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ERROR ESTIMATES FOR THE LAPLACE INTERPOLATION ON

CONVEX POLYGONS

WEIWEI ZHANG, LONG HU, ZONGZE YANG, AND YUFENG NIE

Abstract. In the natural element method (NEM), the Laplace interpolation error estimate on
convex planar polygons is proved in this study. The proof is based on bounding gradients of the
Laplace interpolation for convex polygons which satisfy certain geometric requirements, and has
been divided into several parts that each part is bounded by a constant. Under the given geometric

assumptions, the optimal convergence estimate is obtained. This work provides the mathematical
analysis theory of the NEM. Some numerical examples are selected to verify our theoretical result.
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1. Introduction

In engineering practice, many problems in mechanics and physics can be reduced
to solve mathematical problems of ordinary differential equations or partial differ-
ential equations under given boundary conditions. With the rapid development of
computer technology, many numerical methods such as weighted residual method,
finite element method, finite difference method, meshless method [1] and boundary
element method have been developed to solve the engineering problems.

In recent decades, meshless methods have emerged, such as smooth particle
hydrodymics method (SPH) [2, 3], reproducing kernel particle method (RKPM)
[4], moving least-square approximation method (MLS) [5], the partition of unity
method [6], radial basis functions (RBF) [7], point interpolation method (PIM) [8]
and natural element method (NEM) [9], and these methods have been developed to
solve partial differential equations (PDEs). In the meshless method, shape functions
are constructed in terms of a group of discrete nodes, and no predefined nodal
connectivity is required. The nodes are unstructured and can be freely moved,
inserted and deleted. The meshless method does not need to generate mesh, thus it
has some advantages in handling crack propagation or large deformation problems.

The NEM is a meshless method based on the concept of natural neighbor inter-
polants and on the discretization by Voronoi diagram and Delaunay triangulation.
The NEM interpolant is constructed on the basis of Voronoi diagram [10], which is
unique for a given set of distinct nodes in the plane. It means that the NEM inter-
polant is determined once the location of nodes is determined. The dual Delaunay
triangles [11] are constructed for nodal integration and numerical computation of
the interpolant. However, unlike finite element method (FEM) where angle restric-
tions are imposed on the triangles for the convergence of the method, there are
no such constraints on the size, shape, and angles of the triangles in NEM. Unlike
most of meshless methods, the natural neighbor interpolants have the properties of
interpolation of nodal data, allowing direct imposition of essential boundary condi-
tions as FEM does. On the other hand, the NEM presents some characteristics of
meshless methods, such as accurate shape functions with quasi-spherical influence
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zones and robust approximations with no user-defined parameter on non-uniform
grids, and it can handle complex geometry or crack propagation problems easily.
In general, the NEM not only has the advantages of finite element method and
meshless method, but also overcomes some of their shortcomings.

Since Braun and Sambridge [9] firstly introduced NEM in 1995, many researchers
have applied it to solve mechanical problems. Sukumar et al. [12, 13] used NEM
to study the application of elliptic boundary value problems for elastic mechan-
ics, and constructed the C1 natural neighbor interpolation to solve fourth-order
elliptic partial differential equations. Cueto et al. [14, 15] used α-shapes in the
context of NEM to ensure the linear precision of the interpolant over convex and
non-convex boundaries. Bueche et al. [16] investigated NEM in two-dimensional
linear elastodynamics and studied vibration and wave propagation problem. Toi
Yutaka [17, 18] analyzed the elastic-plastic problem and brittle fracture problem
with NEM. Cai and Zhu [19, 20] used a local Petrov-Galerkin method to establish
a global equilibrium equation, which has fast convergence rate and high accuracy.
Gonzalez [21] established a novel algorithm to simulate free-surface fluid dynamics
phenomena. Alfaro [22] used NEM to simulate hollow profiles. Cho et al. [23]
presented a mixed natural element approximation of Reissner-Mindlin plate for the
locking-free numerical analysis of plate-like thin elastic structures.

The application of NEM has been developed for about twenty years [24, 25], while
the theoretical research of convergence, stability and error analysis is rare and needs
to be studied deeply. Gillette et al. [26] made a brief study on the error estimates for
generalized barycentric interpolation, including the Sibson interpolation. Alexander
et al. [27] proved interpolation error estimates for the mean value coordinates over
convex polygons. In a similar fashion to estimates shown for different coordinates in
these papers, we study another interpolation error of NEM-Laplace interpolation.

The rest of the paper is organized as follows. In Section 2, we review the relevant
background on geometric constraints, Laplace interpolation and interpolation the-
ory in Sobolev Spaces. In Section 3, the estimate is divided into several parts and
the initial estimate is established for each part. Our result is obtained in Theorem
2 which gives a constant bound on the gradients of the Laplace interpolation. In
Section 4, two numerical examples are given to verify our analysis. Finally the
conclusion is drawn in Section 5.

2. Background

2.1. Geometric constraints. Let Ω be a convex polygon in R2, which consists of
n nodes, x1,x2, · · ·,xn, and let the interior angle at xi be βi. The largest distance
between two points in Ω is denoted by diam(Ω) and the radius of the largest

inscribed circle is denoted ρ(Ω), then the aspect ratio γ is defined as γ := diam(Ω)
ρ(Ω) .

Now we give the following geometric constraints.
G1. Bounded aspect ratio: There exists a constant γ∗ > 0 such that 2 ≤

γ ≤ γ∗.
G2. Minimum edge length: There exists a constant d∗ > 0 such that

|xi − xj | ≥ d∗ for all i ̸= j.
G3. Maximum interior angle: There exists a constant β∗ > 0 such that

βi < β∗ < π for all i.
Under the above geometric constraints, two other closely related properties also
hold.

G4. Minimum interior angle: There exists a constant β∗ > 0 such that
βi > β∗ > 0 for all i.
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G5. Maximum vertex count: There exists a constant n∗ > 0 such that
n ≤ n∗.
In [26], it is shown that G1 ⇒ G4, G2 ⇒ G5 and G3 ⇒ G5.

2.2. Laplace interpolation. The Laplace interpolation is based on the construc-
tion of the Voronoi diagram and Delaunay tessellation. Suppose a set of distinct
nodes S = {x1,x2,..., xn} in R2. In mathematical terms, the Voronoi cell V (xi) is
defined as

(1) V (xi) = {x ∈ R2|d(x,xi) < d(x,xj), ∀j ̸= i},

where d(x,xi) is the distance between x and xi in Euclidean metric, see Figure 1(a).
The Delaunay triangulation (DT ), which is the straight-line dual of the Voronoi
diagram, is constructed by connecting the nodes whose Voronoi cells have common
boundaries, see Figure 1(b). If a point x lies within the circumcircle of triangle
DT (xi,xj ,xk) , then xi, xj and xk are called the natural neighbor nodes of x. See
Figure 1(c), x lies within the circumcircle of triangle DT (1, 2, 3) and DT (1, 3, 4),
then 1, 2, 3 and 4 are the natural neighbor nodes of x.

(a) Voronoi cell (b) Delaunay triangulation (c) natural neighbor nodes
of x

Figure 1. Geometric structures.

Having found all natural neighbor nodes of x, the new Voronoi cell related to x
can be constructed by its natural neighbor nodes which can be seen in Figure 2(a),
where Qi (i = 1, 2, · · ·, 4) denote the vertices of the Voronoi edges, then the Laplace
interpolation can be determined as follows. Suppose the number of the natural
neighbor nodes is M , then Voronoi cell of x have M sides. Denote the lengths of
the Voronoi edges by si, i = 1, 2, · · ·,M . Denote further the lengths of the altitudes
drawn from x to ith sides by hi, i = 1, 2, · · ·,M , see Figure 2(b). Then the Laplace
interpolation of x is defined as

(2) ϕi(x) =
λi(x)

M∑
j=1

λj(x)

,

where

(3) λi(x) =
si(x)

hi(x)
.

Consider another representation of Laplace interpolation. Suppose xi−1, xi,
xi+1 are some natural neighbor nodes of x (sorted counterclockwise). Let Q1 and
Q2 denote two vertices of the Voronoi edges, φ1 = ∠Q1xxi and φ2 = ∠Q2xxi, see
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(a) New Voronoi cell related to x (b) the Laplace interpolation of x

Figure 2. The Voronoi cell and Laplace interpolation of x.

Figure 3. According to the definition of Laplace interpolation, (3) can be rewritten
as

(4) λi(x) =
|Q1Q2|
|xxi|

2

=
|xxi|

2 tanφ1 +
|xxi|

2 tanφ2

|xxi|
2

= tanφ1 + tanφ2.

In ∆xxixi−1, it is easy to get that

(5) 2∠φ1 + 2∠xxi−1Q1 + 2∠Q1xi−1xi = π,

then

(6) φ1 =
π

2
− ∠xxi−1xi,

and

(7) φ2 =
π

2
− ∠xxi+1xi.

Hence substituting (6) and (7) into (4), we can obtain that

(8) λi(x) = cot∠xxi−1xi + cot∠xxi+1xi.

Figure 3. Some of natural neighbor nodes of x.

The interpolate approximation uh(x) in the discrete solution space can be ex-
pressed as

(9) uh(x) =
n∑

i=1

ϕi(x)ui
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where ui is the discrete solution at node xi.
The natural neighbor interpolation has some remarkable properties which are

listed in the following[12]

• Non-negativity:

(10) 0 ≤ ϕi(x) ≤ 1.

• Interpolation:

(11) ϕi(xj) = δij .

• Partition of unity:

(12)
n∑

i=1

ϕi(x) = 1.

• Linear Completeness:

(13) x =

n∑
i=1

ϕi(x)xi.

• Smoothness: The Laplace interpolation shape function is C∞ at any point
except at nodal locations as well as on the boundary of the Delaunay circles,
where they are C0.

2.3. Interpolation in Sobolev Spaces. Interpolation error estimates are typi-
cally derived from the Bramble-Hilbert lemma and its improvements. The modern
version of the Bramble-Hilbert lemma is stated below.

Lemma 1 (see [28]). Let Ω ⊂ Rn′
be a bounded convex domain. For all u(x) ∈

Wm
p (Ω), where Wm

p (Ω) is the Sobolev space, m ∈ N, 1 ≤ p ≤ ∞, there exists a
polynomial P (x) of total degree m− 1 for which

(14) ∥u(x)− P (x)∥k,p ≤ C(n′,m)(diam(Ω))m−k∥u(x)∥m,p, k = 0, 1, · · · ,m

where C(n′,m) is a constant depending on n′ and m only.

According to Lemma 1 and above geometric constraints, we have the following
theorem for natural neighbor interpolation.

Theorem 1. Let Ω be a bounded convex domain which consists of n nodes, set
diam(Ω) = 1 and the domain satisfies G1 and G5. The interpolation operator

Iu(x) is defined as Iu(x) =
n∑

i=1

ϕi(x)u(xi), where ϕi(x) is the natural neighbor

interpolation of node i. If there exists a constant Cϕ such that

(15) ∥ϕi∥Hk(Ω) ≤ Cϕ, k = 0, 1

then for all u(x) ∈ Wm
p (Ω),

(16) ∥u− Iu∥Hk(Ω) ≤ C∥u∥H2(Ω), k = 0, 1

where C is a constant depending on n∗ and Cϕ.

Proof. As mentioned above, the natural neighbor interpolation has the property of
linear completeness, see (13). Then IP (x) = P (x) for any first order polynomial
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P (x), which yields the estimate

∥u− Iu∥Hk(Ω) ≤ ∥u− P∥Hk(Ω) + ∥P − Iu∥Hk(Ω)

= ∥u− P∥Hk(Ω) + ∥I(P − u)∥Hk(Ω)

≤ ∥u− P∥Hk(Ω) +
n∑

i=1

|P (xi)− u(xi)| · ∥ϕi∥Hk(Ω)

≤ ∥u− P∥Hk(Ω) + n∗Cϕ∥P − u∥C0(Ω)

≤ ∥u− P∥H2(Ω) + n∗CϕCS∥P − u∥H2(Ω)

≤ (1 + n∗CϕCS)∥u− P∥H2(Ω)

≤ (1 + n∗CϕCS)C(2, 2)∥u∥H2(Ω)

= C∥u∥H2(Ω)

(17)

where CS is the Sobolev embedding, i.e., ∥u∥C0(Ω) ≤ CS∥u∥H2(Ω). �

Corollary 1. Let diam(Ω) ≤ 1. If the conditions of Theorem 1 hold, then for all
u(x) ∈ Wm

p (Ω),

(18) ∥u− Iu∥Hk(Ω) ≤ Cdiam(Ω)2−k∥u∥H2(Ω), k = 0, 1.

Theorem 1 and its corollary imply that the Laplace interpolation error estimate
can be demonstrated if (15) holds, and our next work is to prove it.

3. Laplace interpolation error estimate

The domain of influence of the shape function ϕi(x) demonstrates that the value
of ϕi(x) will increases radially when x → xi. For simplicity, assume that diam(Ω) =

1 and x ∈ B(xi,
d∗

γ∗ ), where B(xi,
d∗

γ∗ ) denotes a circle with node xi as its center

and d∗

γ∗ as its radius. According to (2) and (8), the Laplace interpolation can be
rewritten as

(19) ϕi(x) =
λi(x)

M∑
j=1

λj(x)

=
cot∠xxi−1xi + cot∠xxi+1xi

M∑
j=1

(cot∠xxj−1xj + cot∠xxj+1xj)

.

Let ti−1,i := cot∠xxi−1xi, then the gradient of ϕi(x) can be expressed as

∇ϕi(x) =

∇λi(x)
M∑
j=1

λj(x)− λi(x)
M∑
j=1

∇λj(x)

(
M∑
j=1

λj(x))2

=

∇(ti−1,i + ti+1,i)
M∑
j=1

(tj−1,j + tj+1,j)− (ti−1,i + ti+1,i)
M∑
j=1

∇(tj−1,j + tj+1,j)

(
M∑
j=1

(tj−1,j + tj+1,j))
2 .

(20)

Now we present the estimate of (20), which can be divided into several parts. Each part
is bounded by a constant, as shown in Lemma 2, Lemma 3 and Lemma 4.

Lemma 2. Under conditions G1 and G2, there is a constant C1 such that

(21) |∇ti−1,iti,i−1 − ti−1,i∇ti,i−1| ≤ C1(
M∑
j=1

(tj−1,j + tj+1,j))
2

for all i = 1, 2, · · · , n.
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Figure 4. Some of natural neighbor nodes of x for Lemma 2.

Proof. As shown in Figure 4, the segment xP is perpendicular to the given segment
xi−1xi. Defining d = |xixi−1|, h = |xP |, l = |xi−1P |, r = |xi−1x|. Without loss of
generality, let xi−1 = (0, 0), xi = (xi, kyi) and x = (x, y), k < ∞, then we find that

(22) ti−1,i =
l

h
=

∣∣∣∣x+ ky

kx− y

∣∣∣∣ ,
(23) ti,i−1 =

d− l

h
=

d
√
1 + k2

|kx− y| −
∣∣∣∣x+ ky

kx− y

∣∣∣∣ .
As a result,

(24) |∇ti−1,iti,i−1 − ti−1,i∇ti,i−1| =
(k2 + 1)d

(kx− y)2
=

d

h2
=

d

l2
t2i−1,i.

(24) also holds when k=∞.

Since x ∈ B(xi,
d∗

γ∗ ) ⊂ B(xi,
d∗

2
) and d ≥ d∗, it follows that l ≥ d − d∗

2
≥ d∗

2
, and

d ≤ diam(Ω) = 1, thus

|∇ti−1,iti,i−1 − ti−1,i∇ti,i−1| ≤
4d

d∗2
t2i−1,i ≤

4

d∗2
(

M∑
j=1

(tj−1,j + tj+1,j))
2

(25)

which completes the proof. �

Lemma 3. Under conditions G1,G2 and G3, there is a constant C2 such that

(26) |∇ti−1,iti,i+1 − ti−1,i∇ti,i+1| ≤ C2(

M∑
j=1

(tj−1,j + tj+1,j))
2

for all i = 1, 2, · · · , n.

Proof. According to the triangle inequality,

(27) |∇ti−1,iti,i+1 − ti−1,i∇ti,i+1| ≤ |∇ti−1,iti,i+1|+ |ti−1,i∇ti,i+1|

holds, then our goal is to give the estimates of the above two absolute values. As shown

in Figure 5, the segment xP
′
is perpendicular to the given segment xixi+1, defining

d
′
= |xixi+1|, h

′
=

∣∣∣xP ′
∣∣∣, l

′
=

∣∣∣xi+1P
′
∣∣∣ and r

′
= |xi+1x|. Let xi−1 = (0, 0), xi =

(xi, kyi) and x = (x, y). According to the value of ∠xxixi+1, two cases is considered in
the following.
Case 1: 1

2
∠xi−1xixi+1 ≤ ∠xxixi+1 ≤ ∠xi−1xixi+1.

In this case, h ≤ h
′
, as shown in Figure 5(a). By (22), we have

(28) |∇ti−1,i| =
∣∣∣∣∇x+ ky

kx− y

∣∣∣∣ = r

h2
,
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(a) (b)

Figure 5. Some of natural neighbor nodes of x for Lemma 3. (a)
Case 1, (b) Case 2.

and

(29) |ti,i+1| = |cot∠xxixi+1| ≤ max{
∣∣∣∣cot 12∠xi−1xixi+1

∣∣∣∣ , |cot∠xi−1xixi+1|}.

Similarly, it is easy to get that

|∇ti,i+1| =
|xxi|
h′2

=
1

h′ sin∠xxixi+1

≤ 1

hmin{
∣∣sin 1

2
∠xi−1xixi+1

∣∣ , |sin∠xi−1xixi+1|}
.

(30)

According to (22), (28) and (29), we have

|∇ti−1,iti,i+1| ≤
r ·max{

∣∣cot 1
2
∠xi−1xixi+1

∣∣ , |cot∠xi−1xixi+1|}
l2

t2i−1,i

≤
max{

∣∣cot 1
2
∠xi−1xixi+1

∣∣ , |cot∠xi−1xixi+1|}
( d

∗
2
)
2 (

M∑
j=1

(tj−1,j + tj+1,j))
2

≤
4max{

∣∣cot β∗
2

∣∣ , |cotβ∗|}
d∗2

(
M∑
j=1

(tj−1,j + tj+1,j))
2.

(31)

According to (22) and (30), we have

|ti−1,i∇ti,i+1| ≤
l

h2 min{
∣∣sin 1

2
∠xi−1xixi+1

∣∣ , |sin∠xi−1xixi+1|}

=
1

lmin{
∣∣sin 1

2
∠xi−1xixi+1

∣∣ , |sin∠xi−1xixi+1|}
t2i−1,i

≤ 2

d∗ min{
∣∣sin β∗

2

∣∣ , |sinβ∗|}
(

M∑
j=1

(tj−1,j + tj+1,j))
2.

(32)

Collecting (31) and (32), the result of Lemma 3 can be proved.
Case 2: 0 ≤ ∠xxixi+1 ≤ 1

2
∠xi−1xixi+1.

In this case, h
′
≤ h. As shown in Figure 5(b), ti,i+1 = d

′
−l

′

h
′ . If 0 ≤ ∠xi−1xixi+1 < π

2
,

then

(d
′
− l

′
) sin

∠xi−1xixi+1

2
≤ (d

′
− l

′
) tan

∠xi−1xixi+1

2
≤ h;

else if π
2
≤ ∠xi−1xixi+1 < π, then

(d
′
− l

′
) sin∠xi−1xixi+1 ≤ h.
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Hence,

(33) d
′
− l

′
≤ max{ h

sin
∠xi−1xixi+1

2

,
h

sin∠xi−1xixi+1
} ≤ max{ h

sin β∗
2

,
h

sinβ∗ }.

Then we have

|∇ti−1,iti,i+1| =
r

h2
· d

′
− l

′

h′ ≤ 1

h′2 max{ 1

sin β∗
2

,
1

sinβ∗ }

=
1

l′
2 max{ 1

sin β∗
2

,
1

sinβ∗ } · t
2
i+1,i

≤ 4

d∗2
max{ 1

sin β∗
2

,
1

sinβ∗ } · (
M∑
j=1

(tj−1,j + tj+1,j))
2.

(34)

From Figure 5(b),

h

|xxi|
= sin∠xxixi−1 ≥ min{

∣∣∣∣sin 1

2
∠xi−1xixi+1

∣∣∣∣ , |sin∠xi−1xixi+1|}.

As a result, we can obtain that

|ti−1,i∇ti,i+1| =
l

h
· |xxi|

h′2
≤ l

h′2 min{
∣∣sin 1

2
∠xi−1xixi+1

∣∣ , |sin∠xi−1xixi+1|}

=
l

l′2 min{
∣∣sin 1

2
∠xi−1xixi+1

∣∣ , |sin∠xi−1xixi+1|}
· t2i+1,i

≤ 4

d∗2 min{
∣∣sin β∗

2

∣∣ , |sinβ∗|}
· (

M∑
j=1

(tj−1,j + tj+1,j))
2.

(35)

Putting (34) and (35) together gives the result.
In each case, the desired estimate holds. Taking the maximum constant over each case

completes the proof. �

Lemma 4. Under conditions G1,G2 and G3, there is a constant C3 such that

(36) |∇ti−1,itm−1,m − ti−1,i∇tm−1,m| ≤ C3(

M∑
j=1

(tj−1,j + tj+1,j))
2, ∀m ̸= i, i+ 1

(37) |∇ti−1,itm,m−1 − ti−1,i∇tm,m−1| ≤ C3(

M∑
j=1

(tj−1,j + tj+1,j))
2, ∀m ̸= i, i+ 1

for all i = 1, 2, · · · , n.

Figure 6. Some of natural neighbor nodes of x for Lemma 4.
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Proof. According to the triangle inequality,

(38) |∇ti−1,itm,m−1 − ti−1,i∇tm,m−1| ≤ |∇ti−1,itm,m−1|+ |ti−1,i∇tm,m−1|

holds, and our goal is to give the estimates of the above two absolute values. Without
loss of generality, consider one of these cases, ∇ti−1,iti−1,i−2− ti−1,i∇ti−1,i−2. Denote the
distance from node x to the line segment xi−1xi−2 by h1, as shown in Figure 6. Since

x ∈ B(xi,
d∗

γ∗ ), we have

∠xixi−1xi−2 − arcsin
d∗

dγ∗ ≤ ∠xxi−1xi−2 ≤ ∠xixi−1xi−2,

then

ti−1,i−2 = cot∠xxi−1xi−2

≤ max{
∣∣∣∣cot(∠xixi−1xi−2 − arcsin

d∗

dγ∗ )

∣∣∣∣ , |cot∠xixi−1xi−2|}

≤ max{
∣∣∣∣cot(β∗ − arcsin

1

γ∗ )

∣∣∣∣ , |cotβ∗|},

(39)

and

h1

r
= sin∠xxi−1xi−2

≥ min{
∣∣∣∣sin(∠xixi−1xi−2 − arcsin

d∗

dγ∗ )

∣∣∣∣ , |sin∠xixi−1xi−2|}

≥ min{
∣∣∣∣sin(β∗ − arcsin

1

γ∗ )

∣∣∣∣ , |sinβ∗|}.

(40)

According to (28) and (39), we have

|∇ti−1,iti−1,i−2| ≤
r

h2
max{

∣∣∣∣cot(β∗ − arcsin
1

γ∗ )

∣∣∣∣ , |cotβ∗|}

≤ 1

l2
max{

∣∣∣∣cot(β∗ − arcsin
1

γ∗ )

∣∣∣∣ , |cotβ∗|} · t2i−1,i

≤
4max{

∣∣∣cot(β∗ − arcsin 1
γ∗ )

∣∣∣ , |cotβ∗|}

d∗2
(

M∑
j=1

(tj−1,j + tj+1,j))
2,

(41)

and

|ti−1,i∇ti−1,i−2| =
l

h
· r

h2
1

≤ l

h2 min{
∣∣∣sin(β∗ − arcsin 1

γ∗ )
∣∣∣ , |sinβ∗|}

=
1

lmin{
∣∣∣sin(β∗ − arcsin 1

γ∗ )
∣∣∣ , |sinβ∗|}

· t2i−1,i

≤ 2

d∗ min{
∣∣∣sin(β∗ − arcsin 1

γ∗ )
∣∣∣ , |sinβ∗|}

(

M∑
j=1

(tj−1,j + tj+1,j))
2.

(42)

Collecting (41) and (42) completes the proof. �

Now we give the following theorem.

Theorem 2. Under conditions G1,G2 and G3, there is a constant C such that

(43) ∥ϕi∥Hk(Ω) ≤ C, k = 0, 1

for all i = 1, 2, · · · , n.



334 W. ZHANG, L. HU, Z. YANG AND Y. NIE

Proof. By (10), we have

(44) ∥ϕi∥L2(Ω) ≤ (meas(Ω))
1
2 ≤

√
π

2
.

To obtain the estimate of |∇ϕi(x)|, we partition the summands of the numerator according
to similar terms in Lemma 2, Lemma 3 and Lemma 4, and thus get the following result

|∇ϕi(x)| =

∣∣∣∣∣∣∣∣∣
∇λi(x)

M∑
j=1

λj(x)− λi(x)
M∑
j=1

∇λj(x)

(
M∑
j=1

λj(x))2

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
∇(ti−1,i + ti+1,i)

M∑
j=1

(tj−1,j + tj+1,j)− (ti−1,i + ti+1,i)
M∑
j=1

∇(tj−1,j + tj+1,j)

(
M∑
j=1

(tj−1,j + tj+1,j))
2

∣∣∣∣∣∣∣∣∣
≤ 2C1 + 2C2 + (4n∗ − 8)C3.

(45)

Putting these together, we have

∥ϕi∥H1(Ω) ≤ ∥ϕi∥L2(Ω) + |ϕi|H1(Ω)

≤ (1 + 2C1 + 2C2 + (4n∗ − 8)C3)(meas(Ω))
1
2

≤ (1 + 2C1 + 2C2 + (4n∗ − 8)C3) ·
√
π

2
= C,

(46)

which is the desired upper bound. Thus, Theorem 2 guarantees that the optimal interpo-
lation error estimate (16) holds. �

4. Numerical Results

In this section, two numerical examples are given to verify the computed convergence
rate is very close to the theoretical optimal rate in NEM, which show the correctness of
the theoretical results of this paper.

4.1. Example 1. In the first example, we consider the following Poisson equation

−∆u = 8π2 cos 2πx sin 2πy

in a square domain Ω = [0, 1]2 with a circular hole centered at (0.5, 0.5), and the radius
of the circle is defined as 0.2. The Dirichlet boundary conditions are suitably defined such
that the exact solution is

u = cos 2πx sin 2πy.

The nodal discretization and valid Delaunay triangulation are shown in Figure 7. Using the

Figure 7. Node distribution and corresponding Delaunay triangulation.
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Table 1. The L2 norm and H1 norm of the relative errors and
convergence rate for Example 1.

#nodes Mesh size
∥u−uh∥

L2

∥u∥
L2

RL
∥u−uh∥

H1

∥u∥
H1

RH

98 0.12 5.6815e-2 − 19.7149e-2 −
344 0.06 1.4145e-2 2.0060 10.0749e-2 0.9685
1280 0.03 0.3854e-2 1.8759 5.2103e-2 0.9513
4928 0.015 0.1045e-2 1.8829 2.7048e-2 0.9458

NEM, the L2 norm and H1 norm of the relative errors and the corresponding convergence
rates ( RL and RH ) are given in Table 1. From Table 1 we can see that the convergence
orders in the two norms are 2 and 1 respectively, which verifies our theoretical analysis.

Figure 8 shows the comparison of the relative errors in the L2 norm and the H1 norm
using the FEM and NEM respectively, where the numbers with brackets represent the
values of ordinate. It is observed that although the same convergence rates are obtained
for the two methods, the numerical results of the NEM have higher precision than that of
the FEM.

(a) (b)

Figure 8. Convergence rate for Example 1. (a) L2 norm, (b) H1 norm.

4.2. Example 2. Consider the cantilever beam shown in Figure 9, which has a vertical
upward force P = −1000N at the end. The beam has characteristic length L = 4m,
height D = 1m and unit thickness, and it is assumed to be in a state of plane stress
without considering the gravity. The elasticity modulus E = 3 × 105Pa, and Poisson’s
ratio γ = 0.25. The displacement vector solution is given by

Figure 9. Cantilever beam.
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Table 2. Relative error norms and convergence rate for Example 2.

#nodes
∥u−uh∥

∥u∥ R
∥u−uh∥

E
∥u∥E

RE

85 6.6553e-2 − 18.7149e-2 −
297 1.6322e-2 2.0277 9.6560e-2 1.1434
1105 0.4057e-2 2.0083 4.9620e-2 1.0458
4257 0.1013e-2 2.0018 2.0217e-2 1.0073

(a) (b)

Figure 10. Convergence rate for Example 2. (a) Displacement,
(b) energy.

u(x, y) =
−Py

6EI

[
(6L− 3x)x+ (2 + γ) y2 − 3D2

2
(1 + γ)

]
,

v(x, y) =
P

6EI

[
3γy2 (L− x) + (3L− x)x2] ,(47)

while the stresses are

σxx =
−P (L− x) y

I
,

σyy = 0,

σxy =
P

2I

(
D2

4
− y2

)
,

(48)

where I=D3

12
is the moment of inertia for a beam with rectangular cross-section and unit

thickness.
The problems are carried out using three different regular nodal discretizations, namely

85(17*5) nodes, 297(33*9) nodes and 1105(65*17) nodes. The displacement and energy
norms are defined as

∥u∥ = (

∫
Ω

(u2 + v2)dΩ)
1
2 ,

∥u∥E = (
1

2

∫
Ω

(ε− εh)
T
C(ε− εh)dΩ)

1
2 ,

(49)

where C is the elasticity matrix. The displacement and energy relative error norms and
the convergence rates ( R and RE ) are given in Table 2 and Figure 10(The numbers with
brackets represent the values of ordinate in Figure 10).

According to the results in Table 2, the convergence rate for the cantilever beam is
close to the theoretical rate, namely R = 2 and R = 1 for the displacement and strains,
respectively, which verifies the proof. In Figure 10, the convergence rates in displacement
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and energy for FEM and NEM are presented. It is shown that NEM has better absolute
accuracy in displacement and strains.

5. Conclusions

Laplace interpolation error estimate is discussed in this study by bounding gradients
of the interpolation. It must be noted that, geometric constraints are necessary for guar-
anteeing the compatibility of polygonal meshes with Laplace interpolation in NEM. The
proof of (20) is divided into three parts which are bounded by different constants, and
these constants depend on γ∗, d∗, β∗ and β∗. Collecting these estimates together gives
the final result, i.e., Theorem 2. Some numerical examples are given to show that the
computed convergence rate is very close to the theoretical rate.

Although our analysis is based on convex domains, the Laplace interpolation has the
ability to exactly impose essential boundary conditions on non-convex domains, which is
the significant advantage of the Laplace interpolation, compared to the Sibson interpola-
tion [29].
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