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A STABILIZER FREE WEAK GALERKIN FINITE ELEMENT
METHOD FOR GENERAL SECOND-ORDER ELLIPTIC
PROBLEM
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Abstract. This paper proposes a stabilizer free weak Galerkin (SFWG) finite element method
for the convection-diffusion-reaction equation in the diffusion-dominated regime. The object of
using the SFWG method is to obtain a simple formulation which makes the SFWG algorithm
(9) more efficient and the numerical programming easier. The optimal rates of convergence
of numerical errors of O(h*) in H' and O(hRF*!) in L? norms are achieved under conditions
(Pk. (K), Py(e), [P; (K)}Z) ,j = k+ 1,k = 1,2 finite element spaces. Numerical experiments are
reported to verify the accuracy and efficiency of the SFWG method.
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1. Introduction

In this paper, we are concerned with the development of numerical methods
for the following partial differential equation with boundary conditions using a
stabilizer free weak Galerkin finite element method

(1) —V-(aVu)+p-Vu+cu = [ inQ,
(2) u = 0 ondQ,

where € is a polygonal or polyhedra domain in RY(d = 2,3), a = a(z) is the
diffusion coefficient matrix, 8 = B(x) is the convection coefficient and ¢ = ¢(z) is
the reaction coefficient in relevant applications. We suppose that o = (a;;(2))axd €
[Whee(@)]4%d.0 < c(z) < M,B € [Wh>(Q)]? and ¢ — 2V - B > ¢y > 0 for some
constant ¢y and there exists positive constants o, < aps such that

amtTe < T a(a)E < ane™e, VEeRLzeq.

The convection-diffusion equation has numerous practical applications in many
fields such as materials sciences, fluid flows, and image processing. There are sev-
eral numerical methods in existing literature for solving the convection-diffusion
equation.

The weak form of the problem (1)-(2) is to find u € Hg(Q) such that

(3) (aVu, Vv) + (B - Vu,v) + (cu,v) = (f,v), Vv € Hy(Q).

The standard weak Galerkin method for the problem (1)-(2) seeks weak Galerkin
finite element approximation up = {ug, up} satisfying
(4) (@Vwu, Vo) + (B - Vwu,v) + (cu,v) + s(un,v) = (f,v),

for all v = {wg, vy} satistying v, = 0 on 9, where V,, is the weak gradient operator
and s(up,v) in (4) is a stabilizer term that ensures a sufficient weak continuity for
the numerical approximating. Recently, the weak Galerkin method has been devel-
oped to solve the elliptic equations [3, 6, 5], singularly perturbed reaction-diffusion
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problems [1], the biharmonic problems [9], the Helmholtz equation [8], and the
Maxwell equations [7]. More recently, Lin, et al. in [4], proposed a simple WG
method for the convection-diffusion-reaction problem (1)-(2) with singular pertur-
bation. One of the complexities of the WG methods and other discontinuous finite
element methods is contained the stabilization terms. To reduce the programming
complexity, the stabilizer free weak Galerkin finite element method, introduced by
Ye and Zhang in [13], refers to the numerical techniques for solving Poisson equa-
tion on polytopal meshes in 2D or 3D, where there is a jo > 0 so that as long
as the degree j of the weak gradient satisfies j > jy, the new scheme will work
and the optimal order of convergence can be achieved. In [2], Al-Taweel and Wang
proved the optimal degree of weak gradient of the SFWG method to improve the
efficiency of SFWG and to avoid the numerical difficulties associated with using
high degree weak gradients. The benefits of using the SFWG method compared
to the standard weak Galerkin method (4) are twofold: firstly, the SFWG method
has a simple formulation which is closer to the weak form (3) and thus the imple-
mentation of the SFWG finite element method is easier than that of the standard
weak Galerkin method; secondly and more importantly, it is more efficient than the
standard WG method (4). The goal of this article is to study a stabilizer free weak
Galerkin finite element method for solving convection-diffusion-reaction equations
(1)-(2) on uniform triangular partitions and then establish the error analysis in the
H' norm and L? norm.

This paper is organized as follows: In Section 2, we define weak gradient, weak
divergence, and describe our SFWG finite element spaces and the SFWG scheme
for the convection-diffusion-reaction equations (1)-(2). In Section 3, we will derive
optimal order L? error estimates for the SFWG finite element method for solving
the equations (1)-(2). Numerical experiment results are presented in Section 4 to
validate the theoretical results. Finally, in Section 5, we present some concluding
remarks.

2. Weak Galerkin Finite Element Schemes

Let T, be a partition of the domain 2 consisting of convex polygons in 2D or
polyhedra in 3D. Suppose that 7, is shape regular in the sense defined by (11)-
(12). Let &, be the set of all edges in Ty, let let £ = &, \ 99N be the set of all
interior edges. For each element K € 7T, denote by hx the diameter of K, and
h = mazrkeT, hx the mesh size of 7.

On each K, let P;(K) be the space of all polynomials with degree k or less. Let
Vi, be the weak Galerkin finite element space associated with K € 7 defined as
follows:

(5) Vi, = {’U = {1}07’1}1,} : ’U()|K S Pk(K),’Ub|e S Pk(€)7K S 77“6 € 8K},

where k > 1 is a given integer. In this instance, the component vy symbolizes the
interior value of v, and the component v, symbolizes the edge value of v on each K
and e, respectively. Let V,? be the subspace of V}, defined as:

(6) VY? = {v:v€E Vv =0ondN}

Definition 2.1. (Weak Gradient) For any v = {vo,vp}, the weak gradient Vv €
[P;(K)|?, where j > k, is defined on K as the unique polynomial satisfying

(7) (Vov,a)k = —(v0,V-q)k + (05, q-n)ox, VYq€ [P;(K)]?,

where n is the unit outward normal vector of OK.
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Definition 2.2. (Weak Divergence) For any v = {vg,vp} € V3, the weak divergence
B Vv € Py(K) is defined on K as the unique polynomial satisfying

(8) (B:-Vyv,w)g = —(vo,V - (Bw)k + (vp, B -nw)ox, Yw € Pr(K),
where n is the unit outward normal vector of K.
Next, we define four global projections Qq, Qp, Qr, and Qy, as follows.
Definition 2.3. For each element K € Ty,
Qo : L*(K) — Py(K),
Qp : L*(e) — Pi(e),
Qn : [LA(K))* — [Pi(K))Y,

are the L? projections onto the associated local polynomial spaces. Finally, we define
a projection operator Qnv = {Qov, Qpv} € Vi, for v e HY(Q).

For simplicity, we adopt the following notations,

(v,w)p, = Z (v,w)g = Z /Kvwd:r,

KeTh KeT
(v, w)pr, = Z (v, W)y = Z / vwds.
KeT, KeT, V9K

SFWG Method 1. The SEFWG scheme for (1)-(2) is to find up, = {ug,up} € V!,
such that the following equation holds

9) (aVwun, Vuv)7, + (B - Vwun, vo)7, + (cuo, vo)7, = (f,v0) 7,
for all v = {vg,vp} € V2.

For any v € V},, we introduce an energy norm || - || as:
(10) Ioll” = (@Vov, V)7, + (cto, o).

An H'! semi-norm is defined as follows:

1
2
[l = ( > (IVwolli + hillvo — vbll%x)) :

KeTy

It can be easily verified that |v|;,;, is a norm in V2.
The following lemma will be needed in the error estimation.

Lemma 1. (see [2]) Suppose that VK € Ty, K is convex with at most i edges and
satisfies the following regularity conditions: for all edges e; and egs of K

(11) les| < aplexl;
for any two adjacent edges e; and es the angle 6 between them satisfies
(12) 6‘0<9<7‘l’—907

where 1 < ag and 0y > 0 are independent of K and h. Let jo =k + pu—2 or jo =
k+ 1 — 3 when each edge of K is parallel to another edge of K. Denote degV ,,v be
the degree of weak gradient when degV.,,v = j > jo, then there exist two constants
Cy,Cs > 0, such that for each v = {vg,vp} € V3, the following hold true

Cillv][1,n £ (Vwv, Vyu)7,, < Collv

where Cy and Cs depend only on ag and 0.

|1,h7
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Remark 1. When p = 3 then jo = k+1. If all K’s are parallelograms, then p = 4,
and jo =k + 1.

Next, we list important inequalities which will be needed in error estimates.

Lemma 2. ( Trace inequality, see [11]) On each element K € Ty, the following
trace inequality holds true:

(13) lell2 < C (i lellic + hellVelik), ¢ € HY(K),
for some constant C'.

Lemma 3. (Inverse Inequality, see [11]) There exists a constants C' such that for
any piecewise polynomial ¢ € Py (K).

(14) IVelx < Chidlelx, VK € Th.
The following lemma presents estimates for the projection operator @y and Q.

Lemma 4. [10] Let Ty be a finite element partition of Q0 satisfying the shape reg-
ularity conditions (11)-(12), and u € H**1(Q). Then, the L? projections Qo and
Qy, satisfy

> (e — Qoellk + PNV (e = Qup)ll%) < Ch*EH Vg2, 0<s <k,
KeTh

> (IVe — QuVelk + bk Ve — QuVe) [} ) < Ch*|l¢l2,,, 0<s<k.
KeTy

The following lemma will also be needed in error estimates.

Lemma 5. Let Qp and Qy, be the projection operators defined in definition (2.3)
and ¢ € H*1(Q). Then for each element K € Ty,, we have

(15) 1Qr(Ve) = VuQidllx < Childlit1k-
Proof. By definition (2.1) and integration by parts, we have
(17) (VuQro,d)g = —(Qo9,V-q)x + (Qud,q-n)yy,

for any q € [P;(K)]?. Subtracting (17) from (16), using integration by parts, trace
inequality (13) and inverse inequality (14), we get

(Qn(Vo) = VuQro, )k = —(¢—Qod,V-Q)k + (¢ — Qud,q 1)y
(V(¢—Qo9),a)x + (Qod — Qvd,q - 1)y
IV(6 = Qo) xcllallic + Chi 16— Qodlloxc i
Chig|lk1xllal k-
Letting q = Q,(V¢) — V,Qp¢ in the above equation yields

121 (Ve) = VuQudllx < Chi|dlisr i
which completes the proof. ([l

IAIA

Lemma 6. Let ¢ € HY(Q). Then for all v € V3, we have

(av¢7 V'U())K = (avw(Qh¢)7 vwv)K + <(Qh(av¢) -, vy — vb>3K
(18) + (Qh(av¢) - avah¢v va)K-
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Proof. Let Qp(aV¢) =q and Qp¢ = P. Then
(19) (@, Voo)k = —(V-a,v0)k + (- 1,v0) 5 »
(20) (@, Vwo)k = —=(V-qvo)x +(q-m,vp) 5 -
Subtracting (20) from (19) yields
(qa vUO)K = (Q7 va)K + <q "N, Vg — Ub>aK
(V@ P, V) + (4 — aV, P, Vo) +(q-n,v9 — ) ¢ »
which completes the proof. [l

Lemma 7. For all v € V},, we have

(21) (B Vu,v0)7, = (B VuwQnu,vo)7,, — Lg(u,v),
where
lg(u,v) = (u— Qou, V - (Bvo))7;, — (u— Quu, B-n(vo — vs)) 57,
Proof. From integration by parts and definition 2.2 we get
(B-Vu,vo)y;, = —(u, V- (Bvo))7, + (u,B-muo)or;
= —(Qow, V- (Bvo))7, + (Qou —u, V- (Bvo)),
+ <Qbuaﬂ : nv0>8‘7’h =+ <U - Qbuvﬂ . nv0>87’h
(B - Vu(Qnu), vo) 7, — £g(u,v)

where in the last equality we have used the fact that (u — Qpu.B - nup) o7, - This
concludes the proof O

Lemma 8. Let u € H**1(Q). Then for any v € V2, we have

(22) (=V - (aVu),v) = (aVQnu, Vuv) 7, — La(u,v),
where
lo(u,v) = {((aVu—Qp(aVu) - -n,vy — Ub>a7’h + (Qn(aVu) — aV,Qru, Vyv) 7, .

Proof. Using integration by parts and the fact that ZKGTh (Vu-n,vp) 55 =0, we
obtain

(=V - (aVu),v9) = Z (aVu, Vug) g — Z (aVu-n,v9) g
KeTh KeTh
(23) = Z (aVu,Vug)g — Z (aVu-n,v9 — ) 5k »
KeTh KeTn
By letting ¢ = w in (18) and substituting it into (23), we get
(=V - (aVu),vy) = Z (aVu(Qru), Vi) g
KeTh
- Z ((aVu —Qp(aVu)) -n,vo — vpy) g
KeTh
+ ) (Qu(aVu) - aVuQuu, Vo) k-
KeTn
This concludes the proof. ([l
Assume that £.(u,v) = —(cu — cQou,vp). Then e, = Qpu — up € V}? satisfies

the following error equation.
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Lemma 9. For all v € V)2, we have
(aVyen, Vuu)T, + (B Vuwen,vg) + (ceo,v0) = Lo(u,v)
(24) + lg(u,v) + Le(u,v).
Proof. Testing (1) against vy we find that
(—=V - (aVu),vo) + (B - Vu,vg) + (cu,v9) = (f,vo)-
Using Lemmas 7, 8 and properties of the projections, we obtain
a(VuQru, Vyu), + (B VuQnu,vo)7, + (cQou, vo)
(25) = (f,v0) + la(u,v) + Lg(u,v) + £c(u,v).
Subtracting equation (9) from (25) generates (24), which completes the proof. O

Lemma 10. Let u € H*1(Q). If a is a piecewise constant matriz, then, for any
v E V}?, the following estimates hold

(26) a(u,0)] < CR*fulpga o],
(27) lbp(u,0)] < Ch*uleralloll,
(28) le(u,0)] < Chuliialloll.

Proof. For the first estimate (26), by applying Cauchy-Schwarz inequality and
Lemma 5 , we obtain

o, )] < > [{(aVu—Qu(aVu) -0, v0 — vp)yy |
KeTn

+ Y [(Qu(aVu) — aVyQut, Vi) k|

KeTy,
< C > | Vu—QuVu)lakllvo — vellox + Ch¥|ulesa |Jv]]
KeTn
1/2 1/2
< C ( > bk Vu - thu”%K) ( > htlvo — Ub||?n<)
KeTn KeTh

+  Ch*|ulpsav]).

From the trace inequality (13) and Lemma 4, we have

1/2
Ch¥luly 41 (Z h]_(1|v0_vb|%K> +lvll

KeTy
Ch*fulga|v]]-

The estimate for £g(u,v) can be obtained from Lemma 2.5 in [12]. The last estimate
(28) is resulting from the Cauchy-Schwarz inequality, and Lemma 4

[€e(u, v)| = |(cu — cQou, vo)|
< en [(Qou — u, vo)|
< Ch*[ulgsa o],

which completes the proof. ([l

IN

[l (u, )|

IN

Lemma 11. Letep = {eg,ep} = {Qou—1uo, Qpu—up}. Then there exists a constant
C such that

(29) lenll® < (aVwen, Ven)7, + (B - Vwen, en) + (cen, ).
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Proof. By using || - || defined in (10), we obtain

(aVwen, Vuen)r, + (B Vuwen, en) + (cen, en) lleall” + (8- Vwen, en)

> leall” = ClenlIVuwen]
> (C1 — Coh)lenl)?
> Clleall®,
when A is sufficiently small. O

Lemma 12. The weak Galerkin scheme (9) has one and only one solution.

Proof. 1t suffices to verify the uniqueness for the homogeneous equation. Assume

that uﬁll) and uf) are two solutions of (9). Then ej, = ugll) - uf) would satisfy the

forthcoming equation

(30) (aVyen, )7, + (B Vwen,v) + (cep,v) =0, Vv e V.

Note that e, € V0. Suppose that v = ey, in the equation (30) we obtain
(aVwen,en)T, + (B Vuwen,en) + (cen,en) = 0.

From Lemma 11, we have

lerll < (aVyen,en)T, + (B Vuen, en) + (cen,en) = 0.

Which implies e, = 0. Consequently, ul(ll) = uf). O

Theorem 1. Let up = {ug,up} be the solution to the formulation of (9). Assume
the ezact solution u € H*TY(Q). If a is a piecewise constant matriz, then there
exists a constant C independent of h, k such that

(31) Qnu — unll < Ch*|ufiis.

Proof. It follows from (29) that

(32) llenll® < (@Vwen, Vwen) 7, + (B - Vaen, en) + (cen, en).

Letting v = e, in (24) gives

(aVwen, Vwer)r, + (B - Vwen, eo) + (ceo, e0) = La(u, en) + lg(u, en) + Lo(u, ep).
Then (31) follows from Lemma 10. O
3. Error Estimates in L2 norm

The duality argument is utilized to get L? error estimate. Let e, = {eg,ep} =
Qnu — up,. The considered dual problem seek ® € H} () satisfying

(33) V- (aVP®)+B-VO+cP = ¢, inQ
® = 0, ondf.

suppose that the following H?-regularity holds true

(34) |91 < Cleo].

Theorem 2. Let up, = {ug, up} be the SFWG finite element solution of (9). Assume
that the ezact solution u € H*1(Q) and (34) holds true. If o is a piecewise constant
matriz, then, there exists a constant C' such that

(35) |Qou — uo < CH*H fuly1.
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Proof. Testing (33) by e and using the fact that > (V® -1, ep)s7, = 0 obtain

leol> = (=V-(aV®),eq) + (B VP, e) + (cP,ep)
(36) = (aV®,Veg)7, —(aV® -n,eq —ep)yr, + (B VP, e0)7, + (cP,e0)7;-

Setting ¢ = ® and v = ey, in (18) yields

(aV®,Vey)T, = (V4 (Qr®), Vyer), + (aQr(V®P)-n,eq— eb>87-h

(37) + (@h(VQD) - Vth¢, Vweh)Th.
Substituting (37) into (36) and using Lemma 7 gives

leol* = (aVu(Qn®), Vwen)7, +La(®,en) + (B VuQn®,eo)T,
(38) — Lg(®,v) + (cP,e0)T;, -

Using equation 9 and the error equation (24), we have

(Vi (Qn®), Vyen)r, + (B VuQr®, )T,
(39) = lo (u7 th)) + gﬂ (’LL, th)) + gc(uv th)) - (6607 QOCI))

By combining (38) with (39), we obtain

C(’U, - QOU‘)7 Qoq)) + éoz ('LL, Qhé) + gﬂ (U, th))

leol> = (
(40) + Lo(D,en) — Lp(D,ep) + (ceo, P — Qo).

To bound the terms on the right-hand side of equation (40). We use the Cauchy-
Schwarz inequality, the trace inequality (13) and the definition of @ and Qp, to
get

a(u, Q@) = | > (aVu—Qu(aVu) - n,Qo® — Qu®),

KeTh

+ (Qh (aVu) - Oéva}Lu, vahq))K

1 1
2 2
< < Z [Vu — thu”%K> ( Z [Qo® — qu’|?)l{>
K€7-h K€7_h
+ Ch* M ulgragle
3 3
< C ( Z h|Vu — QhVU"?)K> ( Z h2|Qo® — qu’|?)l{>
KeTh KeTh
+ Ch* M ulgragle
< O ulgga|®)a,
which implies
(41) [a(u, Qr®)| < CR*ulj11|D.

The estimate (27), and Lemma 4 give

10g(u, Qn®)| = |(u—Qou,V - (BQu®))7, — (u— Quu, B-n(Qo® — Qu®)) 7 |
(42) < Ch"ulps| o
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The estimates (26), (31), and Lemma 4 give
€a(®, en)l

|(aV® — Qu(aV®) -m,e0 —eb) 57, + (Qu(aVP) — aVy,Qr®, Viwer)T, |
(43) < Ch*Mulg4a[Dlo.

The estimates (27), (31), and Lemma 4 give

105(®, 1)

[(® - Qu®,V - (Beo)) 7, — (@ — Qu®, B-n(eq — ep)) oy

(44) < CRFulg D).

It follows from the Cauchy-Schwarz inequality and Lemma 4 that

(45) le(e0, @ — Qo®)| < CR* M uliralleoll < CR* fuli1|@].
Similarly, it follows from the Cauchy-Schwarz inequality and lemma 4 that
(46) [(e(u — Qou), Qo®)| < ChF [ulyi1|®]o.

Now combining (40) with the estimates (41)-(46), we obtain

(47) leol® < CR* Hulisa| @2,

which combined with (34) and the triangle inequality, provides the required error
estimate (35). O

4. Numerical Experiments

The goal of this section is to present four of the numerical examples to verify the
theoretical results derived in previous sections. The stabilizer free weak Galerkin
finite element scheme (9) has been applied for the polynomial degrees k = 1,2 on
a square domain and an L-shaped domain with uniform triangular partitions.

For polynomial degree k = 1, the numerical solution up = {ug, up} is obtained
from setting j = 2 in the weak gradient (7) and the following finite element space:

Vi, = {v={vo,v}:v|x € PL(K),vp|c € Pi(e), K € Tp,e € OK}.
For polynomial degree k = 2, the finite element space is given as follows:
Vi, = {v={vo,v}:v|k € Po(K),vp|c € Pa(e), K € Tp,e € OK},

and setting j = 3 in the weak gradient (7) to find the SEFWG solution uy, = {uo, up}.
All numerical experiments are carried out on a Laptop computer with 12.0 GB
memory and Intel(R) Core (TM) i7-8550U CPU @ 1.80 GHz.

Example 4.1. In this example, we consider the problem (1)-(2) posed on the
domain Q = (0,1)% with the following data: the diffusion coefficient matriz o =
Iy, the convection coefficient B = (1,2)T, the reaction coefficient c = sin(2zy), and
the f(x,y) term is given such that the exact solution is u(zx,y) = sin(2rz) sin(27y).
Table 1 lists errors and convergence rates in || - ||-norm and L*-norm. Numeri-
cal results show that the SEWG method with Py elements has convergence rate of
O(h¥) in H* norm and O(h*+1) in L2-norm. Although the numerical rates of con-
vergence of the standard weak Galerkin scheme (4), in H* and L? norms, are the
same as those of the SFWG method, the SFWG method is more efficient and easier
to implement for the convection-diffusion equation (1)-(2).

Table 2 shows the computational time (in seconds) comparison between SFWG
finite element scheme (9) and weak Galerkin finite element scheme (4). As we can
see in Table 2 that the SEFWG method is running faster than the standard weak
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TABLE 1. Error profiles and convergence rates for
(Pi(K), Px(e), [Prr1(K)]?) ,k = 1,2 finite element spaces.

SFWG elements WG elements
k h IQrw — upll Rate  ||Qou —ugll  Rate ||Qpu —upll Rate ||Qou — uoll Rate
1/2 3.5541E-00 - 2.4091E-01 - 3.9679E-00 - 2.5892E-01 -
1/4 1.7763E-00 1.00 8.4718E-02 1.51 1.9790E-00 1.00 9.5420E-02 1.44
1 1/8 8.7169E-01 1.08 2.6767E-02 1.66 9.7728E-01 1.02 2.9762E-02 1.68
1/16 4.8122E-01 1.02 7.1492E-08 1.90 4.8843E-01 1.02 7.8973E-03 1.91
1/32 2.1492E-01 1.00 1.8184E-03 1.98 2.4059E-01 1.00 2.0032E-03 1.98
1/64 1.0737E-01 1.00 4.5661E-04 1.99 1.2006E-01 1.00 5.0242E-04 2.00
1/2 1.5302E-00 - 8.3164E-03 - 1.5369E-00 - 2.0213E-02 -
1/4 5.2384E-01 1.55 1.0947E-02 -0.39 5.7207E-01 1.42 1.1749E-02 0.78
2 1/8 1.3121E-01 2.00 1.2747E-08 3.10 1.4378E-01 1.99 1.3705E-03 3.01
1/16 3.2542E-02 2.01 1.5431E-04 3.05 3.5654E-02 2.01 1.6613E-04 3.04
1/32 8.1111E-03 2.00 1.9095E-05 3.02 8.8770E-03 2.00 2.0542E-05 3.02
1/64 2.0262E-03 2.00 2.3779E-06 3.00 2.2155E-03 2.00 2.5572E-06 3.00

TABLE 2. Comparison of computation time (in seconds) of the
SFWG and the WG methods on the uniform triangular grid with
a different number of the elements.

k h No. of elements SFWG method WG method

1/2 8 0.3281 0.4219
1/4 32 0.0469 0.0469
1 1/8 128 0.2344 0.2344
1/16 512 1.8281 1.8750
1/32 2048 4.5938 5.2813
1/64 8192 29.5625 80.5156

Galerkin method (4). It can be observed in Table 2 that the computation time with
2048 elements by using the SFWG is 29.5625, which is less than 30.5156, needed
by using the standard weak Galerkin method. Therefore, when a large number of
elements are used the computation time becomes a significant factor. The SFWG
method is more efficient in accuracy and computation time.

Example 4.2. Interior layer-continuous boundary condition. This ezample
is adopted from [12]. Let the problem (1)-(2) be posed on square domain Q =
(0,1) x (0,1) with the following data: B = (1,0), and ¢ =1 and the exact solution
is given by

(48) u(z,y) = 0.52(1 —z)y(l —y) <1 — tanh 77755) ,

where the parameters n and vy control the location and thickness of the interior
layer. Figures 1 shows the nmumerical solution, the exact solution and the error
of the equation (48) on the uniform triangular meshes. Table 3 shows that the
SFWG scheme (9) with Py,(k),k = 1,2 elements has convergence rate of O(h*+1) in
|Qou—ugl|| and O(R*) in ||Qnu—wuyl|| for the convection-diffusion-reaction problem
with the diffusion coefficient matriz « = 0.11s and o = 0.0115,n = 0.5, and v =
0.05. We can capture the interior layer accurately.

Example 4.3. L-shaped domain. In this example, we solve the problem (1)-(2)
on a L-shaped domain Q = [—1,1]*\ (0,1) x (—1,0) partitioned into triangles with

2y
such that the exact solution is u(x,y) = x(1 — 2)y(1 — y). The results reported in
Table 4 shows the errors and the numerical convergence rates in the L? norm and

the following data: o = [g (2)} B = 2$] ,c =2y, and the f(xz,y) term is given
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TABLE 3. Error profiles and convergence rates for
(Pi(K), Px(e), [Prr1(K)]?) ,k = 1,2 finite element spaces.

When oo = 0.112 When o = 0.012

k h IQru — upll Rate  ||Qou — ugll  Rate lQnu — upll Rate  ||Qou — uol|  Rate
1/2 2.2770E-02 - 3.7286E-03 - 9.1971E-03 - 3.6434E-03 -

1/4 1.6433E-02 0.47 1.6279E-03 1.11 5.2288E-03 0.81 9.3178E-04 1.97

1 1/8 1.5076E-02 0.12 9.5359E-04 0.77 4.2468E-03 0.30 4.6206E-04 1.01
1/16 7.8536E-03 0.94 2.5914E-04 1.88 2.83020E-03 0.88 1.5014E-04 1.62
1/32 3.8953E-03 1.21 5.7185E-05 2.18 1.0588E-03 1.12 3.0678E-05 2.29

1/64 1.6808E-03 1.01 1.4411E-05 1.98 5.8007E-04 1.00 7.0847TE-06 2.11
1/128 8.8836E-04 1.00 8.6166E-06 2.00 2.6495E-04 1.00 1.7257E-06 2.04

1/2 1.0284E-02 - 1.8411E-08 - 6.9487E-03 - 2.8192E-03 -

1/4 9.0976E-03 0.18 6.1503E-04 1.58 2.7526E-03 1.34 5.674TE-04 2.81

2 1/8 3.9788E-03 1.19 1.2294E-04 2.32 1.1827E-03 1.22 1.0512E-04 2.48
1/16 7.4666E-04 2.41 8.4507E-06 3.86 2.8511E-04 2.83 7.8587E-06 3.74
1/32 3.847T7TE-04 1.16 2.5129E-06 1.75 1.0489E-04 1.16 2.8771E-06 1.73

1/64 8.8991E-05 1.99 83.2724E-07 2.94 2.6461E-05 1.99 3.2817E-07 2.88
1/128 2.0896E-05 2.00 4.1188E-08 2.99 6.6013E-06 2.00 4.1069E-08 2.98

TABLE 4. Error analysis and convergence rates for Py (K), (
1,2) elements with [Pj41(K)]? weak gradient (j = k+ 1 in (7)
L-shape domain.

k:
) on

k h lQpu — upll  Rate ||Qou —uoll  Rate

1/2 1.0407E-00 - 5.2124E-02 -
1/4 5.2665E-01 0.98 1.83218E-02 1.98
1 1/8 2.6407E-01 1.00 3.3182E-03 1.99
1/16 1.83212E-01 1.00 8.3043E-04 2.00
1/32 6.6073E-02 1.00 2.0766E-04 2.00
1/64 3.3038E-02 1.00 5.1911E-05 2.00

1/2 1.1351E-01 - 8.1497E-08 -
1/4 2.8516E-02 1.99 3. 7752E-04 3.06
2 1/8 7.1405E-03 1.00 4.6264E-05 3.08
1/16 1.7864E-03 1.00 5.7278E-06 3.01
1/52 4.4675E-04 1.00 7.1258E-07 3.00
1/64 1.1171E-04 1.00 8.8864E-08 3.00

FIGURE 1. WG solution (Left), exact solutions (Middle) and the
error (Right) for (P (K); Py(e); [P2(K)]?) element and a = 0.115.

Il - | norm. The SFWG scheme with Py elements has convergence rate of O(h*+1)
and O(h¥) in L?-norm and H' norm, respectively.

Example 4.4. As the final evample, we use a L-shaped domain 0 = [—1,1]%\

(0,1) x (=1,0) with the following data: o = B ﬂ B = (1,27 c =1, and the
ezact solution is u(x,y) = sin(rz)sin(ry) + 22. Table 5 shows the performance of
the SEWG scheme (9) for the problem (1)-(2) on polynomial of degrees k = 1,2.

The results indicate that the SEWG method with Py, elements has convergence rate
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TABLE 5. Error analysis and convergence rates for the SFWG
scheme (9) on L-shaped domain Q = [—1,1]?\ (0,1) x (—1,0).

k h lQnw —up  Rate ||Qou — ugl| Rate

1/2 1.8632E-00 - 1.2581E-01 -
1/4 9.8121E-01 1.00 4.0281E-02 1.64
1 1/8 4.6375E-01 1.00 1.0780E-02 1.90
1/16 2.3156E-01 1.00 2.7431E-08 1.97
1/32 1.1574E-01 1.00 6.8887E-04 1.99
1/64 5.7863E-02 1.00 1.7241E-04 2.00

1/2  5.6650E-01 - 1.9072E-02 -
1/4  1.4811E-01 1.99  2.3/8/E-03  3.02
2 1/8  8.5605B-02 2.00  2.9224/E-04  3.00
1/16  8.8820E-03  2.00  8.6469E-05  3.00
1/82  2.2192E-03  2.00  4.5531E-06  3.00
1/64  5.5474B-04  2.00  5.6868E-07  3.00

1 1
08 08
08 08
d0s H0s
04 04
02 0e oz o0
o 0z ° o2
02 . 02 N
04 02 04 02
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08 o5 08 o5
1 4
1 05 o 05 1 1 05 o 05 1

FIGURE 2. WG solution (Left), exact solutions (Middle) and the
error (Right) for (P (K); Pi(e); [P2(K)]?) element on a L-shaped

domain.

of O(h*1) and O(h¥) in L?-norm and H' norm, respectively. The numerical
solution, the exact solution and their error are shown in Fig 2.

5. Conclusion

The stabilizer free weak Galerkin methods for the convection-diffusion-reaction
problems studied in this paper. The error estimates and convergence of the SFWG
scheme is derived. Numerical results show that while the same rate of convergence
can be obtained using standard weak Galerkin scheme (4) and SFWG scheme (9),
the SFWG method is more efficient and easier to implement for the convection-
diffusion-reaction (1)-(2).
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