,2, k < αn.

(4)

Then, on the upper boundary y = b,

∂yu
s(ω;x, b) =

∑
n∈Z

iηnû
s
n(ω; b)e

αn =: T [us(ω;x, b)].

By direct calculation we have

∂yu(ω;x, b) = T (u(ω;x, b)) + g

where g = −2ike−ikb. Therefore, for each sample ω, the scattering problem can be
calculated in the bounded region D as,

(5)


∇(ε−1

r ∇u(ω; ·) + k20u(ω; ·) = 0 in DΛ\Γ(ω),
u(ω; 0, y) = u(ω; Λ, y), 0 < y < b,

∂νu(ω;x, 0) = 0, 0 < x < Λ,

∂yu(ω;x, b) = T (u(ω;x, b)) + g 0 < x1 < Λ.

2.2. Representation of random surfaces. Assume that the random texture
surface h = h(ω;x) is a random perturbation of the reference surface y = a:

h(ω;x) = a+ f(ω;x)

where f = f(ω;x) is a stationary Gaussian process whose mean value is 0, and the
covariance function is

c(x1 − x2) = σ2exp(−|x1 − x2|2

l2
)
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where σ is the surface root mean square(RMS) height and 0 < l ≪ Λ is the
correlation length. The random field f can be expanded using Karhunnen-Loéve
expansion [14]. Since f = f(ω;x) is a periodic function with period Λ, we can
perform Fourier expansion on the covariance equation c = c(x). Noting that c is
an even function, it follows that

c(x) = σ2
[ ĉ0
2

+
∞∑
p=1

ĉpcos(
2pπx

Λ
)
]

where ĉ0, ĉ1, ĉ2, · · · are the Fourier cosine expansion coefficients of the correlation
function exp(−|x1 − x2|2/l2). For the covariance operator

Kφ(x1) :=

∫ d

0

c(x1 − x2)φ(x2)dx2,

its eigenvalues are given by

λj =
σ2Λĉj

2
, j = 0, 1, 2 . . . ,

and the corresponding eigenfunctions are

φj(x) =



√
1

Λ
, j = 0,√

2

Λ
cos

(
2jπx

Λ

)
, j > 1, even,√

2

Λ
sin

(
2jπx

Λ

)
, j > 1, odd.

(6)

By Karhunen-Loéve expression, the stochastic process h = h(ω;x) can be expressed
as

f(ω;x) =
∞∑
j=0

√
λjξjφj

=
√
λ0ξ0(ω)

√
1

Λ

+

∞∑
j=1

√
λj

[
ξj,s(ω)

√
2

Λ
sin

(
2jπx

Λ

)
+ ξj,c(ω)

√
2

Λ
cos

(
2jπx

Λ

)]
.

Here ξ0, and ξj,c, ξj,s, j = 1, 2, · · · , are Gaussian random variable with the mean
values of 0 and the variance of 1 and they are independent and identically dis-
tributed.

Alternatively, by letting

λj = σ2λ̄j where λ̄j =
Λĉj
2

,

we may express the profile of the random surface by

f(ω;x) = σ · f̄(ω;x),(7)

where

f̄(ω;x) =
√
λ̄0ξ0(ω)

√
1

Λ

+

∞∑
j=1

√
λ̄j

[
ξj,s(ω)

√
2

Λ
sin

(
2jπx

Λ

)
+ ξj,c(ω)

√
2

Λ
cos

(
2jπx

Λ

)]
.(8)
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It is clear that h̄ is independent of the RMS height σ.
In practical computations, we can truncate the finite terms of Karhunen–Loève

expansion. Since the covariance function c(x) is smooth, its Fourier coefficients
ĉ0,ĉ1,ĉ2· · · decays exponentially. Enough finite terms of Karhunen–Loève expansion
ensures the accuracy of our algorithm.

3. Optimal design of random rough surface

3.1. Optimal design problem. For any sample ω ∈ Ω, according to the law of
conservation of the energy,

R(ω) +A(ω) = 1.

Here R(ω) represents the reflectivity of the TCO layer and A(ω) represents the
absorptivity of the absorption layer. The main purpose of the optimization design
is to pursue the maximum value of the mean absorptivity E(A(ω)), in other words,
to find the minimum value of reflectivity mean E(R(ω)). For each sample ω ∈ Ω,
the reflectivity can be defined as,

R(ω;h) =
∑
n∈N

ηn
η0

|rn(ω)|2,

where N := {n ∈ N |k20εr,2 − α2
n > 0} is the index of propagating modes,

(9) rn(ω) =

{
ûn(ω; b)e

−iηnb, n ̸= 0

ûn(ω; b)e
−ikb − e−2ikb, n = 0,

which is inspired by

us(ω; ·) =:
∞∑

n=−∞
rn(ω)e

−iαnx+iηny

rn = ûs
n(ω; b)e

−iηnb,

where ûs
n is the Fourier coefficient of the scatter wave us. The expectation of

reflectivity is

E[R] :=

∫
Ω

∑
n∈N

ηn
η0

|rn(ω)|2dP (ω).

We define the cost function

J(κ) := E(R(ω, h)),

where κ := (σ, l) is a vector consists of the root mean square σ and the correlation
l of h(ω, x).
The optimal design problem is to minimize J .

3.2. Shape derivative and the gradient of the cost function. We will apply
the stochastic gradient descent method to find the minimum of J(κ). First, we
need to find the gradient of R.

Theorem 3.1. For each sample ω, the gradient ∇κR can be expressed as

(10) ∇κR =
2

Λ

∑
n∈N

ηn
η0

Re[(ûn(ω; b)−ane
−ikb)(ε−1

r,1 − ε−1
r,2)·

∫ Λ

0

[W (x, h(x))·∇κhdx]
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where

(11) W (x, h(x)) :=


lim

(x,y)→(x,h(x)),
(x,y)∈D2

∇u(x, y)ū∗
n(x, y), ∇κh point to D2,

lim
(x,y)→(x,h(x)),

(x,y)∈D1

∇u(x, y)ū∗
n(x, y), ∇κh point to D1,

a0 = 1 and an = 0(n ̸= 0), u is the solution of the scattering problem (5), and u∗
n

is the solution of the following adjoint problem.

(12)



∇(ε−1
r ∇u∗

n(ω; ·) + k20u
∗
n(ω; ·) = 0 in D\Γ(ω),

u∗
n(ω; 0, y) = u∗

n(ω; Λ, y), 0 < x2 < b,

∂νu
∗
n(ω;x, 0) = 0, 0 < x < Λ,

∂u∗
n

∂y
(ω;x, b) = T ∗(u∗

n(ω;x, b)) + eiαnx 0 < x < Λ,

(u∗
n)+(ω;x, h(ω, x)) = (u∗

n)−(ω;x, h(ω, x)) 0 < x < Λ,

ε−1
r,2(∂νu

∗
n)+(ω;x, h(ω, x)) = ε−1

r,1(∂νu
∗
n)−(ω;x, h(ω, x)) 0 < x < Λ,

where T ∗ is the adjoint operator of T ,

⟨Tu, v⟩ = ⟨u, T ∗v⟩.

Proof: Denote H1(D) = {u(x, y)|(
∫
D
|f(x)|2dx) 1

2 < ∞, (
∫
D
|f ′(x)|2dx) 1

2 <
∞ and u(0, y) = u(Λ, y)}. The variational formula for (5) is a(u, v) := ⟨g, v⟩, ∀v ∈
H1(D), where

(13) a(u, v) =

∫
D

ε−1
r ∇u · ∇v̄ − k20uv̄dx− ⟨Tu, v⟩.

Similarly, the variational formulation for (12) is denoted as a∗(u∗
n, v) := ⟨eiαnx, v⟩,

∀v ∈ H1(D), where

(14) a∗(u∗
n, v) =

∫
D

ε−1
r ∇u∗

n · ∇v̄ − k20uv̄dx− ⟨T ∗u∗
n, v⟩.

With regard to the shape derivative ∇κR, we know that the change of the re-
flectivity δR is caused by the change δh of the random surface h. If the interface
Γ = (x, h(x)) is perturbed to be Γδ = (x, hδ(x)). For the perturbed interface
Γδ = (x, hδ(x)), denote the total field as uδ and the relative permittivity as εδr. The
corresponding variation problem is aδ(uδ, v) := ⟨g, v⟩, ∀v ∈ H1(D), where

(15) aδ(u, v) =

∫
D

(εδr)
−1∇uδ · ∇v̄ − k20u

δ v̄dx− ⟨Tuδ, v⟩.

Let δu = uδ − u and (δεr)
−1 = (εδr)

−1 − ε−1
r , form (13) and (15) we have

(16)

∫
D

ε−1
r ∇δu · ∇v̄ − k20δuv̄dx− ⟨Tδu, v⟩ = −

∫
D

(δεr)
−1∇uδ∇v̄dx

Setting v = δu in (14) and v = u∗
n in (16) leads to

(17)

{ ∫
D
ε−1
r ∇u∗

n∇δu− k20u
∗
nδudx− ⟨T ∗u∗

n, δu⟩ = ⟨eiαnx, δu⟩∫
D
ε−1
r ∇δu∇u∗

n − k20δuu
∗
ndx− ⟨Tδu, u∗

n⟩ = −
∫
D
(δεr)

−1∇uδ∇u∗
ndx

Therefore, we have

⟨eiαnx, δu⟩ = −
∫
D

(δεr)−1∇uδ∇u∗
ndx(18)

= −
∫
D

(δεr)−1∇u∇u∗
ndx+O(∥(δεr)−1∥ · ∥δu∥)(19)
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For any test function v ∈ H1(D), there is an inner product,

(20) (v, (δεr)
−1) :=

∫
D

v(x)(δεr(x))−1 =

∫
symdiff(D1,Dδ

1)

v(x)(δεr(x))−1dx

Here D1 and Dδ
1 are the absorbing layers corresponding to the interface h and hδ,

respectively, and the symmetric difference between the two regions can be expressed
as,

symdiff(D1, D
δ
1) = (D1 ∪Dδ

1) \ (D1 ∩Dδ
1).

It is known that the relative permittivity value of the absorption layer and the TCO
layer are εr,1 and εr,2,respectively. For an infinitesimal interface disturbance δh,
the inner product can be simplified to

(21) (v, (δεr)
−1) =

∫ Λ

0

v(x, h(x))(ε−1
r,1 − ε−1

r,2)δhdx

For the new interface hδ, the reflectivity at the sample ω is

Rδ(ω, h) =
∑
n∈N

ηn
η0

∥rn + δrn∥2

=
∑
n∈N

ηn
η0

{
∥rn∥2 + 2Re[rnδrn] + ∥δrn∥2

}
= R(ω, h) + 2

∑
n∈N

ηn
η0

Re[rnδrn] +O(δh2).

We can get the influence of the disturbance δR := Rδ −R of the random surface h
on the scattering rate is,

δR = 2
∑
n∈N

ηn
η0

Re[rnδrn] + o(δh2)

With regard to the item rnδrn can be expressed as,

rnδrn =


ûn(ω; b) ·

1

Λ

∫ Λ

0

eiαnx δu(ω;x, b) dx, n ̸= 0(
ûn(ω; b)− e−ikb

)
· 1
Λ

∫ Λ

0

eiαnx δu(ω;x, b) dx, n = 0.

Since ∫ Λ

0

eiαnx δu(ω;x, b) = −
∫
D

(δεr)−1∇u∇u∗
ndx+O(∥(δεr)−1∥ · ∥δu∥)

Substitute formula (21), it can be obtained by calculation,(18)

rnδrn =


ûn(ω; b) · 1

Λ (ε
−1
r,1 − ε−1

r,2) ·
∫ Λ

0
[W (x, h(x)) · δhdx]

+O(∥(δεr)−1∥ · ∥δu∥)n ̸= 0;

(ûn(ω; b)− e−ikb) · 1
Λ (ε

−1
r,1 − ε−1

r,2) ·
∫ Λ

0
[W (x, h(x)) · δhdx]

+O(∥(δεr)−1∥ · ∥δu∥), n = 0.

where

(22) W (x, h(x)) :=


lim

(x,y)→(x,h(x))
∇u(x, y)ū∗

n(x, y), δh > 0

lim
(x,y)→(x,h(x))

∇u(x, y)ū∗
n(x, y), δh < 0
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Finally, the disturbance of the scattering rate can be expressed as

δR =
2

Λ

∑ ηn
η0

Re[(ûn(ω; b)− ane
−ikb) · (ε−1

r,1 − ε−1
r,2) ·

∫ Λ

0

[W (x, h(x)) · δhdx]

+O(∥(δεr)−1∥ · ∥δu∥)],
By chain rule, we have

∇κR =
2

Λ

∑
n∈N

ηn
η0

Re[(ûn(ω; b)− ane
−ikb)(ε−1

r,1 − ε−1
r,2) ·

∫ Λ

0

[W (x, h(x)) · ∇κhdx].

The proof is complete.
Note that both εr and ∇u∇u∗

n attain jumps across the interface Γω. ∇κh is
the gradient of h with respect to κ. The expression of the gradient of the mean
reflectivity function is,

∇κJ =

∫
Ω

∇κR(ω;h)dP (ω).

3.3. Stochastic gradient descent method. With the gradient of J computed,
we can apply gradient based iterative methods to find the minimizer of J . One
of the most commonly used gradient method is the simple gradient descent (GD)
method: given an initial guess κ0 for κ,

(23) κk+1 = κk − αk∇κJ(κk), k = 0, 1, · · · ,
where αk is the step size of each iteration. In practice, one needs to use the Monte
Carlo method to approximate the expectation in ∇κJ : with independently drawn

samples ω1, · · · , ωM , ∇κJ(κ) ≈ 1
M

M∑
i=1

∇κR(κ, ωi). Then (23) becomes

(24) κk+1 = κk − αk
1

M

M∑
i=1

∇κR(κk, ωi), , k = 0, 1, · · · .

When M is very large, which is the case when the mesh size of the discretization
for the Helmholtz equation is small, (24) is impractical because one must solve
thousands of Helmholtz equations and their adjoints at each iteration. In this work,
we adopt the stochastic gradient descent (SGD) method, which is commonly used
in machine learning simulations. In the SGD method, we still need a sequence of
independent samples ω1, ω2, · · · . However, we only use one sample at each iteration:

(25) κk+1 = κk − αk∇κR(κk, ωk), k = 0, 1, · · · .
The numerical experiments in the following section shall demonstrate that the SGD
iteration is far more efficient than the GD iteration.

4. Numerical experiments

In this part, we use two examples to show the effectiveness of the SGD algorithm
in solving the proposed optimal design problems. The first numerical example serves
as a verification of the accuracy of the numerical simulation of U . In the second
example, the convergence of the optimization algorithm is tested. The absorbance
of the obtained optimal random texture solar cells was compared with the flat
surface.

In both examples, we set that the height of the reference plane is the same as the
thickness of the absorption layer, assuming a = 300nm, the periodic size of battery
Λ = 1500nm, in the ordinary gradient descent method, we choose the number of the
Monte Carlo sampling M = 1000, the derivative ∇αR(ω) is calculated by parallel
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operation for different samples. We also demonstrate the result of the stochastic
gradient method, which greatly saves the cost of numerical cost.

Example 1
The aim of this example is to verify the accuracy of the numerical solver for

solving scattering problems. We assume that the wavelength Λ0 = 500nm in the
free space has a refractive index of q1 = 2.0 and q2 = 1.2 in regions D1 and D2,
respectively. We also assume that the interface is flat. Under the assumption
that the incident wave is time-harmonic plane wave ui = e−ik0q2y, where k0 is the
wavenumber in free space, the analytical solution of the scattering problem u can
be obtained in the following way.

u(x) =

{
e−ik0q2y + c2e

ik0q2y,
c1(e

ik0q1y + e−ik0q1y).

Thus

∇u(x) =

{
−ik0q2e

−ik0q2y + ik0q2c2e
ik0q2x2 ,

c1(ik0q1e
ik0q1y − ik0q1e

−ik0q1y).

Table 1. L2-norm of the error for the numerical solution at vari-
ous mesh size and the corresponding convergence order.

∆ 12 nm 6 nm 3 nm 1.5 nm

||ũ− u∆||L2 0.23134 0.0428 0.0136 0.00294

convergence order 2.01 2.03 1.98

Apply the continuity of the electric field and magnetic field, we have

e−ik0q2y + c2e
ik0q2y = c1(e

ik0q1y + e−ik0q1y),

q21(−ik0q2e
−ik0q2y + ik0q2c2e

ik0q2y) = q22c1(ik0q1e
ik0q1y − ik0q1e

−ik0q1y).

By direction calculation,

c2 =
c1(e

ik0q1a + e−ik0q1a)

eik0q2a − e−2ik0q2a
,

c2 =
c1q2(e

ik0q1a − e−ik0q1a)

q1eik0q2a + e−2ik0q2a
.

Therefore, we can get

c1 =
2q1e

−ik0q2a

q1(eik0q1a + e−ik0q1a)− q2(eik0q1a − e−ik0q1a)
.

Next we apply the element method with piecewise linear finite element spaces to
solve the scattering problem. To this end, we set the mesh size ∆ = 12nm, 6nm, 3nm,
1.5nm. The corresponding L2 − norm form numerical error is listed in Table 1.
From the table, we can see that the convergence order of the numerical method
is about 2, which is consistent with the theoretical convergence order of the finite
element method.

Next, we consider the random surface at a sample point with the root mean
square (RMS) height σ = 30nm and the correlation length l = 24nm. The regions
are triangulated according to the mesh size ∆ = 12nm, 6nm, 3nm, 1.5nm. To test
the convergence of the numerical solution of the partial differential equation, we
choose the numerical solution u of the mesh size ∆ = 0.6nm as the reference
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Table 2. ||ũ− u∆||L∞ for various mesh sizes along the boundary
x2 = b, where ũ is the reference solution obtained with ∆ =
0.06nm.

∆ 12 nm 6 nm 3 nm 1.5 nm

||ũ− u∆||L∞ 0.2918 0.0692 0.0125 0.0049

solution, and calculate the L∞ − norm error ∥u− u∆∥∞L of the numerical solution
for the above four different triangulations. We can see clearly the convergence of the
finite element method. In order to illustrate the scattering effect of rough surfaces,
we also draw the total field of the scattering problem (Figure 4 and Figure 5) for
mesh size ∆ = 3nm.

Figure 3. A mesh for a chosen sample.

Figure 4. Real part of the total field with ∆ = 3nm.

Table 3. The value of σ and l for all iterations.

Iteration 0 1 2 3 ... 10 11 12 13 14

σ 21 24.04 27.29 30.57 ... 48.70 49.73 49.74 50.57 51.24
l 36 36.03 36.02 35.87 ... 35.56 35.43 35.43 35.74 35.85
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Figure 5. Imaginary part of the total field with ∆ = 3nm.

Figure 6. The cost function J(α) for all iterations.

Example 2
In this example, we assume that the wavelength in the vacuum is Λ0 = 650nm,

the refractive index of TCO layer is 1.915, or its relative permittivity εr1 = 3.667,
and the refractive index of the absorbing layer is 4.2 + 0.045i when Λ0 = 650nm .
This means that the relative index value of the absorbing layer is εr,2 = 17.6380 +
0.3780i. In Figure 6 we depict the iteration diagram of the objective function J(κ)
using the gradient descent method with stepsize αk chosen as 1

k and Monte Carlo
sample size chosen as M = 1000. The iterative values of (σ, l) is given in Table 3.

Figure 7. The cost function J for all iterations with stochastic
gradient method.
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Figure 8. One random sample at initial parameter.

Figure 9. One random sample at optimal parameter.

Figure 10. Real part of the total field of one sample after optimal design.

In Figure 7, we show the iteration diagram of J using the stochastic gradient
descent method. We note that for the stochastic gradient descent method, only 300
numerical solutions for u and u∗

n are required for 150 iterations, whereas, for the
gradient descent method, it requires 15000 solves for u and u∗

n It is obvious that the
stochastic gradient method is far more efficient than the gradient descent method.

In Figure 8, we show a sample realization for the initial parameter, while in
Figure 9 we show the realization of the random surface under the optimal statistical
parameters. Figure 10 and Figure 11 depict the total field at optimal parameter κ
at one sample.
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Figure 11. Imaginary part of the total field of one sample after
optimal design.

Table 4. The absorptances of solar cells with different types of surfaces.

flat surface optimal surface
σ(nm) 0 51.24
l(nm) 35.85
E[A] 0.231 0.402

To demonstrate the optimal interface’s efficiency in absorbing the solar energy,
we calculate the absorptivity of solar cells with flat surface and the optimal random
surface. It turns out that the absorptivity with a flat surface is 0.231. On the other
hand, when the optimal random surface texture is used, the average absorptivity
of solar cells is about 0.402, which is 74% increase over the flat surface.
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