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STABILITY OF HIGH ORDER FINITE DIFFERENCE SCHEMES

WITH IMPLICIT-EXPLICIT TIME-MARCHING FOR

CONVECTION-DIFFUSION AND CONVECTION-DISPERSION

EQUATIONS

MEIQI TAN, JUAN CHENG*, AND CHI-WANG SHU

Abstract. The main purpose of this paper is to analyze the stability of the implicit-explicit
(IMEX) time-marching methods coupled with high order finite difference spatial discretization

for solving the linear convection-diffusion and convection-dispersion equations in one dimension.
Both Runge-Kutta and multistep IMEX methods are considered. Stability analysis is performed
on the above mentioned schemes with uniform meshes and periodic boundary condition by the aid
of the Fourier method. For the convection-diffusion equations, the result shows that the high order

IMEX finite difference schemes are subject to the time step restriction ∆t ≤ max{τ0, c∆x}, where
τ0 is a positive constant proportional to the diffusion coefficient and c is the Courant number. For
the convection-dispersion equations, we show that the IMEX finite difference schemes are stable
under the standard CFL condition ∆t ≤ c∆x. Numerical experiments are also given to verify the

main results.

Key words. Convection-diffusion equation, convection-dispersion equation, stability, IMEX,
finite difference, Fourier method.

1. Introduction

In this paper, the stability property of the high order finite difference schemes
with certain implicit-explicit (IMEX) time-marching methods is studied for the
convection-diffusion and convection-dispersion equations respectively. For the spa-
tial derivative terms of these equations, we use a high order upwind biased finite
difference scheme, which is a prototype of the weighted essentially non-oscillatory
(WENO) schemes [12, 14], to discretize the convection term, a high order central
difference method to discretize the diffusion term, and a high order upwind biased
finite difference scheme to discretize the dispersion term.

The time derivative term for the convection-diffusion and convection-dispersion
equations should be discretized carefully. If explicit time-marching methods are
used, then the time step is dominated by the highest order derivative term, which
may be very small, resulting in excessive computational cost. For example, for the
convection-dispersion equations involving third order spatial derivatives which are
not convection-dominated, the explicit time discretization may suffer from a strict
time step restriction ∆t ∼ O(∆x3) for stability, where ∆t is the time step and
∆x is the spatial mesh size. If the fully implicit time-marching methods are used,
then the time step restriction may be relaxed, and usually unconditionally stable
such as A-stable schemes can be designed. However, in many practical applications
the lower order convection terms are often nonlinear, hence the implicit methods
may be much more expensive per time step than the explicit methods, because an
iterative solution of the nonlinear algebraic equations is needed.
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When it comes to such problems, a natural consideration is to treat different
derivative terms differently, that is, the higher order derivative terms are treated
implicitly, whereas the rest of the terms are treated explicitly. The IMEX time-
marching methods, which have been proposed and studied by many authors [1–7,
9, 10, 13, 16, 17], have considered such a strategy. This can not only alleviate the
stringent time step restriction, but also reduce the difficulty of solving the alge-
braic equations, especially when the higher order derivative terms are linear. Even
when the higher order derivative terms are nonlinear, the IMEX time-marching
methods might still show their advantages in obtaining a better algebraic system,
for example for diffusive higher order derivatives the algebraic system might have
some symmetry and positive definite properties, which can be easily solved by many
iterative methods.

For the convection-diffusion equations, there have been many studies in the lit-
erature on the IMEX methods. In [1], a pair of multistep IMEX time-marching
methods are constructed. Coupled with the traditional second order central differ-
ence method, the multistep IMEX finite difference schemes are shown to be stable
under the standard CFL condition ∆t ≤ c∆x, where c is the Courant number. How-
ever, most of them tend to have an undesirably small c, unless diffusion strongly
dominates and an appropriate backward differentiation formula is selected for the
diffusion term. In [9], the authors designed several stable multistep IMEX time dis-
cretizations, which are specially tailored for stability when coupled with the pseu-
dospectral method. These schemes are shown to be stable provided that the time
step and the spatial mesh size are bounded by two constants. Combined with the
local discontinuous Galerkin (LDG) method, a variety of IMEX schemes [16,17], in-
cluding Runge-Kutta type and multistep type IMEX schemes, have been discussed.
These schemes are stable provided that the time step is upper-bounded by a pos-
itive constant τ0 which is proportional to d/ν2, where ν and d are the convection
and diffusion coefficients, respectively. However, when d is very small in comparison
with the spatial mesh size, τ0 is too small to be the true bound for stability. For
the above mentioned equations without the diffusion terms, the explicit scheme is
usually stable under the standard CFL condition. We could therefore reasonably
expect that the IMEX method for this convection-diffusion equation should also
be stable under the same CFL condition. The schemes in [18], where the explicit
part is treated by a strong-stability-preserving Runge-Kutta method [8], and the
implicit part is treated by an L-stable diagonally implicit Runge-Kutta method, are
also subject to the time step restriction ∆t ≤ τ0. They also face the problem that
τ0 is too small to be the true bound for stability when d is very small in comparison
with the spatial mesh size.

For the convection-dispersion equations, there are also some studies in the liter-
ature on the IMEX methods. In [6], some multistep IMEX time-marching methods
with the spectral spatial discretization for the KdV equation have been presented.
Coupled with the finite volume spatial discretization, some IMEX Runge-Kutta
methods are tested in the case of the KdV equation in [5]. These schemes are
shown to be stable under the standard CFL condition ∆t ≤ c∆x. In [10], the
IMEX method with the discontinuous Galerkin (DG) spatial discretization is pro-
posed for the KdV equation, where the stability analysis is not discussed.

If we summarize the stability conditions of the schemes mentioned above, we
could find that the explicit, implicit and IMEX schemes coupled with appropriate
spatial discretizations are subject to the time step restrictions shown in Table 1.
Notice that the specific choices of spatial discretizations may change the values of
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Table 1. The time step restriction for the explicit, implicit and
IMEX schemes.

equation explicit implicit (A-stable) IMEX

convection-diffusion ∆t ≤ c∆x2 unconditionally stable
∆t ≤ τ0 (constant)

or ∆t ≤ c∆x

convection-dispersion ∆t ≤ c∆x3 unconditionally stable ∆t ≤ c∆x

c and τ0, but not the generic types of stability conditions listed in this table.
In this paper, we will consider certain IMEX finite difference schemes for the

convection-diffusion and convection-dispersion equations. For the spatial discretiza-
tion, we use a high order upwind biased finite difference scheme for the convection
term, a high order central difference method for the diffusion term, and a high order
upwind biased finite difference scheme for the dispersion term. For simplicity, the
stability analysis is performed on the linear equations with the periodic boundary
condition using the Fourier method. The following results will be obtained.

1. For the convection-diffusion equations, we obtain two stable third order
IMEX finite difference schemes, including Runge-Kutta type and multistep
type IMEX schemes, which are subject to the time step restriction ∆t ≤
max{τ0, c∆x}, where τ0 is a positive constant proportional to the diffusion
coefficient and c is the Courant number;

2. For the convection-dispersion equations, we obtain two stable third order
IMEX Runge-Kutta finite difference schemes and a second order multistep
IMEX finite difference scheme, which are subject to the time step restriction
∆t ≤ c∆x, where c is the Courant number.

Although the stability analysis is performed on linear equations, the schemes are
also applicable to nonlinear equations which will be demonstrated by numerical
tests.

The organization of this paper is as follows. In Section 2, we will present two
IMEX finite difference schemes for the linear convection-diffusion equation, and
will concentrate on the stability analysis of the corresponding schemes. Numerical
experiments are also given to demonstrate the stability results given by our analy-
sis. In Section 3, we will provide several numerical examples, including linear and
nonlinear equations, to numerically validate the stability condition and the error
accuracy for the schemes. Section 4 is similar to Section 2, and Section 5 is simi-
lar to Section 3, but they are for the convection-dispersion equations. Finally, the
concluding remarks are presented in Section 6.

2. The IMEX finite difference schemes for the convection-diffusion equa-
tions

Consider the linear convection-diffusion equation

(1)

{
ut + ux = duxx, (x, t) ∈ (a, b) ∪ (0, T ],

u(x, 0) = u0(x), x ∈ [a, b],

with periodic boundary condition, where d ≥ 0 is the diffusion coefficient. Assume
that [a, b] is uniformly partitioned into N cells with the spatial mesh size given by
∆x = b−a

N . For the spatial discretization, we use the third order upwind biased
finite difference scheme for the convection term, which is just the standard third
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order WENO scheme with the linear weights, and the fourth order central difference
method for the diffusion term to get the semidiscrete scheme,

(2)
du

dt

∣∣∣∣
x=xi

= L(t, u)i +N(t, u)i,

in which N(t, u)i represents the spatial discretization of the convection term

(3) N(t, u)i = −
3ui + 2ui+1 − 6ui−1 + ui−2

6∆x
,

and L(t, u)i represents the spatial discretization of the diffusion term

(4) L(t, u)i = d
−(ui+2 + ui−2) + 16(ui+1 + ui−1)− 30ui

12∆x2
.

The numerical solution ui approximates the exact solution u(x, t) at the grid point
xi. In the following subsections, we will consider two types of IMEX time-marching
methods, i.e., Runge-Kutta and multistep methods given in [17]. We will give
the stability analysis on these two high order IMEX methods coupled with the
above finite difference spatial discretization by the Fourier method. Numerical
experiments are also given to demonstrate the stability results given by our analysis.

2.1. The third order IMEX Runge-Kutta finite difference scheme. Let
{tn = n∆t ∈ [0, T ]}Mn=0 be the time at the n-th time step, in which ∆t is the time
step. Given un, the third order IMEX Runge-Kutta time-marching method [17]
coupled with the above finite difference spatial discretization is given in the following
form

(5)



u(1) = un

u(s) = un +∆t
s∑

j=2

asjL(t
n
j , u

(j)) + ∆t
s−1∑
j=1

âsjN(tnj , u
(j))

un+1 = un +∆t
4∑

j=2

bjL(t
n
j , u

(j)) + ∆t
4∑

j=1

b̂jN(tnj , u
(j))

, 2 ≤ s ≤ 4,

where u(s) approximates u(tn + cs∆t), cs =
∑s

j=2 asj =
∑s−1

j=1 âsj , and tnj = tn +

cj∆t. The Butcher coefficients asj , âsj , bj , and b̂j of (5) are specified in the following
table.

(6)
asj

0 0 0 0 0 0 0 0

âsj
0 γ 0 0 γ 0 0 0

0
1− γ

2
γ 0

1 + γ

2
− α1 α1 0 0

0 β1 β2 γ 0 1− α2 α2 0

bj 0 β1 β2 γ 0 1− α2 α2 0 b̂j

The left half of the table lists asj and bj , with the four rows from top to bot-
tom corresponding to s = 1, 2, 3, 4, and the columns from left to right corre-

sponding to j = 1, 2, 3, 4. Similarly, the right half lists âsj and b̂j in (6), γ ≈
0.435866521508459, β1 = − 3

2γ
2 + 4γ − 1

4 and β2 = 3
2γ

2 − 5γ + 5
4 . The parameter

α1 is chosen as −0.35 in [16] and α2 =
1
3−2γ2−2β2α1γ

γ(1−γ) .
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2.1.1. Stability analysis. We know that when the spatial discretization operator
is LDG, the IMEX schemes [16, 17] are shown to be stable as long as the time
step is upper-bounded by a constant, which depends on the ratio of the diffusion
coefficient and the square of the convection coefficient. For the IMEX Runge-
Kutta finite difference scheme (5), we expect to obtain similar stability, that is, the
scheme could be stable under the condition ∆t ≤ τ0, where τ0 is a positive constant
depending solely on the diffusion coefficient d (notice that the convection coefficient
is the constant 1). Next, we would like to explore whether the scheme would allow
us to achieve such stability by the aid of the Fourier method.

The Fourier method, which is a powerful tool for stability analysis, consists of
examining the following Fourier modes

(7) un
j = vneIkxj , I2 = −1,

for appropriate wave number k. Substituting (7) into (5) yields

(8) vn+1 = Gvn,

where the amplification factorG is a function of k,∆x,∆t, d. The specific formula of
G for the scheme (5) is listed in Appendix A. The necessary and sufficient stability
condition on G is given by the following theorem.

Theorem: (von Neumann condition) Consider the difference approximation
shown in (8), where G is a scalar, on a finite interval 0 ≤ n∆t ≤ T . Assume that
Z is the set of all integers. If there is a constant K such that for all k ∈ Z

|G| ≤ 1 +K∆t,

then the approximation is stable.
Because the L2 norm of the exact solution to the equation (1) does not increase

in time, we would look for strong stability, namely the von Neumann stability
requirement is |G| ≤ 1. If |G| ≤ 1 holds for ∆t ≤ τ0, then the scheme is stable
under the condition ∆t ≤ τ0. If τ0 is a sharp bound, then |G| will be greater than
1 when ∆t = τ0 + ε (we take ε = 0.01 in our tests). As shown in Appendix A, the
specific formula for G is very complex. Thus it is difficult to obtain τ0 analytically.
Considering the algebraic complexity, we will try to get it numerically. The specific
procedure to obtain τ0 is as follows.

To reduce the numerical error arisen from the calculation of ∆x, in the code,
we directly take ∆x as b−a

2N . Besides, to reduce computational complexity, we only
impose the condition |G| ≤ 1 for each of the following discrete k values

(9) k = n0, n0 = −N + 1,−N + 2, ..., N.

It is therefore a slightly looser condition than that required for all k ∈ Z, but
for large N the two conditions become essentially equivalent within O(1/N2) in
general [11]. During the search for τ0 we take N = 105. For each set of ∆t,N, k,
the value of |G| is computed. By checking whether the inequality |G| ≤ 1 is satisfied
for all discrete k values in (9), we can get a range of the time step. The maximum
value of this range is recorded as τ0. The code to determine the stability condition
for the scheme (5) implemented in the Matlab is given in Appendix B. When the
period is 2π, the maximum time step τ0 for the different diffusion coefficient d is
listed in Table 2. Fig. 1 shows the approximately linear relationship between d and
τ0, which can be described as

τ0 ≈ 4.859d.
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Table 2. The maximum time step τ0.

d 0 0.0001 0.001 0.01 0.05 0.1 0.2 0.3 0.4 0.5
τ0 0 0.0005 0.004 0.04 0.24 0.48 0.97 1.45 1.94 2.43

Figure 1. The fitting curve of the maximum time step τ0 and the
diffusion coefficient d.

Notice that when d is very small or even zero, τ0 would be too small to be the
true bound for stability, because this scheme can also be stable under the standard
CFL condition

(10) ∆t ≤ c∆x,

if the diffusion term is not considered. Next, we would like to further find the
possible CFL-like stability condition (10) for the scheme (5).

Similarly, we obtain c in (10) numerically. When d = 0, we get the Courant
number c as follows,

c = 1.3599.

We also observe the following two important facts.

1. When max{c∆x, τ0} = τ0, |G| ≤ 1 holds. When ∆t = τ0 + 0.01, |G| tends
to be greater than 1.

2. For d > 0, we find that c = 1.3599 may not be the optimal Courant number;
that is, |G| may not be greater than 1 if we take ∆t = (c + 0.01)∆x. But
for any d, it seems sufficient to ensure that if ∆t = max{c∆x, τ0} = c∆x,
then |G| ≤ 1.

Therefore, we conclude that the third order IMEX Runge-Kutta finite difference
scheme (5) is stable under the condition

(11) ∆t ≤ max{τ0, c∆x},

where τ0 ≈ 4.859d, c = 1.3599.
In order to further verify whether the scheme is subject to the above time step

restriction, we consider the following equation

(12)

{
ut + ux = duxx, (x, t) ∈ (−π, π) ∪ (0, T ],

u(x, 0) = sinx, x ∈ [−π, π],
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Table 3. The error of the scheme (5) for solving the equation
(12) with the different time step in the case of max{τ0, c∆x} = τ0,
∆x = 2π

Nτ0
.

d ∆t Nτ0 T L1 error

d=0.5
2.42

640 50000
9.10E-14

2.43 2.04E-14
2.44 2.63E+16

d=0.4
1.93

640 50000
5.12E-14

1.94 2.91E-14
1.95 4.13E+07

d=0.2
0.96

640 10000
8.19E-15

0.97 6.74E-15
0.98 5.32E+08

Table 4. The error of the scheme (5) for solving the equation (12)
with the different time step in the case of max{τ0, c∆x} = c∆x,
∆x = 2π

Nc
.

d ∆t Nc T L1 error

d=0
1.3499∆x

40 10000
0.537

1.3599∆x 0.539
1.3699∆x 3.88E+217

d=0.0001
1.3499∆x

40 10000
0.1975

1.3599∆x 0.1982
1.3699∆x 4.61E+157

d=0.001
1.3499∆x

40 100000
2.52E-16

1.3599∆x 4.68E-16
1.3699∆x 2.87E-16

d=0.01
1.3499∆x

40 100000
1.61E-16

1.3599∆x 1.58E-16
1.3699∆x 1.13E-16

with periodic boundary condition. The exact solution of (12) is u(x, t) = e−dt sin(x−
t). We use the scheme (5) to solve the above equation.

On the one hand, we take Nτ0 = 640 in the tests so that max{c∆x, τ0} = τ0,
where ∆x = 2π

Nτ0
. For any fixed diffusion coefficient d, we take ∆t as τ0 − 0.01, τ0

and τ0 + 0.01, respectively. Table 3 lists the L1 error of the scheme (5) for solving
(12) with the different time step. As expected, the error will blow up if we take
∆t = τ0+0.01 but is small when ∆t ≤ τ0. Therefore, when max{c∆x, τ0} = τ0, τ0 is
the precise bound of the time step restriction for stability. This clearly demonstrates
the stability result (11) given by our analysis in such situation.

On the other hand, we take Nc = 40 in the tests such that max{c∆x, τ0} = c∆x,
where ∆x = 2π

Nc
. For any given diffusion coefficient d, we take the time step ∆t as

(c−0.01)∆x, c∆x and (c+0.01)∆x, respectively. We can clearly observe from Table
4 that when d is small enough, the error will blow up if we take ∆t = (c+0.01)∆x
but is tolerable under the condition ∆t ≤ c∆x, and when d is relatively larger, the
error will not blow up when ∆t = (c + 0.01)∆x, which verifies our observation in
the stability analysis.
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Thus, combining the results in Tables 3-4, we conclude that the third order IMEX
Runge-Kutta finite difference scheme (5) is stable under the time step restriction
(11).

2.2. The third order multistep IMEX finite difference scheme. Consid-
ering the semidiscrete scheme (2), we use the third order multistep IMEX time-
marching method given in [17] to discretize it to obtain a finite difference scheme
as follows

un+1
i =un

i +∆t
(23
12

N(tn, un)i −
4

3
N(tn−1, un−1)i +

5

12
N(tn−2, un−2)i

)
+∆t

(2
3
L(tn+1, un+1)i +

5

12
L(tn−1, un−1)i −

1

12
L(tn−3, un−3)i

)
,

(13)

where N(t, u)i and L(t, u)i are defined as (3) and (4) respectively. Next, we will
perform the stability analysis on this scheme.

2.2.1. Stability analysis. When the spatial discretization operator is LDG, we
know that the multistep IMEX schemes [17] are shown to be stable provided that
the time step is upper-bounded by a positive constant, which depends on the ratio
of the diffusion coefficient and the square of the convection coefficient. For the
multistep IMEX finite difference scheme (13), we expect to obtain similar stability,
that is, the scheme could also be stable under the condition ∆t ≤ τ0, where τ0 is
a positive constant proportional to the diffusion coefficient d. Next, we would like
to explore whether the scheme can achieve such stability by the aid of the Fourier
method.

Substituting the Fourier modes (7) into the scheme, we obtain

(14) vn+1 = a1v
n + a2v

n−1 + a3v
n−2 + a4v

n−3.

The specific formulas for ai, i = 1, .., 4 are listed in Appendix A.
To solve (14), we make the ansatz

(15) vn = zn,

where z is a complex number. Substituting (15) into (14) gives us

zn+1 − a1z
n − a2z

n−1 − a3z
n−2 − a4z

n−3 = 0.

Therefore, (15) is a solution of (14) if, and only if, z satisfies the so called charac-
teristic equation

(16) z4 − a1z
3 − a2z

2 − a3z − a4 = 0.

The necessary and sufficient stability condition on the characteristic root z is
defined as follows.

Theorem: Consider the difference approximation shown in (14) on a finite interval
0 ≤ n∆t ≤ T . Assume that Z is the set of all integers. If there is a constant K
such that for all k ∈ Z{

|z| < 1, if z is a multiple root,

|z| ≤ 1 +K∆t, else,

then the approximation is stable.

Applying to the case of interest here, we would like to derive the values of τ0 for
strong stability, namely

(17)

{
|z| ≤ 1, when z is a simple root of (16),

|z| < 1, when z is a multiple root of (16).
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Figure 2. The fitting curve of the maximum time step τ0 and the
diffusion coefficient d.

since the L2 norm of the exact solution to the equation (1) does not increase in
time. Considering the algebraic complexity, we still get τ0 numerically. When the
period is 2π, the maximum time step τ0 is obtained in the similar way as that for
the third order IMEX Runge-Kutta finite difference scheme (5). We refer to Section
2.1.1 for more details. Here we just summarize the result in Table 5.

Table 5. The maximum time step τ0.

d 0 0.001 0.01 0.05 0.1 0.2 0.3 0.4 0.5
τ0 0 0.0002 0.002 0.012 0.025 0.051 0.077 0.103 0.128

Similarly Fig. 2 shows the approximately linear relationship between d and τ0,
which can be expressed as

(18) τ0 ≈ 0.2566d.

We observe that the IMEX Runge-Kutta finite difference scheme (5) admits larger
time step than the multistep IMEX finite difference scheme (13). Similar to the
scheme (5), when d is very small in comparison with the spatial mesh size, τ0
determined by (18) is too small to be true for stability. Thus, we will further find
the similar CFL-like stability condition for the scheme (13).

In order to get stability, c should satisfy (17). We get the value of c numerically.
When d = 0, we obtain c = 0.39, that is, the scheme is stable when the time step
satisfies

∆t ≤ 0.39∆x.

Besides, we also observe the following two important facts.

1. When max{c∆x, τ0} = τ0, (17) holds if ∆t ≤ τ0. If we take ∆t = τ0+0.01,
the roots of the characteristic equation will lie outside the complex unit
disk.

2. When d > 0, c = 0.39 may not be the optimal Courant number, that is, the
roots of the characteristic equation may not lie outside the complex unit
disk if we take ∆t = (c + 0.01)∆x. However, it seems sufficient to ensure
that (17) holds if ∆t = max{c∆x, τ0} = c∆x for any d.
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Table 6. The error of the scheme (13) for solving (12) with the
different time step in the case of max{τ0, c∆x} = τ0, ∆x = 2π

Nτ0
.

d ∆t Nτ0 T L1 error

d=0.5
0.127

640 30000
7.20E-15

0.128 8.42E-16
0.129 1.22E+29

d=0.4
0.102

640 30000
6.68E-14

0.103 6.11E-14
0.104 1.16E+161

d=0.2
0.05

640 30000
6.09E-15

0.051 6.16E-14
0.052 9.30E+303

Therefore, we conclude that the third order multistep IMEX finite difference
scheme (13) is stable under the condition

(19) ∆t ≤ max{τ0, c∆x},

where τ0 ≈ 0.2566d, c = 0.39.
In order to further verify whether the scheme is subject to the above time step

restriction (19), we still verify it on the equation (12). Since the third order mul-
tistep IMEX finite difference scheme is not self-starting, we adopt the third order
IMEX Runge-Kutta finite difference scheme (5) to compute the solutions at the
first three time levels.

We first take Nτ0 = 640 in the test such that max{c∆x, τ0} = τ0, where ∆x =
2π
Nτ0

. For any fixed diffusion coefficient d, we take ∆t as τ0−0.001, τ0 and τ0+0.001

respectively. Table 6 lists the L1 error of the scheme (13) solving (12) with the
different time step. As expected, the error will blow up if we take ∆t = τ0 + 0.001
but is small when ∆t ≤ τ0. Therefore, when max{c∆x, τ0} = τ0, τ0 is the precise
bound of time step restriction for stability. This verifies the stability result produced
by our analysis.

Then we take Nc = 40 in the test so that max{c∆x, τ0} = c∆x, where ∆x = 2π
Nc

.

For any given diffusion coefficient d, we take the time step ∆t as (c−0.01)∆x, c∆x
and (c+0.01)∆x respectively. When d is relatively large, the L1 norm of the error
does not blow up even in the case ∆t = (c+ 0.01)∆x, as shown in Table 7. When
d is sufficiently small, we can clearly observe that the error will blow up if we take
∆t = (c + 0.01)∆x but is tolerable under the condition ∆t ≤ c∆x. This clearly
demonstrates the stability result predicted by our analysis.

Therefore, we conclude that the third order multistep IMEX finite difference
scheme (13) is stable under the condition (19).

3. Numerical experiments

The purpose of this section is to numerically validate the error accuracy of the
third order IMEX Runge-Kutta finite difference scheme (5) and the third order
multistep IMEX finite difference scheme (13) under the above discussed stability
conditions. In the implementation of the multistep IMEX finite difference scheme,
we use the IMEX Runge-Kutta finite difference scheme to compute the solutions
at the first three time levels. In the experiments, we will take the final computing
time T = 10 and the diffusion coefficient d = 0.5, unless otherwise stated.
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Table 7. The error of the scheme (13) for solving (12) with the
different time step in the case of max{τ0, c∆x} = c∆x, ∆x = 2π

Nc
.

d ∆t Nc T L1 error

d=0
0.38∆x

40 1000
0.2259

0.39∆x 0.2288
0.40∆x 9.34E+39

d=0.001
0.38∆x

40 1000
0.0831

0.39∆x 0.0842
0.40∆x 1.58E+06

d=0.01
0.38∆x

40 100000
2.27E-16

0.39∆x 1.50E-17
0.40∆x 6.95E-16

d=0.05
0.38∆x

40 100000
6.41E-16

0.39∆x 1.07E-15
0.40∆x 3.44E-16

Table 8. Error and order for the schemes (5) and (13) solving
the equation (12).

N
IMEX Runge-Kutta scheme multistep IMEX scheme

L1 error order L∞ error order L1 error order L∞ error order
40 1.46E-05 2.31E-05 1.49E-05 2.34E-05
80 1.79E-06 3.03 2.83E-06 3.03 1.83E-06 3.03 2.87E-06 3.03
160 2.22E-07 3.01 3.49E-07 3.02 2.30E-07 2.99 3.61E-07 2.99
320 2.76E-08 3.01 4.34E-08 3.01 2.78E-08 3.05 4.36E-08 3.05
640 3.44E-09 3.00 5.41E-09 3.00 3.41E-09 3.02 5.36E-09 3.02
1280 4.30E-10 3.00 6.76E-10 3.00 4.69E-10 2.86 7.36E-10 2.86

First, consider the linear equation (12). For the third order IMEX Runge-Kutta
finite difference scheme (5) and the third order multistep IMEX finite difference
scheme (13), we take the time step ∆t = 0.6∆x and ∆t = 0.1∆x respectively. The
L1 and L∞ error and order of accuracy are contained in Table 8. We can clearly
observe the designed order of accuracy from this table.

In order to test the order of accuracy with respect to time, we take N = 2560 and
the proper time step so that the temporal error is always dominant. The L1 and
L∞ error and order of accuracy for the schemes (5) and (13) solving the equation
(12) can be observed from Table 9. The optimal order of accuracy can be observed
in this table.

Although we only perform the stability analysis on the linear convection-diffusion
equations, numerical experiments show that the obtained stability conditions are
also applicable to the equations with the nonlinear convection term. Next, we will
perform the test on the nonlinear Burgers’ equation,

(20)

ut + (
u2

2
)x = 0, (x, t) ∈ (−π, π) ∪ (0, T ],

u(x, 0) =
1

2
+ sinx, x ∈ [−π, π],

with the periodic boundary condition. Even though the initial condition is quite
smooth, the solution of the equation will become discontinuous in finite time. The
third order upwind biased finite difference scheme, which is the standard third order
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Table 9. The error and order for the schemes (5) and (13) solving
the equation (12), N = 2560.

∆t
IMEX Runge-Kutta scheme

L1 error order L∞ error order
0.6 3.27E-04 5.14E-04
0.3 4.88E-05 2.75 7.66E-05 2.75
0.15 6.64E-06 2.88 1.04E-05 2.88
0.075 8.68E-07 2.93 1.36E-06 2.93
0.0375 1.11E-07 2.97 1.74E-07 2.97
0.01875 1.40E-08 2.98 2.20E-08 2.98

∆t
multistep IMEX scheme

L1 error order L∞ error order
0.1 2.55E-05 4.01E-05
0.05 3.17E-06 3.01 4.98E-06 3.01
0.025 3.95E-07 3.01 6.20E-07 3.01
0.0125 4.93E-08 3.00 7.73E-08 3.00
0.00625 6.18E-09 3.00 9.70E-09 2.99
0.003125 8.01E-10 2.95 1.26E-09 2.95

Figure 3. The third order upwind biased scheme (left) and the
third order multi-resolution WENO scheme (right) for the Burgers’
equation. Solid line: exact solution; Circle symbol: the numerical
solution at T = 1.1. N = 500.

WENO scheme [12, 14] with linear weights (when the smoothness indicators and
nonlinear weights are turned off), produces oscillations near the discontinuity, see
the left figure of Fig 3. The multi-resolution WENO scheme [20] is a good choice
to eliminate or reduce the oscillations near the discontinuity, see the right figure of
Fig 3.

For the Burgers’ equation, we consider both the third order upwind biased
scheme and the third order multi-resolution WENO scheme for the spatial dis-
cretization. In order to ensure correct upwind biasing and stability, a simple Lax-
Friedrichs flux splitting [15] is used. We take ∆t = 0.6∆x for the scheme with the
IMEX Runge-Kutta time discretization and take ∆t = 0.1∆x for the scheme with
the multistep IMEX time discretization. Tables 10 and 11 are the L1 and L∞ error
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Table 10. The error and order of the third order upwind biased
scheme (left) and multi-resolution WENO scheme (right) coupled
with the third order IMEX Runge-Kutta time discretization solving
the equation (20). The time step is ∆t = 0.6∆x.

N
the upwind biased scheme the multi-resolution WENO scheme

L1 error order L∞ error order L1 error order L∞ error order
80 7.32E-05 5.67E-04 7.91E-04 7.00E-03
160 8.15E-06 3.17 6.66E-05 3.09 1.82E-04 2.12 2.60E-03 1.43
320 9.52E-07 3.10 7.99E-06 3.06 3.56E-05 2.36 8.95E-04 1.55
640 1.15E-07 3.05 9.73E-07 3.04 5.84E-06 2.61 2.69E-04 1.73
1280 1.41E-08 3.03 1.20E-07 3.02 6.51E-07 3.16 5.97E-05 2.17
2560 1.75E-09 3.01 1.49E-08 3.01 5.53E-08 3.56 8.71E-06 2.78

Table 11. The error and order of the third order upwind biased
scheme (left) and multi-resolution WENO scheme (right) coupled
with the third order multistep IMEX time discretization solving the
equation (20). The time step is ∆t = 0.1∆x.

N
the upwind biased scheme the multi-resolution WENO scheme

L1 error order L∞ error order L1 error order L∞ error order
80 6.59E-04 4.40E-03 7.16E-04 6.20E-03
160 6.98E-05 3.24 5.36E-04 3.03 1.61E-04 2.15 2.30E-03 1.43
320 7.86E-06 3.15 6.27E-05 3.10 3.28E-05 2.30 8.15E-04 1.51
640 9.24E-07 3.09 7.43E-06 3.08 5.32E-06 2.62 2.42E-04 1.75
1280 1.12E-07 3.05 9.03E-07 3.04 6.10E-07 3.12 5.47E-05 2.14
2560 1.38E-08 3.02 1.11E-07 3.02 5.54E-08 3.46 8.27E-06 2.73

and order of accuracy for the above mentioned schemes. We compute the solution
up to T = 0.5 in the test, when the solution is still smooth. The optimal order of
accuracy can be observed from both tables.

Finally, we consider the viscous Burgers’ equation [16] with a source term

(21)

ut + (
u2

2
)x = duxx + g(x, t), (x, t) ∈ (−π, π) ∪ (0, T ],

u(x, 0) = sinx, x ∈ [−π, π].

The source term is g(x, t) = 1
2e

−2dt sin(2x), and the exact solution is u(x, t) =

e−dt sin(x). In order to ensure correct upwind biasing and stability, a simple Lax-
Friedrichs flux splitting is used for the convection term. For the third order IMEX
Runge-Kutta finite difference scheme (5) and the third order multistep IMEX fi-
nite difference scheme (13), we take the time step ∆t = 0.6∆x and ∆t = 0.1∆x,
respectively. Then we can again clearly observe the designed order of accuracy for
the schemes solving the equation (21) in Table 12.
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Table 12. The error and order for the schemes (5) and (13) solv-
ing the equation (21).

N
IMEX Runge-Kutta multistep IMEX

L1 error order L∞ error order L1 error order L∞ error order
100 1.62E-07 2.57E-07 1.59E-07 2.53E-07
200 2.05E-08 2.98 3.24E-08 2.99 2.03E-08 2.97 3.20E-08 2.98
300 6.11E-09 2.99 9.63E-09 2.99 6.11E-09 2.96 9.63E-09 2.96
400 2.58E-09 2.99 4.07E-09 3.00 2.61E-09 2.96 4.11E-09 2.96
500 1.32E-09 2.99 2.09E-09 3.00 1.33E-09 3.02 2.09E-09 3.02
600 7.67E-10 3.00 1.21E-09 3.00 7.94E-10 2.83 1.25E-09 2.83

4. The IMEX finite difference schemes for the convection-dispersion
equations

In this section, we will extend our work in Section 2 to the linear convection-
dispersion equation

(22)

{
ut + ux + duxxx = 0, (x, t) ∈ (a, b) ∪ (0, T ],

u(x, 0) = u0(x), x ∈ [a, b],

with periodic boundary condition, where the dispersion coefficient d ≥ 0 is a con-
stant. Since this is a wave equation and the third order derivative term duxxx

does not provide any diffusion to help control the convection term ux, we do not
expect a better stability condition for d > 0 than for d = 0. This is different from
the situation of convection-diffusion equations discussed in previous sections. In
this section, we will focus our attention on the stability analysis for the third order
IMEX Runge-Kutta method [16], the third order additive Runge-Kutta method [10]
and the second order multistep IMEX method [17] coupled with certain high order
finite difference spatial discretization respectively. Numerical experiments are also
given to demonstrate the stability results given by the analysis.

4.1. The spatial discretization. In this subsection, we present the spatial dis-
cretization of (22). We adopt the third order upwind biased finite difference scheme,
which is a prototype of the third order WENO scheme to discretize the convection
term, and the third order one-point upwind biased scheme to discretize the disper-
sion term. Then we can get the following semidiscrete scheme

(23)
du

dt

∣∣∣∣
x=xi

= L(t, u)i +N(t, u)i,

where L(t, u)i arises from the spatial discretization of the dispersion term

(24) L(t, u)i = −d
−ui+3 + 7ui+2 − 14ui+1 + 10ui − ui−1 − ui−2

4∆x3
,

and N(t, u)i is derived from the spatial discretization of the convection term. The
specific formula for N(t, u)i is given by (3).

4.2. The temporal discretization. In this subsection, we consider the fully dis-
crete schemes for the ODE system (23). Both Runge-Kutta and multistep IMEX
time-marching methods are considered. For a detailed introduction to IMEX time-
marching methods, please refer to [13,16,17].
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4.2.1. The third order Runge-Kutta type finite difference scheme. We
use the third order IMEX Runge-Kutta method [16] and the third order additive
Runge-Kutta method [10] to fully discretize the semidiscrete scheme (23) and obtain

u(1) = un

u(i) = un +∆t
i∑

j=1

aijL(tnj , u(j)) + ∆t
i−1∑
j=1

âijN(tnj , u
(j))

un+1 = un +∆t
4∑

j=1

bjL(tnj , u(j)) + ∆t
4∑

j=1

b̂jN(tnj , u
(j))

, 2 ≤ i ≤ 4,

where tni = tn + ci∆t, u(i) approximates u(tni ). The third order IMEX Runge-
Kutta method has been described in detail in the previous subsection for solving
the convection-diffusion equations. For details on the Butcher coefficients of this
method, please refer to (6). The coefficients of the additive Runge-Kutta method
are given in the following tabular data.

aij

0 0 0 0
γ γ 0 0

2746238789719
10658868560708

−640167445237
6845629431997 γ 0

1471266399579
7840856788654

−4482444167858
7529755066697

11266239266428
11593286722821 γ

bi
1471266399579
7840856788654

−4482444167858
7529755066697

11266239266428
11593286722821 γ

ci 0 2γ 3
5 1

âij

0 0 0 0
2γ 0 0 0

5535828885825
10492691773637

788022342437
10882634858940 0 0

6485989280629
16251701735622

−4246266847089
9704473918619

10755448449292
10357097424841 0

b̂i
1471266399579
7840856788654

−4482444167858
7529755066697

11266239266428
11593286722821 γ

(25)

The first table in (25) lists aij ,bj and ci, with the four rows from top to bottom
corresponding to i = 1, 2, 3, 4, and the columns from left to right corresponding to

j = 1, 2, 3, 4 respectively. Similarly, the second table lists âij and b̂j . In (25), the
value of γ is set as 1767732205903

4055673282236 .
The additive Runge-Kutta method is a combination of the traditional explicit

Runge-Kutta method and an L-stable, stiffly-accurate, singly diagonally implicit
Runge-Kutta method. Compared with the IMEX Runge-Kutta finite difference
scheme of the same order which has the advantage of simplicity, the additive Runge-
Kutta finite difference scheme exhibits excellent stability in the existence of stiffness
[13].

4.2.2. The second order multistep IMEX finite difference scheme. Be-
cause no multistep method of order greater than 2 can be A-stable [7], we will
consider the second order multistep IMEX time-marching method [17] with an A-
stable trapezoidal rule for the implicit part in this paper. The finite difference
scheme is in the form

un+1
i − un

i =∆t

(
3

2
N(tn, un)i −

1

2
N(tn−1, un−1)i

)
+

∆t

(
3

4
L(tn+1, un+1)i +

1

4
L(tn−1, un−1)i

)
,

(26)
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Table 13. The Courant number c.

scheme c
(6) 1.3599
(25) 2.03
(26) 0.58

where N(t, u)i stems from the spatial discretization of the convection term and
L(t, u)i arises from the spatial discretization of the dispersion term. The formulas
for N(t, u)i and L(t, u)i are specified in (3) and (24), respectively. In the following
subsection, we would like to analyze the stability of the above schemes.

4.3. Stability analysis. In [5], some IMEX Runge-Kutta methods coupled with
the finite volume spatial discretization are shown to be stable for the KdV equa-
tion under the standard CFL condition ∆t ≤ c∆x. For the IMEX schemes (6),
(25), (26) coupled with finite difference spatial discretizations solving the linear
convection-dispersion equation, in which we treat the dispersion term implicitly
and the convection term explicitly, we can reasonably expect to obtain similar sta-
bility. Because of the algebraic complexity, we will proceed in the similar way as
that in Section 2.1.1 to get the values of c. When the period is 2π and d = 0, Table
13 lists the maximum Courant number c which can guarantee the stability. We
also find that when d > 0, c may not be the optimal Courant number in the sense
that, if we take ∆t = (c + 0.01)∆x, the norm of the amplification factor may not
be greater than 1 (or the roots of the characteristic equation may not lie outside
the complex unit disk), but we can ensure that |G| ≤ 1 (or (17)) holds if ∆t ≤ c∆x
for any d.

In order to further verify whether the above listed c can ensure the numerical
stability of the schemes, we consider the following equation

(27)

{
ut + ux + duxxx = 0, (x, t) ∈ (−π, π) ∪ (0, T ],

u(x, 0) = sin(x), x ∈ [−π, π],

with periodic boundary condition. The exact solution is u(x, t) = sin
(
x− (1−d)t

)
.

Since the second order multistep IMEX finite difference scheme (26) is not self-
starting, we adopt the third order IMEX Runge-Kutta finite difference scheme (6)
to compute the solution at the first time level. In the tests, we take the time step
∆t as (c − 0.01)∆x, c∆x and (c + 0.01)∆x, respectively. Tables 14, 15 and 16
show that when d = 0, the error will blow up if we take ∆t = (c + 0.01)∆x, but
is tolerable under the condition ∆t ≤ c∆x. When d ̸= 0, the L1 and L∞ error is
bounded as shown in these three tables.

In general, these three schemes are stable under the standard CFL condition. Be-
sides, it is worth noting that the Runge-Kutta type IMEX finite difference schemes
(6), (25) admit larger time step than the multistep IMEX finite difference scheme
(26), and the additive Runge-Kutta finite difference scheme (25) admits larger time
step than the IMEX Runge-Kutta finite difference scheme (6).

5. Numerical experiments

In this section, we provide a few numerical examples, including the linear and
nonlinear convection-dispersion problems, to illustrate stability condition and the
error accuracy for the third order IMEX Runge-Kutta finite difference scheme (6),
the third order additive Runge-Kutta finite difference scheme (25) and the second
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Table 14. The error of the scheme (6) for solving the equation
(27) with the different time step.

d ∆t Nc T L1 error L∞ error

d=0
1.3499∆x

40 10000
0.5370 0.8446

1.3599∆x 0.5390 0.8471
1.3699∆x 3.88E+217 6.20E+217

d=0.001
1.3499∆x

40 100000
0.6325 0.9996

1.3599∆x 0.6325 0.9996
1.3699∆x 0.6325 0.9996

d=0.01
1.3499∆x

40 100000
0.6420 1

1.3599∆x 0.6420 1
1.3699∆x 0.6420 1

d=0.05
1.3499∆x

40 100000
0.6451 0.9996

1.3599∆x 0.6451 0.9996
1.3699∆x 0.6451 0.9996

Table 15. The error of the scheme (25) for solving the equation
(27) with the different time step.

d ∆t Nc T L1 error L∞ error

d=0
2.02∆x

40 10000
0.6281 0.9993

2.03∆x 0.6281 0.9993
2.04∆x 2.16E+51 3.21E+51

d=0.001
2.02∆x

40 100000
0.6325 0.9996

2.03∆x 0.6325 0.9996
2.04∆x 0.6325 0.9996

d=0.01
2.02∆x

40 100000
0.642 1

2.03∆x 0.642 1
2.04∆x 0.642 1

d=0.05
2.02∆x

40 100000
0.6451 0.9996

2.03∆x 0.6451 0.9996
2.04∆x 0.6451 0.9996

Table 16. The error of the scheme (26) for solving (27) with the
different time step.

d ∆t Nc T L1 error L∞ error

d=0
0.57∆x

40 1000
1.1745 1.8248

0.58∆x 1.1651 1.8086
0.59∆x 3.45E+82 5.35E+82

d=0.001
0.57∆x

40 100000
0.6325 0.9996

0.58∆x 0.6325 0.9996
0.59∆x 0.6325 0.9996

d=0.01
0.57∆x

40 100000
0.642 1

0.58∆x 0.642 1
0.59∆x 0.642 1

d=0.05
0.57∆x

40 100000
0.6451 0.9996

0.58∆x 0.6451 0.9996
0.59∆x 0.6451 0.9996
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Table 17. The error and order for the schemes (6), (25) and (26)
solving the equation (27). ∆t = 0.5∆x.

N Norm
IMEX Runge-Kutta Additive Runge-Kutta multistep IMEX
error order error order error order

40
L1 3.90E-03 3.90E-03 9.50E-03
L∞ 6.10E-03 6.10E-03 1.50E-02

60
L1 1.10E-03 3.06 1.10E-03 3.06 4.00E-03 2.16
L∞ 1.80E-03 3.05 1.80E-03 3.05 6.20E-03 2.15

80
L1 4.71E-04 3.05 4.74E-04 3.05 2.20E-03 2.09
L∞ 7.35E-04 3.04 7.40E-04 3.04 3.40E-03 2.09

100
L1 2.39E-04 3.04 2.41E-04 3.04 1.40E-03 2.06
L∞ 3.74E-04 3.03 3.76E-04 3.03 2.20E-03 2.06

120
L1 1.38E-04 3.03 1.38E-04 3.03 9.43E-04 2.05
L∞ 2.15E-04 3.03 2.17E-04 3.03 1.50E-03 2.05

order multistep IMEX finite difference scheme (26) respectively. In order to imple-
ment the scheme (26), we use the self-starting scheme (6) to compute the solution
at the first time level.

Consider the linear convection-dispersion equation (27). We take d = 0.5, and
the final computing time is T = 10. Table 17 lists the L1 and L∞ error and order
of accuracy for these three schemes solving (27). We take ∆t = 0.5∆x in all the
tests. Optimal order of accuracy can be observed in this table.

Although we only perform the stability analysis on the linear convection-dispersion
equations, numerical experiments show that the stability conditions we obtained
are also applicable to nonlinear equations. In the following, we would like to test
the error and order of accuracy for the convection-dispersion equations with the
nonlinear convection term. In order to ensure correct upwind biasing and stability,
a simple Lax-Friedrichs flux [15] is used for the convection term.

First, we compute the classical soliton solution of the generalized KdV problem
[19]

(28)

{
ut + ux + u3ux + ϵuxxx = 0, (x, t) ∈ (−2, 3) ∪ (0, T ],

u(x, 0) = A sech
2
3 (K(x− x0)), x ∈ [−2, 3],

where ϵ = 2.058 × 10−5, A = 0.2275, x0 = 0.5,K = 3
(
A3

40ϵ

) 1
2 . The exact solution

is u(x, t) = A sech
2
3 (K(x − x0) − ωt), ω = K(1 + A3

10 ). We take ∆t = 0.3∆x in
all the tests. We choose a large domain and use the exact solution to serve as the
boundary condition. Then we can clearly observe the designed order of accuracy
from Table 18.

Next, we compute the classical soliton solution of the KdV problem [19]

(29)

{
ut − 3(u2)x + uxxx = 0, (x, t) ∈ (−10, 12) ∪ (0, T ]

u(x, 0) = −2 sech2(x), x ∈ [−10, 12]

The exact solution is u(x, t) = −2 sech2(x − 4t). We take ∆t = 0.1∆x in all the
tests. Table 19 gives the L1 and L∞ error and order of accuracy at T = 0.5 using the
exact solution to serve as the boundary condition. The optimal order of accuracy
can be observed from this table.
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Table 18. The error and order for the schemes (6), (25) and (26)
solving the equation (28). ∆t = 0.3∆x.

N Norm
IMEX Runge-Kutta Additive Runge-Kutta multistep IMEX
error order error order error order

80
L1 1.20E-03 1.20E-03 1.10E-03
L∞ 1.97E-02 1.98E-02 2.11E-02

160
L1 2.49E-04 2.23 2.52E-04 2.23 2.63E-04 2.07
L∞ 6.50E-03 1.60 6.50E-03 1.60 7.00E-03 1.59

320
L1 3.76E-05 2.73 3.80E-05 2.73 5.88E-05 2.16
L∞ 1.30E-03 2.31 1.30E-03 2.30 1.70E-03 2.02

640
L1 5.03E-06 2.90 5.09E-06 2.90 1.36E-05 2.12
L∞ 1.91E-04 2.77 1.94E-04 2.77 3.88E-04 2.15

1280
L1 6.35E-07 2.98 6.43E-07 2.98 3.34E-06 2.02
L∞ 2.45E-05 2.97 2.47E-05 2.97 9.49E-05 2.03

Table 19. The error and order for the schemes (6), (25) and (26)
solving the equation (29). ∆t = 0.1∆x.

N Norm
IMEX Runge-Kutta Additive Runge-Kutta multistep IMEX
error order error order error order

80
L1 1.60E-02 1.61E-02 1.75E-02
L∞ 1.18E-01 1.20E-01 1.45E-01

160
L1 2.50E-03 2.68 2.50E-03 2.68 3.90E-03 2.18
L∞ 1.79E-02 2.72 1.83E-02 2.71 3.05E-02 2.25

320
L1 3.23E-04 2.95 3.28E-04 2.94 9.21E-04 2.07
L∞ 2.30E-03 2.95 2.40E-03 2.94 6.90E-03 2.15

640
L1 4.08E-05 2.99 4.15E-05 2.98 2.31E-04 1.99
L∞ 2.88E-04 3.01 2.96E-04 3.01 1.70E-03 1.98

1280
L1 5.11E-06 3.00 5.20E-06 3.00 5.84E-05 1.98
L∞ 3.56E-05 3.01 3.66E-05 3.01 4.30E-04 2.02

Finally, we consider the soliton solution of the mKdV problem

(30)

{
ut + 6u2ux + uxxx = 0, (x, t) ∈ (−40, 40) ∪ (0, T ],

u(x, 0) =
√
c sech(

√
cx), x ∈ [−40, 40],

The exact solution is u(x, t) =
√
c sech

(√
c(x − ct)

)
. Here, we take c = 1

2 . We

take ∆t = 0.1∆x in all the tests. Table 20 gives the L1 and L∞ error and order of
accuracy at T = 0.5 using the exact solution to serve as the boundary condition.
We can clearly observe the designed order of accuracy from this table.

6. Concluding remarks

We have considered some carefully chosen IMEX time marching methods cou-
pled with high order finite difference spatial discretization for solving the linear
convection-diffusion and the convection-dispersion equations with periodic bound-
ary conditions. By the aid of the Fourier method, a procedure in Matlab is used to
get the time step restriction of the schemes. For the convection-diffusion equations,
the result shows that the IMEX finite difference schemes are stable under the con-
dition ∆t ≤ max{τ0, c∆x}, in which τ0 is a positive constant proportional to the
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Table 20. The error and order for the schemes (6), (25) and (26)
solving the equation (30). The time step is ∆t = 0.1∆x.

N Norm
IMEX Runge-Kutta Additive Runge-Kutta multistep IMEX
error order error order error order

160
L1 5.36E-04 5.36E-04 6.40E-04
L∞ 1.29E-02 1.29E-02 1.88E-02

320
L1 9.18E-05 2.55 9.18E-05 2.55 1.15E-04 2.48
L∞ 2.00E-03 2.68 2.00E-03 2.68 3.70E-03 2.34

640
L1 1.27E-05 2.85 1.27E-05 2.85 2.28E-05 2.33
L∞ 2.65E-04 2.92 2.65E-04 2.92 6.75E-04 2.46

1280
L1 1.64E-06 2.96 1.64E-06 2.95 4.96E-06 2.20
L∞ 3.35E-05 2.99 3.35E-05 2.99 1.18E-04 2.51

2560
L1 2.07E-07 2.99 2.07E-07 2.99 1.23E-06 2.01
L∞ 4.20E-06 3.00 4.20E-06 3.00 2.63E-05 2.17

diffusion coefficient and c is the Courant number. For the convection-dispersion
equations, the result shows that the IMEX finite difference schemes are stable un-
der the standard CFL condition ∆t ≤ c∆x. In addition, we can find that the
Runge-Kutta type IMEX finite difference schemes admit larger time step than the
multistep type IMEX finite difference schemes. The numerical tests verify the de-
signed order of accuracy for these IMEX finite difference schemes under the stability
condition.
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Appendix A

1. The amplification factor G of the third order IMEX Runge-Kutta
finite difference scheme (5) solving the convection-diffusion equa-
tion.

Substituting the Fourier modes un
j = vneIkxj , I2 = −1 into the first four differ-

ence equations in (5) yields

v(2) = M2v
n, v(3) = M3v

n, v(4) = M4v
n,

where

M2 =
1 +∆tGN â21
1−∆tGLa22

,

M3 =
1 +∆tGN

(
â31 + â32M2

)
+∆tGLa32M2

1−∆tGLa33
,

M4 =
1 +∆tGN

(
â41 + â42M2 + â43M3

)
+∆tGL

(
a42M2 + a43M3

)
1−∆tGLa44

,

GL = − d

12∆x2

(
− 32 cos ξ + 2 cos 2ξ + 30

)
,

GN = − 1

∆x

(1
2
+

1

3
cos ξ +

1

3
I sin ξ − cos ξ + I sin ξ +

1

6
cos 2ξ − 1

6
I sin 2ξ

)
,

with ξ given by ξ = k∆x. The Butcher coefficients asj , âsj , bj , b̂j , s = 1, ..., 4; j =
1, ..., 4 are specified in (6). Substitute the above formula into the last term of (5),
and we can get the amplification factor G after a simple arithmetic operation.

G = 1 +∆tGN
(
b̂1 + b̂2M2 + b̂3M3 + b̂4M4

)
+∆tGL

(
b2M2 + b3M3 + b4M4

)
.

2. The coefficients of the characteristic equation (16).
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a1 =
1 + 23

12∆tGN

1− 2
3∆tGL

, a2 =
−4

3∆tGN + 5
12∆tGL

1− 2
3∆tGL

,

a3 =
5
12∆tGN

1− 2
3∆tGL

, a4 =
− 1

12∆tGL

1− 2
3∆tGL

.

Appendix B

For the IMEX Runge-Kutta finite difference scheme (5), the Courant number c
and the maximum time step τ0 have been obtained numerically using the Matlab
code. Note that the stability analysis described in Section 2.1.1 is carried out by
considering whether the condition |G| ≤ 1 is satisfied. Taking the maximum time
step τ0 as an example, the algorithm developed for the scheme is presented below.

Algorithm 1 : Numerical stability analysis of the third order IMEX
Runge-Kutta finite difference scheme (5) for solving the linear convection-diffusion
equation with periodic boundary condition.

Require: d: diffusion coefficient
Ensure: τ0: the maximum time step
1: function Mainfunction(d)
2: τ0 ← 0
3: bool1 ← 1
4: N ← 105

5: ∆x← π
N

6: while (1) do
7: ∆t← τ0
8: for k = −N + 1→ N do
9: compute |G|, where G is a function of d,∆t,∆x, k

10: if |G| > 1 then
11: bool1 ← 0
12: break;
13: end if
14: end for
15: if bool1 ̸= 0 then
16: τ0 ← τ0 + 0.01
17: else
18: break;
19: end if
20: end while
21: return τ0
22: end function
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