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THE ARBITRARY LAGRANGIAN-EULERIAN FINITE

ELEMENT METHOD FOR A TRANSIENT STOKES/PARABOLIC

INTERFACE PROBLEM

IAN KESLER, RIHUI LAN, AND PENGTAO SUN∗

Abstract. In this paper, a type of nonconservative arbitrary Lagrangian-Eulerian (ALE) finite
element method is developed and analyzed in the monolithic frame for a transient Stokes/parabolic

moving interface problem with jump coefficients. The mixed and the standard finite element
approximations are adopted for the transient Stokes equations and the parabolic equation on
either side of the moving interface, respectively. The stability and optimal convergence properties
of both semi- and full discretizations are analyzed in terms of the energy norm. The developed

numerical method can be generally extended to the realistic fluid-structure interaction (FSI)
problems in a time-dependent domain with a moving interface.

Key words. Arbitrary Lagrangian-Eulerian (ALE) method, mixed finite element method (FEM),

fluid-structure interactions (FSI), Stokes/parabolic interface problem, stability, optimal conver-
gence.

1. Introduction

In this paper, we study the following coupled system of partial differential equa-
tions (PDEs), which consists of the transient Stokes equations and a parabolic equa-
tion defined in respective time-dependent subdomains and separated by a moving
interface:

(1)



∂v1
∂t −∇ · (µ1∇v1) +∇p1 = f1, in Ω1

t × I
∇ · v1 = 0, in Ω1

t × I
v1 = 0, on ∂Ω1

t\Γt × I
v1(x, 0) = v01 , in Ω̂1 = Ω1

0
∂v2
∂t −∇ · (µ2∇v2) = f2, in Ω2

t × I
v2 = 0, on ∂Ω2

t\Γt × I
v2(x, 0) = v02 , in Ω̂2 = Ω2

0

v1 = v2, on Γt × I
(−p1I + µ1∇v1)n1 + µ2∇v2n2 = τ , on Γt × I

where Ω ⊂ Rd (d = 2, 3), I = (0, T ] (T > 0), and two subdomains, Ωi
t := Ωi(t) ⊂

Ω (i = 1, 2) (0 ≤ t ≤ T ), satisfy Ω1
t ∪ Ω2

t = Ω, Ω1
t ∩ Ω2

t = ∅ and are separated
by a moving interface: Γt := Γ(t) = ∂Ω1

t ∩ ∂Ω2
t . Γt may move/deform along

with t ∈ I, then may cause Ωi
t (i = 1, 2) to change with t ∈ I as well, which

are thus termed as the current (Eulerian) domains with respect to xi in contrast

to their initial (reference/Lagrangian) domains, Ω̂i := Ωi
0 with respect to x̂i (i =

1, 2), where, a flow map is defined from Ω̂i to Ωi
t, as: x̂i 7→ xi(x̂i, t) such that

xi(x̂i, t) = x̂i + ûi(x̂i, t), ∀t ∈ I, where ûi (i = 1, 2) is the displacement field in
the Lagrangian frame. In addition, µ1 and µ2 are jump constants. In what follows,

we set ψ̂i = ψ̂i(x̂i, t) which equals ψi(xi(x̂i, t), t) (i = 1, 2). Correspondingly,
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the deformation gradient tensor is defined as Fi := ∇x̂i
xi = I + ∇x̂i

ûi, and
J i = det(Fi) (i = 1, 2).

The model problem (1) can be essentially considered as a linearized fluid-structure
interaction (FSI) problem [5, 9, 16, 1, 2, 14, 17], where the transient Stokes equa-
tions describe the fluid motion in terms of the fluid velocity v1 and pressure p1, and
the parabolic equation just stands for a dynamic linear elasticity problem in terms
of the structural velocity v2 [19]. In addition, µ1 can represent the fluid viscosity,
and µ2 denotes the elastic parameter of the structure. Hence, (1) holds the es-
sential characteristic of FSI problems at least partially, that is, two different types
of time-dependent governing equations bearing with different primary unknowns
and different compressibility/constitutive relations are defined on either side of the
moving interface. FSI problems describe the coupled dynamics of fluid mechanics
and structure mechanics through the moving interface. They are classical multi-
physics problems and as such, have a diverse range of applications in engineering.
A key factor in the simulation of such problems comes from the deformation of
the domains due to the evolving fluid flow acting on the surface of structure and
thus making the structure deformable. Specifically, we are looking at a two-way
coupled system in which the fluid flow affects the structural deformation, at the
same time, the motion of the structure impacts the fluid flow through their inter-
faces. The thing that every FSI problem has in common is that the subdomains
in which the coupled system is defined will move with respect to time due to the
interface motion, that is, the subdomains are no longer fixed. The movement of the
domain/interface can be in the form of a rotation, translation and/or deformation.

In order to take the domain motion into consideration, the arbitrary Lagrangian-
Eulerian (ALE) technique is always adopted to redescribe the moving bound-
ary/interface problem, and then a conservative ALE-finite volume/element method
[8, 13] is usually developed to discretize the corresponding moving boundary/interface
problems in order to account for the preservation of geometric conservation law
(GCL) [7]. In the case of finite element spatial discretizations, the relationships
between GCL condition, stability and accuracy properties of the numerical scheme,
have not been completely clarified yet [14]. Recently, GCL condition is proved to
be neither necessary nor sufficient for the stability of ALE-finite element scheme
[4]. Then, a nonconservative type of ALE-finite element discretization, which does
not need to preserve the GCL condition, becomes promising due to its relatively
simpler implementation and less storage since only one-level mesh is involved in the
nonconservative ALE-finite element method [19], in contrast with the conservative
ALE method in which two-level meshes must be employed.

Towards an effective and practical ALE-finite element approximation to a real-
istic also complicated FSI problem, in this paper we will start with a simplified FSI
model – a transient Stokes/parabolic moving interface problem, develop its non-
conservative ALE-finite element approximation in semi- and fully discrete schemes,
and analyze their stability and optimal convergence properties. Afterwards, our
method will be more likely extended to a realistic FSI problem that was first stud-
ied in [11, 12] where however a more complicated conservative scheme of ALE
method is adopted, and, our simpler nonconservative ALE scheme will be still sta-
ble as well as possess an optimal error estimate for FSI problems, which will be
studied in our next paper.

The structure of this paper is organized as follows: in Section 2 we introduce
the ALE mapping as well as define the nonconservative weak form of the presented
Stokes/parabolic interface problem. Then we define the semi-discrete ALE finite
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element approximation in the nonconservative form and analyze its stability and
optimal convergence theorems in Section 3. The fully discrete nonconservative
ALE-finite element scheme is defined in Section 4 and its stability and convergence
properties are comprehensively analyzed as well. Numerical experiments are carried
out in Section 5 to validate the theoretical results.

2. Model and weak form in ALE description

We first take some arbitrary invertible affine mapping from the initial (reference)
domain to the current domain at any other time in the simulation. With this
mapping we can define a domain velocity which allows the implementation of a mesh
updating algorithm that follows the moving domain. With the model problem (1)
in place, we now define the affine mapping that allows us to use the ALE description

of the model problem. Assume there exists Xi
t ∈ H1

(
0, T ;W 2,∞(Ω̂i)d

)
such that

∀t ∈ I and i = 1, 2, the mapping:

Xi
t : Ω̂i → Ωi

t

x̂i → xi(x̂i, t)

is invertible and (Xi
t)

−1 ∈ W 2,∞(Ωi
t)

d, where x̂i ∈ Ω̂i is known as the reference
coordinate variable. The domain velocity is then defined as

ωi : Ω
i
t × I → Rd, ωi(xi, t) = ω̂i ◦ (Xi

t)
−1 =

∂Xi
t

∂t
◦ (Xi

t)
−1, for i = 1, 2.

We can now define a derivative which takes this domain velocity into account. It
is known as the ALE time derivative and is defined as

dvi
dt

∣∣
x̂
: Ωi

t × I → Rd

(xi, t) → dvi
dt

∣∣
x̂
(xi, t) =

∂vi
∂t

(xi, t) + (ωi(xi, t) · ∇)vi(xi, t)(2)

Equipped with the domain velocity and ALE time derivative, we can proceed to
rewrite our model problem (1) using the ALE description as follows.

(3)



dv1
dt

∣∣
x̂
− (ω1 · ∇)v1 −∇ · (µ1∇v1) +∇p1 = f1, in Ω1

t × I
∇ · v1 = 0, in Ω1

t × I
v1 = 0, on ∂Ω1

t\Γt × I
v1(x, 0) = v01 , in Ω̂1

dv2
dt

∣∣
x̂
− (ω2 · ∇)v2 −∇ · (µ2∇v2) = f2, in Ω2

t × I
v2 = 0, on ∂Ω2

t\Γt × I
v2(x, 0) = v02 , in Ω̂2

ω1 = ω2, on Γt × I
v1 = v2, on Γt × I

(−p1I + µ1∇v1)n1 + µ2∇v2n2 = τ , on Γt × I

To define the weak form of (3), we need to introduce some Sobolev spaces.

V := {(ψ1, ψ2) ∈ H1(Ω1
t )

d ×H1(Ω2
t )

d
∣∣ψ1 = ψ2 on Γt}

V0 := {(ψ1, ψ2) ∈ V
∣∣ψi = 0 on ∂Ωi

t\Γt, i = 1, 2}
Q1 := L2

(
Ω1

t

)
Q1

0 := {q ∈ Q1
∣∣ ∫

Ω1
t
qdx = 0}.
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Then, the monolithic nonconservative ALE weak form of (3) can be defined as
follows. Find (v1,v2) ∈ (H1 ∩ L∞) (0, T ;V0) and p1 ∈ L2

(
0, T ;Q1

0

)
such that

2∑
i=1

[(
dvi
dt

∣∣∣∣
x̂

, ψi

)
Ωi

t

+ (µi∇vi,∇ψi)Ωi
t
− ((ωi · ∇)vi, ψi)Ωi

t

]
− (p1,∇ · ψ1)Ω1

t

+(∇ · v1, q1)Ω1
t
=

2∑
i=1

(fi, ψi)Ωi
t
+ ⟨τ , ψ1⟩Γt

, ∀ (ψ1, ψ2) ∈ V0, q1 ∈ Q1,(4)

which contains the incompressibility condition ∇ · v1 = 0, i.e., (∇ · v1, q1)Ω1
t
= 0

for any q1 ∈ Q1.

Remark 2.1. In this paper we adopt the terminology of “nonconservative” from
the reference [7, Section 2.2], where two weak forms within the ALE frame are de-
fined: one is called the nonconservative formulation and the other one belongs to
the conservative type. The so-called “conservative” formulation is to consider the
weak form involves d

dt (v, ψ)V (t), i.e., the time differentiation acts on the entire

inner product over a moving domain V (t). As addressed in [11, Equation (2.26)],
the “conservative” formulation actually states that “in absence of source terms,
the variation of the primary unknown, v, over a control volume V is due only to
contribution coming from the boundary of V . It can be noted that also the contri-
bution of the ALE term to the conservation reduces to a boundary term, which is
indeed related to the additional “flux” of v through the boundary as a consequence of
its movement”. Essentially, the Reynold’s Transport Theorem (RTT) shown below
plays a key role for the concept of “conservation” over a moving domain.
Reynold’s Transport Theorem (RTT) [15, 10]:

d

dt

∫
V (t)

α(x, t)dx =

∫
V (t)

∂α

∂t
(x, t)dx+

∫
∂V (t)

α(x, t)ω(x, t) · nds

=

∫
V (t)

[
∂α

∂t
(x, t) +∇ · (α(x, t)ωT (x, t))

]
dx(5)

=

∫
V (t)

[
∂α

∂t

∣∣∣∣
x̂

+∇ · ω(x, t)α(x, t)
]
dx,(6)

where ω is the domain (grid) velocity of the control volume V (t). Taking α = vψ
in (5) with the test function ψ that is associated with the grid point only, RTT
demonstrates the fact that in the weak form of momentum equation, the summation
of the physical time derivative term of v and the convection term of v carried over
by the domain (grid) velocity ω can be represented as just the time differentiation on
the inner product of v and ψ over the moving domain V (t), only. It explains that the
time derivative term d

dt (v, ψ)V (t), together with the divergence of the physical flux

term, −(∇·F , ψ)V (t), fully contributes to the momentum conservation in a moving

domain V (t). In contrast, instead of d
dt (v, ψ)V (t), if only the term

(
∂v
∂t

∣∣
x̂
, ψ
)
V (t)

remains in the weak form, where ∂v
∂t

∣∣
x̂
= ∂v

∂t + (ω · ∇)v is the ALE time derivative
of v associated with the domain (grid) velocity ω, then according to (6), an extra
term (∇ · ωv, ψ)V (t) must be counted in the weak form in order to conserve the
momentum together with the divergence of the physical flux term. However, this
extra term can be removed from the weak form, which then induces the so-called
“nonconservative” formulation defined in a moving domain V (t) that is associated
with the domain (grid) velocity ω .
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In view of the weak form (4) in which the ALE time derivative dvi
dt

∣∣
x̂
remains

inside the inner product and no extra term (∇ · ωivi, ψi)Ωi
t
is added to the scheme,

we know such weak form does not follow the meaning of “conservation” explained
above, it is thus called the “nonconservative” formulation. This demonstration can
be similarly applied to the following semi- and fully discrete ALE-finite element
discretizations shown in (9) and (26), respectively, to account for the terminology
of “nonconservative” therein.

3. Semi-discrete ALE–finite element discretization

First, we construct a quasi-uniform and interface-fitted triangulation T i
h,0 in the

initial domain Ω̂i (i = 1, 2), where no triangle of T i
h,0 has two edges on ∂Ωi

0 and
that no triangle crosses the interface Γt.

3.1. Discretized ALE mapping and the semi-discrete ALE scheme. For
any t ∈ I consider the following discretization of ALE mappingXi

t ,X
i
h,t : Ω̂

i → Ωi
t,

by means of piecewise linear Lagrangian finite elements, where Xi
h,t (i = 1, 2) is

smooth and invertible. Likewise, the discrete ALE velocity is defined as follows:

ωi,h : Ωi
t × I → Rd, ωi,h(xi, t) =

∂Xi
h,t

∂t
◦ (Xi

h,t)
−1, i = 1, 2,

which leads to the discrete ALE time derivative:

dvi
dt

∣∣h
x̂
: Ωi

t × I → Rd

(xi, t) → dvi
dt

∣∣h
x̂
(xi, t) =

∂vi
∂t

(xi, t) + (ωi,h(xi, t) · ∇)vi(xi, t).

In practice, such discrete ALE mapping Xi
h,t (i = 1, 2) can map T i

h,0 to T i
h,t (i =

1, 2) for t ∈ I that is non-degenerate with time. Then, Xi
h,t (i = 1, 2) represents

a moving mesh that adapts to the moving interface/boundary. Xi
h,t (i = 1, 2) can

be arbitrarily defined, for instance, by the following harmonic mapping:

(7)


−∆Xi

h,t = 0, in Ω̂i,

Xi
h,t = 0, on ∂Ω̂i\Γ̂,

Xi
h,t = xΓ(x(x̂, t), t), on Γ̂,

where xΓ denotes a prescribed interface motion.
We now proceed to the definition of our finite element spaces using the classical

P 2 elements to approximate vi (i = 1, 2) and P 1 element for Q1. Then the discrete
ALE FEM spaces are defined as follows:

(8)

Vh = {(ψ1,h, ψ2,h) ∈ V0

∣∣ψi,h|K ∈ P 2(K), ∀K ∈ T i
h,t (i = 1, 2)},

Qh = {qh ∈ Q1
∣∣qh|K ∈ P 1(K), ∀K ∈ T 1

h,t},
Q0

h = {qh ∈ Q1
0

∣∣qh|K ∈ P 1(K), ∀K ∈ T 1
h,t},

where Pn(K) is the set of piecewise polynomials of degree n on the element K.
Hence, the nonconservative semi-discrete ALE finite element discretization cor-

responding to the weak form (4) can be defined as: find (v1,h,v2,h) ∈ Vh, p1,h ∈ Q0
h
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such that

2∑
i=1

(dvi,h
dt

∣∣∣∣h
x̂

, ψi,h

)
Ωi

t

+ (µi∇vi,h,∇ψi,h)Ωi
t
− ((ωi,h · ∇)vi,h, ψi,h)


− (p1,h,∇ · ψ1,h)Ω1

t
+ (∇ · v1,h, q1,h)Ω1

t
=

2∑
i=1

(fi, ψi,h)Ωi
t
+ ⟨τ , ψ1,h⟩Γt

,

∀ (ψ1,h, ψ2,h) ∈ Vh, q1,h ∈ Qh,(9)

which implies that (∇ · v1,h, q1,h)Ω1
t
= 0 for any q1,h ∈ Qh.

We assume that the following error estimates hold for approximations to ALE
mapping and ALE velocity [8]:

(10)
∥Xi

t −Xi
h,t∥0,∞,Ωi

t
+ h∥Xi

t −Xi
h,t∥1,∞,Ωi

t
≤ Ch2| lnh|∥Xi

t∥2,∞,Ωi
t
,

∥ωi − ωi,h∥0,∞,Ωi
t
+ h∥ωi − ωi,h∥1,∞,Ωi

t
≤ Ch2| lnh|∥ωi∥2,∞,Ωi

t
,

where we assume ωi ∈ W 2,∞,Ωi
t(Ωi

t)
d (i = 1, 2). Thus, we have the boundedness

for ωi,h as follows

(11) ∥ωi,h∥0,∞,Ωi
t
≤ C, ∥ωi,h∥1,∞,Ωi

t
≤ C, i = 1, 2.

3.2. Stability analysis.

Theorem 3.1. Assume the conditions for the semi-discrete ALE finite element
scheme (9) hold. Then the following stability result holds for any t ∈ I:

2∑
i=1

(
∥vi,h∥L∞(0,t;L2(Ωi

t)
d) + ∥vi,h∥L2(0,t;H1(Ωi

t)
d)

)
≤ C

(
2∑

i=1

(
∥fi∥L2(0,t;L2(Ωi

t)
d) + ∥vi(0)∥L2(Ω̂i)

)
+ ∥τ∥L2(0,t:L2(Γt)d)

)
.(12)

Proof. Let ψi,h = vi,h, q1,h = p1,h in (9). Then

2∑
i=1

(dvi,h
dt

∣∣∣∣h
x̂

,vi,h

)
Ωi

t

+ (µi∇vi,h,∇vi,h)Ωi
t
− ((ωi,h · ∇)vi,h,vi,h)

(13)

=

2∑
i=1

(fi,vi,h)Ωi
t
+ ⟨τ ,v1,h⟩Γt

.

By using the following equality and estimate:(
dvi,h
dt

∣∣∣∣h
x̂

,vi,h

)
Ωi

t

=
1

2

(
d

dt
∥vi,h∥20,Ωi

t
− (∇ · ωhvi,h,vi,h)Ωi

t

)
,

(µi∇vi,h,∇vi,h)Ωi
t

= µi∥∇vi,h∥20,Ωi
t
≥ C∥vi,h∥21,Ωi

t
,

we then have,

2∑
i=1

[
1

2

d

dt
∥vi,h∥20,Ωi

t
+ C∥vi,h∥21,Ωi

t

]
≤

2∑
i=1

[
(fi,vi,h)Ωi

t
+

1

2
(∇ · ωi,hvi,h,vi,h)Ωi

t

+((ωi.h · ∇)vi,h,vi,h)Ωi
t

]
+ ⟨τ ,v1,h⟩Γt

.
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Applying Cauchy-Schwarz inequality, Young’s inequality with ϵ, the boundedness
in (11) and the trace theorem, we have

((ωi,h · ∇)vi,h,vi,h)Ωi
t

≤ ∥ωi,h∥0,∞,Ωi
t
∥∇vi,h∥0,Ωi

t
∥vi,h∥0,Ωi

t

≤ ϵ∥vi,h∥21,Ωi
t
+ C∥vi,h∥20,Ωi

t
,

(∇ · ωi,hvi,h,vi,h)Ωi
t

≤ C∥vi,h∥20,Ωi
t
,

(fi,vi,h)Ωi
t

≤ C
(
∥fi∥20,Ωi

t
+ ∥vi,h∥20,Ωi

t

)
,

⟨τ ,v1,h⟩Γt
≤ ∥τ∥L2(Γt)∥v1,h∥L2(Γt) ≤ C∥τ∥L2(Γt)∥v1,h∥1,,Ω1

t

≤ C∥τ∥2L2(Γt)
+ ϵ∥v1,h∥21,Ω1

t
.

Choosing a sufficiently small ϵ, we attain

2∑
i=1

[
1

2

d

dt
∥vi,h∥20,Ωi

t
+ C∥vi,h∥21,Ωi

t

]

≤ C

(
2∑

i=1

(
∥fi∥20,Ωi

t
+ ∥vi,h∥20,Ωi

t

)
+ ∥τ∥2L2(Γt)

)
.

Integrating over time from 0 to t, then

1

2

2∑
i=1

(
∥vi,h(t)∥20,Ωi

t
− ∥vi,h(0)∥20,Ωi

t

)
+

2∑
i=1

∫ t

0

∥vi,h∥21,Ωi
t
dt

≤ C

(
2∑

i=1

∫ t

0

(
∥fi∥20,Ωi

t
+ ∥vi,h∥20,Ωi

t

)
dt+

∫ t

0

∥τ∥2L2(Γt)
dt

)
.(14)

We choose vi,h(0) = Πhv
0
i ∈ Vh where Πh : V0 → Vh is the interpolation operator,

and apply Grönwall’s inequality to (14), then the desired stability result (12) is
attained. �

3.3. Semi-discrete error analysis. We begin by introducing the following lem-
mas which will help us through the error analysis.

Lemma 3.2. [13] Assume α, β, γ : Ωt → R are smooth functions. Then we have

d

dt
(α∇β,∇γ)Ωt

=

(
dα

dt

∣∣∣∣h
x̂

∇β,∇γ

)
Ωt

+

(
α∇dβ

dt

∣∣∣∣h
x̂

,∇γ

)
Ωt

+

(
α∇β,∇dγ

dt

∣∣∣∣h
x̂

)
Ωt

−
((
∇ωh +∇ωT

h

)
α∇β,∇γ

)
Ωt

+ ((∇ · ωh)α∇β,∇γ)Ωt
,

d

dt
(α,∇ · β)Ωt

=

(
dα

dt

∣∣∣∣h
x̂

,∇ · β

)
Ωt

+

(
α,∇ · dβ

dt

∣∣∣∣h
x̂

)
Ωt

+ ((∇ · ωh)α,∇ · β)Ωt

−
(
α∇ωh,∇βT

)
Ωt
.

Lemma 3.3. [18] Assume v ∈ Vh and q ∈ Qh, then the following inf-sup condition
holds

inf
q∈Qh

sup
(v1,v2)∈Vh

(∇ · v, q)
∥(v1,v2)∥1∥q∥0

≥ C > 0.
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Lemma 3.4. [8] For all t ∈ I, let Πhu ∈ Vh be the interpolation of u(t) ∈ H2(Ωt),
then there exists a constant C, independent of h, such that

∥∥∥∥∂(u−Πhu)

∂t

∣∣∣∣h
x̂

∥∥∥∥
L2(Ωt)

≤Chr
∥∥∥∥∂u∂t

∣∣∣∣h
x̂

∥∥∥∥
Hr(Ωt)

, for r ≥ 1,

(15)

∥∥∥∥∂(u−Πhu)

∂t

∣∣∣∣h
x̂

∥∥∥∥
L2(Ωt)

≤Ch

(∥∥∥∥∂u∂t
∣∣∣∣
x̂

∥∥∥∥
H1(Ωt)

+ h| lnh|∥ω∥W 2,∞(Ωt)∥u∥H2(Ωt)

)
.

(16)

We can now proceed to the main theorem of the section as follows.

Theorem 3.5. Suppose (v1, p1,v2) is the solution to (4) satisfying the following
regularity properties [13]:

(17)
vi ∈ L∞ (0, T ;Hr(Ωi

t)
d
)
, dvi

dt

∣∣h
x̂
∈ L2(0;T ;Hr(Ωi

t)
d) (i = 1, 2),

p1 ∈ L∞ (0, T ;Hr−1(Ω1
t )
)
, dp1

dt

∣∣h
x̂
∈ L2(0; t;Hr−1(Ω1

t )), for r ≥ 3,

and (v1,h, p1,h,v2,h) is the solution to (9). Then we have the following error esti-
mate for any t ∈ I:
(18)

2∑
i=1

[∥∥∥∥dvidt
∣∣∣∣
x̂

− dvi,h
dt

∣∣∣∣h
x̂

∥∥∥∥
L2(0,t;L2(Ωi

t)
d)

+ ∥vi − vi,h∥L∞(0,t;H1(Ωi
t)

d)

+ ∥p1 − p1,h∥L2(0;t;L2(Ω1
t ))

]
≤ Chr−1

( 2∑
i=1

[
∥vi∥L∞(0,t;Hr(Ωi

t)
d)

+

∥∥∥∥dvidt
∣∣∣∣h
x̂

∥∥∥∥
L2(0;t;Hr(Ωi

t)
d)

]
+ ∥p1∥L∞(0,t;Hr−1(Ω1

t ))
+

∥∥∥∥dp1dt
∣∣∣∣h
x̂

∥∥∥∥
L2(0;t;Hr−1(Ω1

t ))

)
.

Proof. Subtracting (9) from (4) and using the identity dvi
dt

∣∣
x̂
= dvi

dt

∣∣h
x̂
+(ωi − ωi,h) ·

∇vi, we get the error equation:

2∑
i=1

[(
dvi
dt

∣∣∣∣h
x̂

− dvi,h
dt

∣∣∣∣h
x̂

, ψi,h

)
Ωi

t

+ (µi∇ (vi − vi,h) ,∇ψi,h)Ωi
t
−

((ωi,h · ∇) (vi − vi,h) , ψi,h)Ωi
t

]
− (p1 − p1,h,∇ · ψ1,h)Ω1

t
+(19)

(∇ · (v1 − vi,h) , q1,h)Ω1
t
= 0,

which implies that (∇ · (v1 − v1,h) , q1,h)Ω1
t
= 0 for any q1,h ∈ Qh. To proceed, we

need to introduce the discrete kernel space Kh as

Kh := {(ψ1,h, ψ2,h) ∈ Vh

∣∣ (∇ · ψ1,h, q1,h)Ω1
t
= 0,∀q1,h ∈ Q0

h},

thus v1,h ∈Kh. Pick arbitrary discrete functions ṽ = (ṽ1, ṽ2) ∈Kh and p̃1 ∈ Q0
h.

Let vi−vi,h = vi−ṽi+ṽi−vi,h = ηi+ξi, and p1−p1,h = p1− p̃1+ p̃1−p1,h = α+β,
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and choose ψi,h = dξi
dt

∣∣h
x̂
, q1,h = β in (19), yield

2∑
i=1

(dξi
dt

∣∣∣∣h
x̂

,
dξi
dt

∣∣∣∣h
x̂

)
Ωi

t

+

(
µi∇ξi,∇

dξi
dt

∣∣∣∣h
x̂

)
Ωi

t

 =
2∑

i=1

−(dηi
dt

∣∣∣∣
x̂

,
dξi
dt

∣∣∣∣h
x̂

)
Ωi

t

−

(
µi∇ηi,∇

dξi
dt

∣∣∣∣h
x̂

)
Ωi

t

+

(
(ωi · ∇) (ηi + ξi) ,

dξi
dt

∣∣∣∣h
x̂

)+

(
α+ β,∇ · dξi

dt

∣∣∣∣h
x̂

)
Ω1

t

=
4∑

j=1

Gj .(20)

In the following, we analyze each term in (20) by using Lemma 3.2, Cauchy-
Schwarz inequality, Young’s inequality with ϵ and (11).(

dξi
dt

∣∣∣∣h
x̂

,
dξi
dt

∣∣∣∣h
x̂

)
Ωi

t

=

∥∥∥∥dξidt
∣∣∣∣h
x̂

∥∥∥∥2
0,Ωi

t

,

(
µi∇ξi,∇

dξi
dt

∣∣∣∣h
x̂

)
Ωi

t

=
1

2

(
d

dt
(µi∇ξi,∇ξi)Ωi

t
+
(
µi∇ξi

(
∇ωi,h +∇ωT

i,h

)
,∇ξi

)
Ωi

t

− ((∇ · ωi,h)µi∇ξi,∇ξi)Ωi
t

)
=
µi

2

d

dt
∥∇ξi∥20,Ωi

t
+H1 +H2,

|H1|+ |H2| ≤C∥∇ξi∥20,Ωi
t
,

G1 ≤C
∥∥∥∥dηidt

∣∣∣∣h
x̂

∥∥∥∥2
0,Ωi

t

+ ϵ

∥∥∥∥dξidt
∣∣∣∣h
x̂

∥∥∥∥2
0,Ωi

t

,

G2 =− d

dt
(µi∇ηi,∇ξi)Ωi

t
+

(
µi∇

dηi
dt

∣∣∣∣h
x̂

,∇ξi

)
Ωi

t

−
(
µi∇ηi

(
∇ωi,h +∇ωT

i,h

)
,∇ξi

)
Ωi

t

+ ((∇ · ωi,h)µi∇ηi,∇ξi)Ωi
t
,

≤− d

dt
(µi∇ηi,∇ξi)Ωi

t
+ C

(∥∥∥∥dηidt
∣∣∣∣h
x̂

∥∥∥∥2
1,Ωi

t

+ ∥ηi∥21,Ωi
t
+ ∥∇ξi∥20,Ωi

t

)

G3 ≤C
(
∥ηi∥21,Ωi

t
+ ∥∇ξi∥20,Ωi

t

)
+ ϵ∥dξi

dt

∣∣∣∣h
x̂

∥20,Ωi
t

G4 =
d

dt
(α+ β,∇ · ξ1)Ω1

t
−

(
d(α+ β)

dt

∣∣∣∣h
x̂

,∇ · ξ1

)
Ω1

t

−

((∇ · ω1,h) (α+ β),∇ · ξ1)Ω1
t
+
(
(α+ β)∇ω1,h,∇ξT1

)
Ω1

t

≤ d

dt
(α,∇ · ξ1)Ω1

t
+ C

(∥∥∥∥dαdt
∣∣∣∣h
x̂

∥∥∥∥2
0,Ω1

t

+ ∥∇ξ1∥20,Ω1
t
+ ∥α∥20,Ω1

t

)
+ ϵ1∥β∥20,Ω1

t
,

where we apply the facts, (β,∇ · ξ1) =
(

dβ
dt

∣∣h
x̂
,∇ · ξ1

)
= 0, to G4 due to the def-

inition of Kh. Choose a sufficiently small ϵ in above error estimates, resulting
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in

2∑
i=1

[∥∥∥∥dξidt
∣∣∣∣h
x̂

∥∥∥∥2
0,Ωi

t

+
µi

2

d

dt
∥∇ξi∥20,Ωi

t

]
≤ − d

dt
(µi∇ηi,∇ξi)Ωi

t
+
d

dt
(α,∇ · ξ1)Ω1

t

+ C

( 2∑
i=1

[
∥∇ξi∥20,Ωi

t
+ ∥ηi∥21,Ωi

t
+

∥∥∥∥dηidt
∣∣∣∣h
x̂

∥∥∥∥2
1,Ωi

t

]
+

∥∥∥∥dαdt
∣∣∣∣h
x̂

∥∥∥∥2
0,Ω1

t

+ ∥α∥20,Ω1
t

)
+ ϵ1∥β∥20,Ω1

t
.

Integrating in time from 0 to t, applying Grönwall’s inequality and Poincaré inequal-
ity for ∥∇ξi∥20,Ωi

t
, and Young’s inequality to have ϵ∥∇ξi∥20,Ωi

t
with a sufficiently small

ϵ, we obtain

(21)

2∑
i=1

[∥∥∥∥dξidt
∣∣∣∣h
x̂

∥∥∥∥2
L2(0,t;L2(Ωi

t)
d)

+ ∥ξi∥2L∞(0,t;H1(Ωi
t)

d)

]

≤ C

( 2∑
i=1

[
∥dηi
dt

∣∣∣∣h
x̂

∥2
L2(0,t;H1(Ωi

t)
d) + ∥ηi∥2L∞(0,t;H1(Ωi

t)
d) + ∥ξi(0)∥2H1(Ω̂i)d

]

+ ∥α∥2L∞(0,t;L2(Ω1
t ))

+ ∥dα
dt

∣∣∣∣h
x̂

∥2L2(0,t;L2(Ω1
t ))

)
+ ϵ1∥β∥2L2(0,t;L2(Ω1

t ))
.

For the error estimate on pressure term, ∥β∥2
L2(0,t;L2(Ω1

t ))
, we utilize the discrete

inf-sup condition as shown in Lemma 3.3, then

C∥β∥20,Ω1
t
≤ sup

(ψ1,h,ψ2,h)∈Vh

(∇ ·ψ1,h, β)Ω1
t

∥(ψ1,h,ψ2,h)∥1

= sup
(ψ1,h,ψ2,h)∈Vh

(∇ ·ψ1,h, α+ β)Ω1
t
− (∇ ·ψ1,h, α)Ω1

t

∥(ψ1,h,ψ2,h)∥1

≤ sup
(ψ1,h,ψ2,h)∈Vh

2∑
i=1

[(
d(vi−vi,h)

dt

∣∣∣∣h
x̂

,ψi,h

)
Ωi

t

+ (µi∇ (vi − vi,h) ,∇ψi,h)Ωi
t

]
∥(ψ1,h,ψ2,h)∥1

+ sup
(ψ1,h,ψ2,h)∈Vh

−
2∑

i=1

((ωi,h · ∇) (vi − vi,h) ,ψi,h)Ωi
t
− (∇ ·ψ1,h, α)Ω1

t

∥(ψ1,h,ψ2,h)∥1

≤ C

2∑
i=1

[∥∥∥∥dηidt
∣∣∣∣h
x̂

∥∥∥∥2
0,Ωi

t

+

∥∥∥∥dξidt
∣∣∣∣h
x̂

∥∥∥∥2
0,Ωi

t

+ ∥ηi∥21,Ωi
t
+ ∥ξi∥21,Ωi

t

]
+ ∥α∥20,Ω1

t
,(22)

where we use (19). Integrating (22) in time from 0 to t, we have

∥β∥2L2(0,t;L2(Ω1
t ))

≤ C
( 2∑
i=1

[
∥dηi
dt

∣∣∣∣h
x̂

∥2
L2(0,t;L2(Ωi

t)
d) + ∥ηi∥2L2(0,t;H1(Ωi

t)
d) +

∥dξi
dt

∣∣∣∣h
x̂

∥2
L2(0,t;L2(Ωi

t)
d) + ∥ξi∥2L2(0,t;H1(Ωi

t)
d)

]
+ ∥α∥2L2(0,t;L2(Ω1

t ))

)
.(23)

Substituting (23) for the last term on the right hand side of (21), taking an suf-
ficiently small ϵ1, and considering that ṽi (i = 1, 2) and p̃1 are arbitrary discrete
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functions in Kh and Q0
h, respectively, we obtain

2∑
i=1

[∥∥∥∥dξidt
∣∣∣∣h
x̂

∥∥∥∥2
L2(0,t;L2(Ωi

t)
d)

+ ∥ξi∥2L∞(0,t;H1(Ωi
t)

d)

]

≤ C inf
ṽ∈Kh\{0},
p̃∈Q0

h\{0}

( 2∑
i=1

[
∥dηi
dt

∣∣∣∣h
x̂

∥2
L2(0,t;H1(Ωi

t)
d) + ∥ηi∥2L∞(0,t;H1(Ωi

t)
d) + ∥ξi(0)∥2H1(Ω̂i)d

]

+ ∥α∥2L∞(0,t;L2(Ω1
t ))

+ ∥dα
dt

∣∣∣∣h
x̂

∥2L2(0,t;L2(Ω1
t ))

)
.

Applying the classic Brezzi theory [3, 6], then we can take the infimum over the
entire finite element space Vh instead of the kernel spaceKh, only. And, we choose
vi,h(0) = ṽi(0) ∈ Vh, then ξi(0) = 0 (i = 1, 2), which gives the following:

(24)

2∑
i=1

[∥∥∥∥dξidt
∣∣∣∣h
x̂

∥∥∥∥2
L2(0,t;L2(Ωi

t)
d)

+ ∥ξi∥2L∞(0,t;H1(Ωi
t)

d)

]

≤ C inf
ṽ∈Vh\{0},
p̃∈Q0

h\{0}

( 2∑
i=1

[∥∥∥∥dηidt
∣∣∣∣h
x̂

∥∥∥∥2
L2(0,t;H1(Ωi

t)
d)

+ ∥ηi∥2L∞(0,t;H1(Ωi
t)

d)

]

+ ∥α∥2L∞(0,t;L2(Ω1
t ))

+

∥∥∥∥dαdt
∣∣∣∣h
x̂

∥∥∥∥2
L2(0,t;L2(Ω1

t ))

)
.

Applying (24) to (23), choosing corresponding interpolation functions of the so-
lution as our arbitrary discrete functions ((ṽ1, ṽ2), p̃1) ∈ Vh × Q0

h, and employing
standard a priori interpolation error estimates for ηi, α and their ALE time deriva-
tives [8], we attain

(25)

2∑
i=1

[∥∥∥∥dξidt
∣∣∣∣h
x̂

∥∥∥∥
L2(0,t;L2(Ωi

t)
d)

+ ∥ξi∥L∞(0,t;H1(Ωi
t)

d) + ∥β∥L2(0;t;L2(Ω1
t ))

]

≤ Chr−1

( 2∑
i=1

[∥∥∥∥dvidt
∣∣∣∣h
x̂

∥∥∥∥
L2(0,t;Hr(Ωi

t)
d)

+ ∥vi∥L∞(0,t;Hr(Ωi
t)

d)

]

+ ∥p1∥L∞(0,t;Hr−1(Ω1
t ))

+

∥∥∥∥dp1dt
∣∣∣∣h
x̂

∥∥∥∥
L2(0,t;Hr−1(Ω1

t ))

)
Then, adding the a priori interpolation error estimates of

∥∥dηi

dt

∣∣h
x̂

∥∥
L2(Ωi

t)
d , ∥ηi∥H1(Ωi

t)
d

and ∥α∥L2(Ω1
t )

back in and applying the triangular inequality, we have the result

(18). �

4. Fully discrete ALE–finite element discretization

With the semi-discrete scheme taken care of, we can now move on to the fully-
discrete scheme. Let ∆t > 0 be the time step and tn = n∆t for n = 0, ..., N , where
N = T

∆t , and denote ϕn = ϕ(tn) for any function ϕ(t). We introduce the following
notation to account for the backward Euler scheme that is used to discretize the
time derivative:

∂tv
n+1
i,h =

vn+1
i,h − vni,h ◦Xi

n+1,n

∆t
,

where Xi
n+1,n =Xi

h,n ◦ (Xi
h,n+1)

−1 for i = 1, 2.
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The nonconservative fully discrete scheme of (4) can now be defined as: find

(vn+1
1,h ,vn+1

2,h ) ∈ V n+1
h , pn+1

1,h ∈ Q0,n+1
h such that

(26)
2∑

i=1

[(
∂tv

n+1
i,h , ψi,h

)
Ωi

n+1

+
(
µi∇vn+1

i,h ,∇ψi,h

)
Ωi

n+1

−
(
(ωn+1

i,h · ∇)vn+1
i,h , ψi,h

)
Ωi

n+1

]

−
(
pn+1
1,h ,∇ · ψ1,h

)
Ω1

n+1

+
(
∇ · vn+1

1,h , q1,h

)
Ω1

n+1

=
2∑

i=1

(
fn+1
i , ψi,h

)
Ωi

n+1

+ ⟨τ , ψ1,h⟩Γn+1
, ∀(ψ1,h, ψ2,h) ∈ V n+1

h , q1,h ∈ Qn+1
h .

To perform the required error analysis for (26), we need to introduce some lem-
mas as follows.

Lemma 4.1. Let ϕn+1
i,h ∈ V n+1

h be a discrete function defined in Ωi
n+1 (i = 1, 2).

Then

∥ϕn+1
i,h ◦Xi

n,n+1∥20,Ωi
n
= ∥ϕn+1

i,h ∥20,Ωi
n+1

−
∫ tn+1

tn

(∫
Ωi

t

|ϕn+1
i,h ◦Xi

t,n+1|2∇ · ωi,hdx

)
dt.

Proof.

(27)

d

dt

∫
Ωi

t

|ϕn+1
i,h ◦Xi

t,n+1|2dx =
d

dt

∫
Ω̂i

|ϕ̂n+1
i,h |2J i

tdx̂ =

∫
Ω̂i

|ϕ̂n+1
i,h |2 dJ

i
t

dt
dx̂

=

∫
Ωt

|ϕn+1 ◦Xt,n+1|2∇ · ωi,hdx,

where we employ the identity
dJi

t

dt = J i
t∇ · ωi,h [8]. Integrating (27) in time from

tn to tn+1, we get
(28)∫ tn+1

tn

∫
Ωi

t

|ϕn+1
i ◦Xi

t,n+1|2∇ · ωi,hdxdt =

∫ tn+1

tn

d

dt

∫
Ωi

t

|ϕn+1
i ◦Xi

t,n+1|2dxdt

=

∫
Ωi

n+1

|ϕn+1
i |2dx−

∫
Ωi

n

|ϕn+1
i ◦Xi

n,n+1|2dx,

where the rearrangement gives the result. �

The following lemma considers the classical Taylor expansion technique in the
context of the ALE description.

Lemma 4.2. For any vi ∈ H2(0, T ;H1(Ωi
t)) where Ωi

t is mapped from Ω̂i by the
discrete ALE mapping Xi

h,t, we have

(29)

∂tv
n+1
i = vi(x

n+1,tn+1)−vi(xn,tn)
∆t

=
(

dvi
dt

∣∣h
x̂

)n+1

− ∆t
2

[(
d2vi
dt2

∣∣h
x̂

)n+1

− ωn+1
i,h (∇ωi,h)

n+1(∇vi)n+1

]
+O((∆t)2),

where, ωi,h = ∂x
∂t denotes the ALE moving mesh velocity.

Proof. Expanding vi(x
n, tn) at x

n+1, we get

(30)
vi(x

n, tn) = vi(x
n+1, tn)−∆x

(
∂vi
∂x

)
(xn+1, tn)

+ (∆x)2

2

(
∂2vi
∂x2

)
(xn+1, tn) +O((∆x)2),
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where ∆x = xn+1−xn = x(x̂, tn+1)−x(x̂, tn). If expanding x(x̂, tn) at tn+1, then

x(x̂, tn) = x(x̂, tn+1)−∆t

(
∂x

∂t

)n+1

+
(∆t)2

2

(
∂2x

∂t2

)n+1

+O((∆t)3),

thus,

(31) ∆x = ∆t

(
∂x

∂t

)n+1

− (∆t)2

2

(
∂2x

∂t2

)n+1

+O((∆t)3).

Further by Taylor expansion, we have

(32)

(
∂vi
∂x

)
(xn+1, tn) =

(
∂vi
∂x

)
(xn+1, tn+1)

−∆t

(
∂2vi
∂t∂x

)
(xn+1, tn+1) +O((∆t)2),(

∂2vi
∂x2

)
(xn+1, tn) =

(
∂2vi
∂x2

)
(xn+1, tn+1)

−∆t

(
∂3vi
∂t∂x2

)
(xn+1, tn+1) +O((∆t)2).

Then, we can rewrite (30) as
(33)

vi(x
n, tn) = vi(x

n+1, tn)−∆x

(
∂vi
∂x

)
(xn+1, tn+1) + ∆x∆t

(
∂2vi
∂t∂x

)
(xn+1, tn+1)

+
(∆x)

2

2

(
∂2vi
∂x2

)
(xn+1, tn+1) +O(∆x(∆t)2) +O((∆x)2∆t).

Since

(34) vi(x
n+1,tn+1)−vi(xn,tn)

∆t = vi(x
n+1,tn+1)−vi(xn+1,tn)

∆t + vi(x
n+1,tn)−vi(xn,tn)

∆t ,

which, when expanded, gives

(35) vi(x
n+1,tn+1)−vi(xn+1,tn)

∆t =
(
∂vi
∂t

)n+1 − ∆t
2

(
∂2vi
∂t2

)n+1

+O((∆t)2),

and due to (33), we have
(36)

vi(x
n+1,tn)−vi(xn,tn)

∆t = ∆x
∆t

(
∂vi
∂x

)n+1 − (∆x)2

2∆t

(
∂2vi
∂x2

)n+1

−∆x
(

∂2vi
∂t∂x

)n+1

+O(∆x∆t) +O((∆x)2).

Further, (31) yields

∆x

∆t
=

(
∂x

∂t

)n+1

− ∆t

2

(
∂2x

∂t2

)n+1

+O((∆t)2),
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then we have
(37)

vi(x
n+1, tn+1)− vi(xn, tn)

∆t
=

(
∂vi
∂t

)n+1

− ∆t

2

(
∂2vi
∂t2

)n+1

+

(
∂x

∂t

)n+1(
∂vi
∂x

)n+1

− ∆t

2

(
∂2x

∂t2

)n+1(
∂vi
∂x

)n+1

− ∆t

2

[(
∂x

∂t

)n+1 ]2(
∂2vi
∂x2

)n+1

−∆t

(
∂x

∂t

)n+1(
∂2vi
∂t∂x

)n+1

+O((∆t)2)

=

[(
∂vi
∂t

)n+1

+

(
∂x

∂t

)n+1(
∂vi
∂x

)n+1 ]
− ∆t

2

[(
∂2vi
∂t2

)n+1

+

(
∂2x

∂t2

)n+1(
∂vi
∂x

)n+1

+ 2

(
∂x

∂t

)n+1(
∂2vi
∂t∂x

)n+1

+

((
∂x

∂t

)n+1
)2(

∂2vi
∂x2

)n+1 ]
+O((∆t)2)

=

(
dvi
dt

∣∣∣∣h
x̂

)n+1

− ∆t

2

[(
d2vi
dt2

∣∣∣∣h
x̂

)n+1

−
(
∂x

∂t

)n+1(
∂2x

∂x∂t

)n+1(
∂vi
∂x

)n+1 ]
+O((∆t)2)

=

(
dvi
dt

∣∣∣∣h
x̂

)n+1

− ∆t

2

[(
d2vi
dt2

∣∣∣∣h
x̂

)n+1

− ωn+1
i,h (∇ωi,h)

n+1
(∇vi)n+1

]
+O((∆t)2).

Then the result is finally proved. �

Lemma 4.3. [13] There exists C1 and C2 depending on the discrete ALE mapping
Xi

h,t (i = 1, 2) such that

(38) ∥J i
t∥L∞(Ω̂i) ≤ C1, ∥(J i

t )
−1∥L∞(Ωi

t)
≤ C2, ∀t ∈ [0, T ],

where, J i
t = det

(
Fi

t ◦
(
Xi

h,t

)−1
)
, (J i

t )
−1 = det

(
(Fi

t)
−1 ◦Xi

h,t

)
. And,

(39) ∥J i
t − J i

n∥L∞(Ω̂i) ≤ C∆t, ∀t ∈ [tn, tn+1].

We can now proceed to the following main theorem of the section.

Theorem 4.4. Suppose (v1, p1,v2) is the solution to (4) satisfying the following
regularity properties
(40)

vi ∈ L∞ (0, T ;Hr(Ωi
t)

d
)
, dvidt

∣∣h
x̂
∈ L∞(0, T ;Hr−1(Ωi

t)
d),

d2vi
dt2

∣∣h
x̂
∈ L∞(0, T ;L2(Ωi

t)
d), p1 ∈ L∞ (0, T ;Hr−1(Ω1

t )
)
, for r ≥ 3, i = 1, 2,
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and
(
vn+1
1,h , pn+1

1,h ,vn+1
2,h

)
is the solution to (26), then we have the following error

estimate:

(41)

2∑
i=1

∥vNi − vNi,h∥L2(Ωi
N )d +∆t

N∑
j=1

∥vji − v
j
i,h∥H1(Ωi

j)
d


≤ C(hr−1 +∆t)

( 2∑
i=1

[
∥vi∥L∞(0,T ;Hr(Ωi

t)
d) +

∥∥∥∥dvidt
∣∣∣∣h
x̂

∥∥∥∥
L∞(0,T ;Hr−1(Ωi

t)
d)

+

∥∥∥∥d2vidt2

∣∣∣∣h
x̂

∥∥∥∥
L∞(0,T ;L2(Ωi

t)
d)

]
+ ∥p1∥L∞(0,T ;Hr−1(Ω1

t ))

)
.

Proof. Subtracting (26) from (4) at tn+1, we have
(42)

2∑
i=1

[(dvi
dt

∣∣∣∣h
x̂

)n+1

− ∂tv
n+1
i , ψi,h


Ωi

n+1

+
(
∂tv

n+1
i − ∂tv

n+1
i,h , ψi,h

)
Ωi

n+1

+
(
µi∇

(
vn+1
i − vn+1

i,h

)
,∇ψi,h

)
Ωi

n+1

−
(
ωn+1

i,h · ∇
(
vn+1
i − vn+1

i,h

)
, ψi,h

)
Ωi

n+1

]
−
(
pn+1
1 − pn+1

1,h ,∇ · ψ1,h

)
Ω1

n+1

+
(
∇ ·
(
vn+1
1 − vn+1

1,h

)
, q1,h

)
Ω1

n+1

= 0.

Pick arbitrary discrete functions ṽ = (ṽ1, ṽ2) ∈ Kh and p̃ ∈ Q0
h, and adopt the

same notations ξ, η, α and β which are defined in Section 3.3. Let ψi,h = ξn+1
i ∈

Kh, q1,h = βn+1 in (42), leading to

(43)

2∑
i=1

[(dvi
dt

∣∣∣∣h
x̂

)n+1

− ∂tv
n+1
i , ξn+1

i


Ωi

n+1

+
(
∂tξ

n+1
i , ξn+1

i

)
Ωi

n+1

+

(
µi∇ξn+1

i ,∇ξn+1
i

)
Ωi

n+1

]
−
(
βn+1,∇ · ξn+1

1

)
Ω1

n+1

+
(
∇ · ξn+1

1 , βn+1
)
Ω1

n+1

=
2∑

i=1

[
−
(
∂tη

n+1
i , ξn+1

i

)
Ωi

n+1

−
(
µi∇ηn+1

i ,∇ξn+1
i

)
Ωi

n+1

+

((
ωn+1

i,h · ∇
) (
ηn+1
i + ξn+1

i

)
, ξn+1

i

)
Ωi

n+1

]
+
(
αn+1,∇ · ξn+1

1

)
Ω1

n+1

−
(
∇ · ηn+1

i , βn+1
)
Ω1

n+1

.

First, we notice that −
(
βn+1,∇ · ξn+1

1

)
Ω1

n+1

+
(
∇ · ξn+1

1 , βn+1
)
Ω1

n+1

= 0, and

(
∇ · ηn+1

1 , βn+1
)
Ω1

n+1

= 0,

which is due to the incompressibility condition ∇ · v1 = 0 and ṽ1 ∈Kh.
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Using Cauchy-Schwarz inequality, Poincaré inequality and Young’s inequality
with ϵ, we have error estimates for the following terms in (43):(

µi∇ξn+1
i ,∇ξn+1

i

)
Ωi

n+1

≥ C∥ξn+1
i ∥2

1,Ωi
n+1

,(
µi∇ηn+1

i ,∇ξn+1
i

)
Ωi

n+1

≤ C∥ηn+1
i ∥2

1,Ωi
n+1

+ ϵ∥ξn+1
i ∥2

1,Ωi
n+1

,((
ωn+1

i,h · ∇
) (
ηn+1
i + ξn+1

i

)
, ξn+1

i

)
Ωi

n+1

≤ C
(
∥ηn+1

i ∥2
1,Ωi

n+1
+ ∥ξn+1

i ∥2
0,Ωi

n+1

)
+ϵ∥ξn+1

i ∥2
1,Ωi

n+1
,(

αn+1,∇ · ξn+1
1

)
Ω1

n+1

≤ C∥αn+1∥2
0,Ω1

n+1
+ ϵ∥ξn+1

i ∥2
1,Ω1

n+1
.

The term
(
∂tξ

n+1
i , ξn+1

i

)
in (43) is handled in the following way.(

ξn+1
i −ξni ◦Xi

n+1,n

∆t , ξn+1
i

)
Ωi

n+1

= 1
∆t

[ (
ξn+1
i , ξn+1

i

)
Ωi

n+1

−
(
ξni ◦Xi

n+1,n, ξ
n+1
i

)
Ωi

n+1

]
= 1

∆t

[ (
ξn+1
i , ξn+1

i

)
Ωi

n+1

−
(
ξni , ξ

n+1
i

Ji
n+1

Ji
n

)
Ωi

n

]
= 1

∆t

[
∥ξn+1

i ∥2
0,Ωi

n+1
−
(
ξni , ξ

n+1
i ◦Xi

n,n+1

)
Ωi

n

−
(
ξni , ξ

n+1
i ◦Xi

n,n+1

(
Ji
n+1−J

i
n

Ji
n

))
Ωi

n

]
,

where, applying Lemma 4.1 and (38) to the second term, we have

(
ξni , ξ

n+1
i ◦Xi

n,n+1

)
Ωi

n

≤ 1

2
∥ξni ∥20,Ωi

n
+

1

2
∥ξn+1

i ◦Xi
n,n+1∥20,Ωi

n

≤ 1

2
∥ξni ∥20,Ωi

n
+

1

2
∥ξn+1

i ∥20,Ωi
n+1

− 1

2

∫ tn+1

tn

(∫
Ωi

t

|ξn+1
i ◦Xi

t,n+1|2∇ · ωi,hdx

)
dt

≤ 1

2
∥ξni ∥20,Ωi

n
+

1

2
∥ξn+1

i ∥20,Ωi
n+1

+
1

2
sup

t∈[tn,tn+1]

∥∇ · ωi,h∥∞,Ωi
t

∫ tn+1

tn

(∫
Ωi

n+1

|ξn+1
i ◦Xi

t,n+1|2
J i
t

J i
n+1

dx

)
dt

≤ 1

2
∥ξni ∥20,Ωi

n
+

1

2
∥ξn+1

i ∥20,Ωi
n+1

+ C∆t∥ξn+1
i ∥20,Ωi

n+1
.

Following similarly, and applying (38) and (39), we also have:

(44)

(
ξni , ξ

n+1
i ◦Xi

n,n+1

(
J i
n+1 − J i

n

J i
n

))
Ωi

n

≤ C∆t

(
1

2
∥ξni ∥20,Ωi

n
+

1

2
∥ξn+1

i ◦Xi
n,n+1∥20,Ωi

n

)
≤ C∆t

(
∥ξni ∥20,Ωi

n
+ ∥ξn+1

i ∥20,Ωi
n+1

+∆t∥ξn+1
i ∥20,Ωi

n+1

)
.

Thus,

(
∂tξ

n+1
i , ξn+1

i

)
≥ 1

2∆t

(
∥ξn+1

i ∥20,Ωi
n+1

− ∥ξni ∥20,Ωi
n

)
−C

(
∥ξni ∥20,Ωi

n
+ ∥ξn+1

i ∥20,Ωi
n+1

)
.

The remaining terms will be handled as follows using Lemma 4.2.
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(dvi
dt

∣∣∣∣h
x̂

)n+1

− ∂tv
n+1
i , ξn+1

i


Ωi

n+1

=

∆t

2

(d2v
dt2

∣∣∣∣h
x̂

)n+1

− ωn+1
i,h (∇ωi,h)

n+1∇vn+1
i

 , ξn+1
i


Ωi

n+1

≤ C(∆t)2

∥∥∥∥
(
d2vi
dt2

∣∣∣∣h
x̂

)n+1 ∥∥∥∥2
0,Ωi

n+1

+ ∥vn+1
i ∥21,Ωi

n+1

+
1

2
∥ξn+1

i ∥20,Ωi
n+1

,

and(
∂tη

n+1
i , ξn+1

i

)
Ωi

n+1

=

(dηi
dt

∣∣∣∣h
x̂

)n+1

− ∆t

2

(d2ηi
dt2

∣∣∣∣h
x̂

)n+1

− ωn+1
i,h (∇ωi,h)

n+1∇ηn+1
i

 , ξn+1
i


Ωi

n+1

≤ C

[∥∥∥∥
(
dηi
dt

∣∣∣∣h
x̂

)n+1 ∥∥∥∥2
0,Ωi

n+1

+ (∆t)2
(∥∥∥∥
(
d2ηi
dt2

∣∣∣∣h
x̂

)n+1 ∥∥∥∥2
0,Ωi

n+1

+ ∥ηn+1
i ∥21,Ωi

n+1

)]
+

1

2
∥ξn+1

i ∥20,Ωi
n+1

.

Combining error estimates of all terms at above, and choosing ϵ sufficiently small,
we have

2∑
i=1

(
1

2∆t

(
∥ξn+1

i ∥20,Ωi
n+1

− ∥ξni ∥20,Ωi
n

)
+ ∥ξn+1

i ∥21,Ωi
n+1

)

≤ C

[ 2∑
i=1

∥∥∥∥
(
dηi
dt

∣∣∣∣h
x̂

)n+1 ∥∥∥∥2
0,Ωi

n+1

+ ∥ηn+1
i ∥21,Ωi

n+1
+ ∥ξn+1

i ∥20,Ωi
n+1

+ ∥ξni ∥20,Ωi
n


+ ∥αn+1∥20,Ω1

n+1
+ (∆t)2

2∑
i=1

∥∥∥∥
(
d2vi
dt2

∣∣∣∣h
x̂

)n+1 ∥∥∥∥2
0,Ωi

n+1

+ ∥vn+1
i ∥21,Ωi

n+1

].
To achieve the global error estimate we sum over n from 0 to N−1 on both sides

of the above inequality, then apply the discrete Grönwall’s inequality, and choose
vi,h(0) = ṽi(0) ∈ Vh to have ξi(0) = 0 (i = 1, 2), leading to
(45)

2∑
i=1

∥ξNi ∥20,Ωi
N
+∆t

N∑
j=1

∥ξji ∥
2
1,Ωi

j


≤ C

[
inf

ṽ∈Kh\{0},
p̃∈Q0

h\{0}

( 2∑
i=1

∆t

N∑
j=1

∥∥∥∥
(
dηi
dt

∣∣∣∣h
x̂

)j ∥∥∥∥2
0,Ωi

j

+∆t

N∑
j=1

∥ηji ∥
2
1,Ωi

j


+∆t

N∑
j=1

∥αj∥20,Ω1
j

)
+ (∆t)2

2∑
i=1

∥∥∥∥
(
d2vi
dt2

∣∣∣∣h
x̂

)n+1 ∥∥∥∥2
0,Ωi

n+1

+ ∥vn+1
i ∥21,Ωi

n+1

].
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By the classic Brezzi theory [3, 6], we extend the infimum over the entire finite
element spaces, resulting in
(46)

2∑
i=1

∥ξNi ∥20,Ωi
N
+∆t

N∑
j=1

∥ξji ∥
2
1,Ωi

j


≤ C

[
inf

ṽ∈Vh\{0},
p̃∈Q0

h\{0}

( 2∑
i=1

∆t
N∑
j=1

∥∥∥∥
(
dηi
dt

∣∣∣∣h
x̂

)j ∥∥∥∥2
0,Ωi

j

+∆t
N∑
j=1

∥ηji ∥
2
1,Ωi

j


+∆t

N∑
j=1

∥αj∥20,Ω1
j

)
+ (∆t)2

2∑
i=1

∥∥∥∥
(
d2vi
dt2

∣∣∣∣h
x̂

)n+1 ∥∥∥∥2
0,Ωi

n+1

+ ∥vn+1
i ∥21,Ωi

n+1

].
Choosing corresponding interpolation functions of the solution as our arbitrary

discrete functions ((ṽ1, ṽ2), p̃1) ∈ Vh ×Q0
h, and employing standard a priori inter-

polation error estimates [8] for ηi,
dηi

dt

∣∣
x̂
and α, we obtain

(47)
2∑

i=1

∥ξNi ∥20,Ωi
N
+∆t

N∑
j=1

∥ξji ∥
2
1,Ωi

j


≤ C(h2(r−1) + (∆t)2)

[
∆t

N∑
j=0

( 2∑
i=1

∥vji ∥
2
Hr(Ωi

j)
d +

∥∥∥∥
(
dvi
dt

∣∣∣∣h
x̂

)j ∥∥∥∥2
Hr−1(Ωi

j)
d


+ ∥pj1∥2Hr−1(Ω1

j )

)
+

2∑
i=1

∥∥∥∥
(
d2vi
dt2

∣∣∣∣h
x̂

)j ∥∥∥∥2
L2(Ωi

j)
d

+ ∥vji ∥
2
H1(Ωi

j)
d

]

≤ C(h2(r−1) + (∆t)2)

( 2∑
i=1

[
∥vi∥2L∞(0,T ;Hr(Ωi

t)
d) +

∥∥∥∥dvidt
∣∣∣∣h
x̂

∥∥∥∥2
L∞(0,T ;Hr−1(Ωi

t)
d)

+

∥∥∥∥d2vidt2

∣∣∣∣h
x̂

∥∥∥∥2
L∞(0,T ;L2(Ωi

t)
d)

]
+ ∥p1∥2L∞(0,T ;Hr−1(Ω1

t ))

)
Adding the a priori error estimates of ηi in L

2- and H1 norm back in and using the
triangular inequality, we have our result (41). �

5. Numerical Experiments

5.1. The case of a globally smooth real solution. We first consider the case
of a smooth real solution. By appropriately choosing the functions f1,f2, τ ,v

0
1 ,v

0
2 ,

we can let the following smooth functions v =

(
sin(2πy)(cos(2πx)− 1) sin(t)
sin(2πx)(− cos(2πy) + 1) sin(t)

)
,

p = −2π sin(2πx) sin(2πy) sin(t),

be the real solution to (1) in two dimension. Clearly, v ∈
(
H3(Ω1

t ∪ Ω2
t )

2
)
∩H2(Ωt)

2,

p ∈ H2(Ω1
t ). In their definitions, x = (x, y)

T ∈ Ω̄ = [−1, 1]×[−1, 1] which immerses

the initial subdomains Ω̂2 = (−0.25, 0.25)×(−0.25, 0.25), Ω̂1 = Ω\ ¯̂Ω2, T = 1. Then
the interface Γt = ∂Ω2

t . In addition, we prescribe the interface motion as follows in
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terms of its position function xΓ:

(48) xΓ =

(
1 +

t

10

)
x2, ∀x2 ∈ Γt = ∂Ω2

t , ∀t ∈ [0, 1],

which induces two slowly deformed subdomains Ω1
t and Ω2

t . According to the

prescribed xΓ, we solve the discrete ALE mapping Xi
h,t on Ω̂i for the moving

meshes T i
h,t (i = 1, 2) and t ∈ [0, 1]. Fig. 1 shows the initial and terminal domains

and their meshes.

Figure 1. A growing square is immersed in the domain at differ-
ent time and their meshes with h = 1

16 .

We utilize the fully discrete ALE finite element approximation (26) within the
finite element spaces (8), i.e., P 2P 1 element, to solve the Stokes/parabolic interface
problem (1) defined as above for (v1, p1,v2) with a grid doubling. In order to
possibly observe the optimal convergence rate of velocity errors in L2 norm, ∥v −
vh∥L2(Ω1

T∪Ω2
T )d that may be O(h3+∆t), which is however not included in Theorem

4.4, we choose the time step size ∆t that is proportional to h3. The convergence
performances are illustrated in Table 1, where, we denote ∥v − vh∥H1(Ω1

T∪Ω2
T )d by

ev,1, ∥v−vh∥L2(Ω1
T∪Ω2

T )d by ev,0, and ∥p−ph∥L2(Ω1
T ) by ep,0, the convergence “rate”

is calculated by log2

(
e2h
eh

)
. Fig. 2 illustrates the convergence history for each error

via a log-log plot. We can see from Table 1 and Fig. 2 that the convergence rates

Table 1. Convergence performance of the smooth real solution case.

h ev,1 rate ev,0 rate ep,0 rate
1
4 .10561E+01 .68015E-01 .19884E+01
1
8 .14801E+00 2.83 .41524E-02 4.03 .45018E+00 2.14
1
16 .22697E-01 2.71 .31383E-03 3.73 .10089E+00 2.16
1
32 .46903E-02 2.27 .33040E-04 3.25 .24995E-01 2.01

of both the velocity in H1-norm and the pressure in L2-norm are of the second
order. Additionally, errors of velocity in L2-norm even has the third convergence
order, which means, all convergence rates are optimal regarding the adopted P 2P 1

finite element and relatively high local regularity properties of the chosen smooth
real solutions that shall be no lower than (H3)d for the velocity in Ω1

t ∪Ω2
t and H2
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Figure 2. Convergence history of the smooth real solution case.

for the pressure in Ω1
t . Thus, numerical results validate Theorem 4.4 for r = 3, and

more beyond, we see that the convergence rate of velocity in L2-norm is one order
higher than its convergence rate in H1-norm, which is not included in Theorem 4.4,
may be considered as a superconvergence phenomenon for a globally smooth real
solution case. It will be illustrated in the next example that such superconvergence
on the convergence of velocity in L2-norm is deteriorated for a globally non-smooth
real solution case.

5.2. The case of a globally non-smooth real solution. Now we consider a
more general numerical example for the Stokes/parabolic interface problem with a

globally low regularity for the velocity v = (v1,v2)
T ∈ H2(Ω1

t ∪ Ω2
t )

2 ∩H1(Ω)2 by
appropriately choosing the following real solution functions: v =

(
(y − 0.3−wt)

(
(x− 0.3−wt)2 + (y − 0.3−wt)2 − 0.01

)
t/β

−(x− 0.3−wt)
(
(x− 0.3−wt)2 + (y − 0.3−wt)2 − 0.01

)
t/β

)
,

p = 0.1
(
x3 − y3

) (
(−wt)2 + (y −wt)2 − 0.01

)
t.

where, β = βi(x), ∀x ∈ Ωi
t (i = 1, 2), are chosen as a piecewise constant, x =

(x, y)
T ∈ Ω̄ = [0, 1]×[0, 1] that immerses Ω̂2 = {(x, y) |(x−0.3)2+(y−0.3)2 ≤ 0.01}

and Ω̂1 = Ω\ ¯̂Ω2. The interface Γt = ∂Ω2
t satisfies the equation of a circle:

(x− 0.3−wt)2 + (y − 0.3−wt)2 = 0.01, ∀t ∈ [0, T ],

where w is a prescribed moving velocity of Γt, The interface motion, xΓ, is thus
defined as xΓ = wt+x2, ∀x2 ∈ Γt, ∀t ∈ [0, T ]. By defining the real solution v and
the interface Γt this way, we know ∇v ∈ L2(Ω)4, only, leading to v ∈ H1(Ω)2.

According to the prescribed interface motion, xΓ, we solve the discrete ALE
mapping Xi

h,t on Ω̂i for the moving meshes T i
h,t, i = 1, 2. The initial and terminal

domains and their triangulations are shown in Fig. 3, respectively.
In the following numerical experiments, we pick β1 = 10, β2 = 1, w = 0.1,

T = 1 and still choose ∆t is proportional to h3 along with a grid doubling to
include velocity errors in L2 norm in our convergence test. By carrying out the
same numerical approach as we do for Case 1, we obtain the following numerical
results as shown in Table 2 and Fig. 4, illustrating that the convergence rates of the
velocity in H1- and L2-norm, the pressure in L2-norm are all of the second order,
but the convergence rate of the velocity in L2 norm is decreased from previous
third-order in Section 5.1 down to the second order around. Thus Theorem 4.4 is
fully validated for the case of a globally low regularity of the solution.
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Figure 3. A shifting circle is immersed in the domain at different
time and their meshes with h = 1

32 .

Table 2. Convergence performance of the non-smooth real solu-
tion case.

h ev,1 rate ev,0 rate ep,0 rate
1
8 2.82590E-04 1.30050E-05 8.46200E-04
1
16 6.09940E-05 2.21 1.73470E-06 2.91 1.94010E-04 2.12
1
32 2.31040E-05 1.40 3.24730E-07 2.42 3.75110E-05 2.37
1
64 4.78590E-06 2.27 6.63540E-08 2.29 8.11640E-06 2.21

Figure 4. Convergence history of the non-smooth real solution case.

5.3. The case of less regularity with a larger jump ratio. In this case, we
choose the real solution as: v =

(
(y −wt) sin

(
(x−wt)2 + (y −wt)2 − 0.0625

)
sin(t)/β

−(x−wt) sin
(
(x−wt)2 + (y −wt)2 − 0.0625

)
sin(t)/β

)
,

p = (π cos(2π (x−wt)) cos(2π (y −wt)) + 0.080716) t.

where, β = βi(x), ∀x ∈ Ωi
t (i = 1, 2) are chosen as a piecewise constant, x =

(x, y)
T ∈ Ω̄ = [−1, 1] × [−1, 1] that immerses Ω̂2 = {(x, y) |x2 + y2 ≤ 0.0625} and

Ω̂1 = Ω\ ¯̂Ω2. In addition, we prescribe the interface motion, xΓ, as follows

(49) xΓ = wt+ x2, ∀x2 ∈ Γt = ∂Ω2
t , ∀t ∈ [0, 1].
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So, it is still the case of a shifting circle immersed in a square domain but initially
being centered at the barycenter of the square this time.

We take a larger jump ratio, β1 = 1, β2 = 1000, for this case with other pa-
rameters set up as the same ones in Section 5.2. Numerical results are illustrated
in Table 3 and Fig. 5, where we can see that the second-order convergence rate
is obtained again for both the velocity in H1- and L2-norm, and the pressure in
L2-norm, on the average. And, the convergence rate of the velocity in L2 norm is
kept deteriorating down to about the second order. Theorem 4.4 is thus validated
one more time for the case of globally low solution regularity with a larger jump
ratio.

Table 3. Convergence performance of the less regularity case:
β1 = 1, β2 = 1000.

h ev,1 rate ev,0 rate ep,0 rate
1
4 0.038158806 0.001895841 0.757454821
1
8 0.00872165 2.13 0.000279706 2.76 0.21057848 1.85
1
16 0.002256687 1.95 6.63E-05 2.08 0.055024071 1.94
1
32 0.000652103 1.79 1.77E-05 1.91 0.013839607 1.99

Figure 5. Convergence history of the less regularity case: β1 =
1, β2 = 1000.
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