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A STABILIZER FREE WEAK GALERKIN FINITE ELEMENT

METHOD FOR GENERAL SECOND-ORDER ELLIPTIC

PROBLEM

AHMED AL-TAWEEL1,2, SAQIB HUSSAIN, RUNCHANG LIN, AND PENG ZHU

Abstract. This paper proposes a stabilizer free weak Galerkin (SFWG) finite element method

for the convection-diffusion-reaction equation in the diffusion-dominated regime. The object of
using the SFWG method is to obtain a simple formulation which makes the SFWG algorithm
(9) more efficient and the numerical programming easier. The optimal rates of convergence
of numerical errors of O(hk) in H1 and O(hk+1) in L2 norms are achieved under conditions(
Pk(K), Pk(e), [Pj(K)]2

)
, j = k + 1, k = 1, 2 finite element spaces. Numerical experiments are

reported to verify the accuracy and efficiency of the SFWG method.
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1. Introduction

In this paper, we are concerned with the development of numerical methods
for the following partial differential equation with boundary conditions using a
stabilizer free weak Galerkin finite element method

−∇ · (α∇u) + βββ · ∇u+ cu = f in Ω,(1)

u = 0 on ∂Ω,(2)

where Ω is a polygonal or polyhedra domain in Rd(d = 2, 3), α = α(x) is the
diffusion coefficient matrix, βββ = βββ(x) is the convection coefficient and c = c(x) is
the reaction coefficient in relevant applications. We suppose that α = (αij(x))d×d ∈
[W 1,∞(Ω)]d×d, 0 ≤ c(x) ≤ M,βββ ∈ [W 1,∞(Ω)]d and c − 1

2∇ · βββ > c0 > 0 for some
constant c0 and there exists positive constants αm ≤ αM such that

αmξT ξ ≤ ξTα(x)ξ ≤ αMξT ξ, ∀ξ ∈ Rd, x ∈ Ω.

The convection-diffusion equation has numerous practical applications in many
fields such as materials sciences, fluid flows, and image processing. There are sev-
eral numerical methods in existing literature for solving the convection-diffusion
equation.

The weak form of the problem (1)-(2) is to find u ∈ H1
0 (Ω) such that

(α∇u,∇v) + (βββ · ∇u, v) + (cu, v) = (f, v),∀v ∈ H1
0 (Ω).(3)

The standard weak Galerkin method for the problem (1)-(2) seeks weak Galerkin
finite element approximation uh = {u0, ub} satisfying

(α∇wu,∇wv) + (βββ · ∇wu, v) + (cu, v) + s(uh, v) = (f, v),(4)

for all v = {v0, vb} satisfying vb = 0 on ∂Ω, where ∇w is the weak gradient operator
and s(uh, v) in (4) is a stabilizer term that ensures a sufficient weak continuity for
the numerical approximating. Recently, the weak Galerkin method has been devel-
oped to solve the elliptic equations [3, 6, 5], singularly perturbed reaction-diffusion
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problems [1], the biharmonic problems [9], the Helmholtz equation [8], and the
Maxwell equations [7]. More recently, Lin, et al. in [4], proposed a simple WG
method for the convection-diffusion-reaction problem (1)-(2) with singular pertur-
bation. One of the complexities of the WG methods and other discontinuous finite
element methods is contained the stabilization terms. To reduce the programming
complexity, the stabilizer free weak Galerkin finite element method, introduced by
Ye and Zhang in [13], refers to the numerical techniques for solving Poisson equa-
tion on polytopal meshes in 2D or 3D, where there is a j0 > 0 so that as long
as the degree j of the weak gradient satisfies j ≥ j0, the new scheme will work
and the optimal order of convergence can be achieved. In [2], Al-Taweel and Wang
proved the optimal degree of weak gradient of the SFWG method to improve the
efficiency of SFWG and to avoid the numerical difficulties associated with using
high degree weak gradients. The benefits of using the SFWG method compared
to the standard weak Galerkin method (4) are twofold: firstly, the SFWG method
has a simple formulation which is closer to the weak form (3) and thus the imple-
mentation of the SFWG finite element method is easier than that of the standard
weak Galerkin method; secondly and more importantly, it is more efficient than the
standard WG method (4). The goal of this article is to study a stabilizer free weak
Galerkin finite element method for solving convection-diffusion-reaction equations
(1)-(2) on uniform triangular partitions and then establish the error analysis in the
H1 norm and L2 norm.

This paper is organized as follows: In Section 2, we define weak gradient, weak
divergence, and describe our SFWG finite element spaces and the SFWG scheme
for the convection-diffusion-reaction equations (1)-(2). In Section 3, we will derive
optimal order L2 error estimates for the SFWG finite element method for solving
the equations (1)-(2). Numerical experiment results are presented in Section 4 to
validate the theoretical results. Finally, in Section 5, we present some concluding
remarks.

2. Weak Galerkin Finite Element Schemes

Let Th be a partition of the domain Ω consisting of convex polygons in 2D or
polyhedra in 3D. Suppose that Th is shape regular in the sense defined by (11)-
(12). Let Eh be the set of all edges in Th, let let E0

h = Eh \ ∂Ω be the set of all
interior edges. For each element K ∈ Th, denote by hK the diameter of K, and
h = maxK∈Th

hK the mesh size of Th.
On each K, let Pk(K) be the space of all polynomials with degree k or less. Let

Vh be the weak Galerkin finite element space associated with K ∈ Th defined as
follows:

Vh = {v = {v0, vb} : v0|K ∈ Pk(K), vb|e ∈ Pk(e),K ∈ Th, e ∈ ∂K},(5)

where k ≥ 1 is a given integer. In this instance, the component v0 symbolizes the
interior value of v, and the component vb symbolizes the edge value of v on each K
and e, respectively. Let V 0

h be the subspace of Vh defined as:

V 0
h = {v : v ∈ Vh, vb = 0 on ∂Ω}.(6)

Definition 2.1. (Weak Gradient) For any v = {v0, vb}, the weak gradient ∇wv ∈
[Pj(K)]d, where j > k, is defined on K as the unique polynomial satisfying

(∇wv,q)K = −(v0,∇ · q)K + ⟨vb,q · n⟩∂K , ∀q ∈ [Pj(K)]d,(7)

where n is the unit outward normal vector of ∂K.
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Definition 2.2. (Weak Divergence) For any v = {v0, vb} ∈ Vh, the weak divergence
β · ∇wv ∈ Pk(K) is defined on K as the unique polynomial satisfying

(βββ · ∇wv, w)K = −(v0,∇ · (βββw)K + ⟨vb,βββ · nw⟩∂K , ∀w ∈ Pk(K),(8)

where n is the unit outward normal vector of ∂K.

Next, we define four global projections Q0, Qb, Qh, and Qh as follows.

Definition 2.3. For each element K ∈ Th,
Q0 : L2(K) −→ Pk(K),

Qb : L
2(e) −→ Pk(e),

Qh : [L2(K)]d −→ [Pj(K)]d,

are the L2 projections onto the associated local polynomial spaces. Finally, we define
a projection operator Qhv = {Q0v,Qbv} ∈ Vh for v ∈ H1(Ω).

For simplicity, we adopt the following notations,

(v, w)Th
=
∑

K∈Th

(v, w)K =
∑

K∈Th

∫
K

vwdx,

⟨v, w⟩∂Th
=
∑

K∈Th

⟨v, w⟩∂K =
∑

K∈Th

∫
∂K

vwds.

SFWG Method 1. The SFWG scheme for (1)-(2) is to find uh = {u0, ub} ∈ V 0
h ,

such that the following equation holds

(α∇wuh,∇wv)Th
+ (βββ · ∇wuh, v0)Th

+ (cu0, v0)Th
= (f, v0)Th

,(9)

for all v = {v0, vb} ∈ V 0
h .

For any v ∈ Vh, we introduce an energy norm ||| · ||| as:

(10) |||v|||2 = (α∇wv,∇wv)Th
+ (cv0, v0)Th

.

An H1 semi-norm is defined as follows:

∥v∥1,h =

( ∑
K∈Th

(
∥∇v0∥2K + h−1

K ∥v0 − vb∥2∂K
)) 1

2

.

It can be easily verified that ||v||1,h is a norm in V 0
h .

The following lemma will be needed in the error estimation.

Lemma 1. (see [2]) Suppose that ∀K ∈ Th,K is convex with at most µ edges and
satisfies the following regularity conditions: for all edges et and es of K

|es| < α0|et|;(11)

for any two adjacent edges et and es the angle θ between them satisfies

θ0 < θ < π − θ0,(12)

where 1 ≤ α0 and θ0 > 0 are independent of K and h. Let j0 = k + µ− 2 or j0 =
k+µ− 3 when each edge of K is parallel to another edge of K. Denote deg∇wv be
the degree of weak gradient when deg∇wv = j ≥ j0, then there exist two constants
C1, C2 > 0, such that for each v = {v0, vb} ∈ Vh, the following hold true

C1∥v∥1,h ≤ (∇wv,∇wv)Th
≤ C2∥v∥1,h,

where C1 and C2 depend only on α0 and θ0.
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Remark 1. When µ = 3 then j0 = k+1. If all K’s are parallelograms, then µ = 4,
and j0 = k + 1.

Next, we list important inequalities which will be needed in error estimates.

Lemma 2. ( Trace inequality, see [11]) On each element K ∈ Th, the following
trace inequality holds true:

(13) ∥φ∥2e ≤ C
(
h−1
K ∥φ∥2K + hK∥∇φ∥21,K

)
, φ ∈ H1(K),

for some constant C.

Lemma 3. (Inverse Inequality, see [11]) There exists a constants C such that for
any piecewise polynomial φ ∈ Pk(K).

(14) ||∇φ||K ≤ Ch−1
K ||φ||K , ∀K ∈ Th.

The following lemma presents estimates for the projection operator Q0 and Qh.

Lemma 4. [10] Let Th be a finite element partition of Ω satisfying the shape reg-
ularity conditions (11)-(12), and u ∈ Hk+1(Ω). Then, the L2 projections Q0 and
Qh satisfy∑

K∈Th

(
∥φ−Q0φ∥2K + h2

K∥∇(φ−Q0φ)∥2K
)
≤ Ch2(s+1)∥φ∥2s+1, 0 ≤ s ≤ k,

∑
K∈Th

(
∥∇φ−Qh∇φ∥2K + h2

K |∇φ−Qh∇φ)|21,K
)
≤ Ch2s∥φ∥2s+1, 0 ≤ s ≤ k.

The following lemma will also be needed in error estimates.

Lemma 5. Let Qh and Qh be the projection operators defined in definition (2.3)
and ϕ ∈ Hk+1(Ω). Then for each element K ∈ Th, we have

∥Qh(∇ϕ)−∇wQhϕ∥K ≤ Chk
K |ϕ|k+1,K .(15)

Proof. By definition (2.1) and integration by parts, we have

(Qh(∇ϕ),q)K = −(ϕ,∇ · q)K + ⟨ϕ,q · n⟩∂K ,(16)

(∇wQhϕ,q)K = −(Q0ϕ,∇ · q)K + ⟨Qbϕ,q · n⟩∂K ,(17)

for any q ∈ [Pj(K)]d. Subtracting (17) from (16), using integration by parts, trace
inequality (13) and inverse inequality (14), we get

(Qh(∇ϕ)−∇wQhϕ,q)K = −(ϕ−Q0ϕ,∇ · q)K + ⟨ϕ−Qbϕ,q · n⟩∂K
= (∇(ϕ−Q0ϕ),q)K + ⟨Q0ϕ−Qbϕ,q · n⟩∂K
≤ ∥∇(ϕ−Q0ϕ)∥K∥q∥K + Ch

− 1
2

K ∥ϕ−Q0ϕ∥∂K∥q∥K
≤ Chk

K |ϕ|k+1,K∥q∥K .

Letting q = Qh(∇ϕ)−∇wQhϕ in the above equation yields

∥Qh(∇ϕ)−∇wQhϕ∥K ≤ Chk
K |ϕ|k+1,K ,

which completes the proof. �

Lemma 6. Let ϕ ∈ H1(Ω). Then for all v ∈ Vh, we have

(α∇ϕ,∇v0)K = (α∇w(Qhϕ),∇wv)K + ⟨(Qh(α∇ϕ) · n, v0 − vb⟩∂K
+ (Qh(α∇ϕ)− α∇wQhϕ,∇wv)K .(18)
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Proof. Let Qh(α∇ϕ) = q and Qhϕ = P . Then

(q,∇v0)K = −(∇ · q, v0)K + ⟨q · n, v0⟩∂K ,(19)

(q,∇wv)K = −(∇ · q, v0)K + ⟨q · n, vb⟩∂K .(20)

Subtracting (20) from (19) yields

(q,∇v0)K = (q,∇wv)K + ⟨q · n, v0 − vb⟩∂K
= (α∇wP,∇wv)K + (q− α∇wP,∇v)K + ⟨q · n, v0 − vb⟩∂K ,

which completes the proof. �

Lemma 7. For all v ∈ Vh, we have

(βββ · ∇u, v0)Th
= (βββ · ∇wQhu, v0)Th

− ℓβββ(u, v),(21)

where

ℓβββ(u, v) = (u−Q0u,∇ · (βββv0))Th
− ⟨u−Qbu,βββ · n(v0 − vb)⟩∂Th

Proof. From integration by parts and definition 2.2 we get

(βββ · ∇u, v0)Th
= −(u,∇ · (βββv0))Th

+ ⟨u,βββ · nv0⟩∂Th

= −(Q0u,∇ · (βββv0))Th
+ (Q0u− u,∇ · (βββv0))Th

+ ⟨Qbu,βββ · nv0⟩∂Th
+ ⟨u−Qbu,βββ · nv0⟩∂Th

= (βββ · ∇w(Qhu), v0)Th
− ℓβββ(u, v)

where in the last equality we have used the fact that ⟨u−Qbu.βββ · nvb⟩∂Th
. This

concludes the proof �

Lemma 8. Let u ∈ Hk+1(Ω). Then for any v ∈ V 0
h , we have

(−∇ · (α∇u), v0) = (α∇wQhu,∇wv)Th
− ℓα(u, v),(22)

where

ℓα(u, v) = ⟨(α∇u−Qh(α∇u) · n, v0 − vb⟩∂Th
+ (Qh(α∇u)− α∇wQhu,∇wv)Th

.

Proof. Using integration by parts and the fact that
∑

K∈Th
⟨∇u · n, vb⟩∂K = 0, we

obtain

(−∇ · (α∇u), v0) =
∑

K∈Th

(α∇u,∇v0)K −
∑

K∈Th

⟨α∇u · n, v0⟩∂K

=
∑

K∈Th

(α∇u,∇v0)K −
∑

K∈Th

⟨α∇u · n, v0 − vb⟩∂K ,(23)

By letting ϕ = u in (18) and substituting it into (23), we get

(−∇ · (α∇u), v0) =
∑

K∈Th

(α∇w(Qhu),∇wv)K

−
∑

K∈Th

⟨(α∇u−Qh(α∇u)) · n, v0 − vb⟩∂K

+
∑

K∈Th

(Qh(α∇u)− α∇wQhu,∇wv)K .

This concludes the proof. �

Assume that ℓc(u, v) = −(cu − cQ0u, v0). Then eh = Qhu − uh ∈ V 0
h satisfies

the following error equation.
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Lemma 9. For all v ∈ V 0
h , we have

(α∇weh,∇wv)Th
+ (βββ · ∇weh, v0) + (ce0, v0) = ℓα(u, v)

+ ℓβββ(u, v) + ℓc(u, v).(24)

Proof. Testing (1) against v0 we find that

(−∇ · (α∇u), v0) + (βββ · ∇u, v0) + (cu, v0) = (f, v0).

Using Lemmas 7, 8 and properties of the projections, we obtain

α(∇wQhu,∇wv)Th
+ (βββ · ∇wQhu, v0)Th

+ (cQ0u, v0)

= (f, v0) + ℓα(u, v) + ℓβββ(u, v) + ℓc(u, v).(25)

Subtracting equation (9) from (25) generates (24), which completes the proof. �

Lemma 10. Let u ∈ Hk+1(Ω). If α is a piecewise constant matrix, then, for any
v ∈ V 0

h , the following estimates hold

|ℓα(u, v)| ≤ Chk|u|k+1|||v|||,(26)

|ℓβββ(u, v)| ≤ Chk|u|k+1|||v|||,(27)

|ℓc(u, v)| ≤ Chk|u|k+1|||v|||.(28)

Proof. For the first estimate (26), by applying Cauchy-Schwarz inequality and
Lemma 5 , we obtain

|ℓα(u, v)| ≤
∑

K∈Th

| ⟨(α∇u−Qh(α∇u) · n, v0 − vb⟩∂K |

+
∑

K∈Th

|(Qh(α∇u)− α∇wQhu,∇wv)K |

≤ C
∑

K∈Th

∥∇u−Qh∇u)∥∂K∥v0 − vb∥∂K + Chk|u|k+1|||v|||

≤ C

( ∑
K∈Th

hK∥∇u−Qh∇u∥2∂K

)1/2( ∑
K∈Th

h−1
K ∥v0 − vb∥2∂K

)1/2

+ Chk|u|k+1|||v|||.
From the trace inequality (13) and Lemma 4, we have

|ℓα(u, v)| ≤ Chk|u|k+1

( ∑
K∈Th

h−1
K ∥v0 − vb∥2∂K

)1/2

+ |||v|||


≤ Chk|u|k+1|||v|||.

The estimate for ℓβββ(u, v) can be obtained from Lemma 2.5 in [12]. The last estimate
(28) is resulting from the Cauchy-Schwarz inequality, and Lemma 4

|ℓc(u, v)| = |(cu− cQ0u, v0)|
≤ cM |(Q0u− u, v0)|

≤ Chk|u|k+1|||v|||,
which completes the proof. �

Lemma 11. Let eh = {e0, eb} = {Q0u−u0, Qbu−ub}. Then there exists a constant
C such that

|||eh|||2 ≤ (α∇weh,∇weh)Th
+ (βββ · ∇weh, eh) + (ceh, eh).(29)
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Proof. By using ||| · ||| defined in (10), we obtain

(α∇weh,∇weh)Th
+ (βββ · ∇weh, eh) + (ceh, eh) = |||eh|||2 + (β · ∇weh, eh)

≥ |||eh|||2 − C||eh||||∇weh||
≥ (C1 − C2h)|||eh|||2

≥ C|||eh|||2,

when h is sufficiently small. �

Lemma 12. The weak Galerkin scheme (9) has one and only one solution.

Proof. It suffices to verify the uniqueness for the homogeneous equation. Assume

that u
(1)
h and u

(2)
h are two solutions of (9). Then eh = u

(1)
h − u

(2)
h would satisfy the

forthcoming equation

(α∇weh, v)Th
+ (βββ · ∇weh, v) + (ceh, v) = 0, ∀v ∈ V 0

h .(30)

Note that eh ∈ V 0
h . Suppose that v = eh, in the equation (30) we obtain

(α∇weh, eh)Th
+ (βββ · ∇weh, eh) + (ceh, eh) = 0.

From Lemma 11, we have

|||eh||| ≤ (α∇weh, eh)Th
+ (βββ · ∇weh, eh) + (ceh, eh) = 0.

Which implies eh ≡ 0. Consequently, u
(1)
h ≡ u

(2)
h . �

Theorem 1. Let uh = {u0, ub} be the solution to the formulation of (9). Assume
the exact solution u ∈ Hk+1(Ω). If α is a piecewise constant matrix, then there
exists a constant C independent of h, k such that

|||Qhu− uh||| ≤ Chk|u|k+1.(31)

Proof. It follows from (29) that

|||eh|||2 ≤ (α∇weh,∇weh)Th
+ (βββ · ∇weh, eh) + (ceh, eh).(32)

Letting v = eh in (24) gives

(α∇weh,∇weh)Th
+ (βββ · ∇weh, e0) + (ce0, e0) = ℓα(u, eh) + ℓβββ(u, eh) + ℓc(u, eh).

Then (31) follows from Lemma 10. �

3. Error Estimates in L2 norm

The duality argument is utilized to get L2 error estimate. Let eh = {e0, eb} =
Qhu− uh. The considered dual problem seek Φ ∈ H1

0 (Ω) satisfying

−∇ · (α∇Φ) + βββ · ∇Φ+ cΦ = e0, in Ω(33)

Φ = 0, on ∂Ω.

suppose that the following H2-regularity holds true

||Φ||2 ≤ C||e0||.(34)

Theorem 2. Let uh = {u0, ub} be the SFWG finite element solution of (9). Assume
that the exact solution u ∈ Hk+1(Ω) and (34) holds true. If α is a piecewise constant
matrix, then, there exists a constant C such that

||Q0u− u0|| ≤ Chk+1|u|k+1.(35)
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Proof. Testing (33) by e0 and using the fact that
∑

K∈Th
⟨∇Φ · n, eb⟩∂Th

= 0 obtain

||e0||2 = (−∇ · (α∇Φ), e0) + (βββ · ∇Φ, e0) + (cΦ, e0)

= (α∇Φ,∇e0)Th
− ⟨α∇Φ · n, e0 − eb⟩∂Th

+ (βββ · ∇Φ, e0)Th
+ (cΦ, e0)Th

.(36)

Setting ϕ = Φ and v = eh in (18) yields

(α∇Φ,∇ϵ0)Th
= (α∇w(QhΦ),∇wϵh)Th

+ ⟨αQh(∇Φ) · n, e0 − eb⟩∂Th

+ (Qh(∇Φ)−∇wQhϕ,∇weh)Th
.(37)

Substituting (37) into (36) and using Lemma 7 gives

||e0||2 = (α∇w(QhΦ),∇weh)Th
+ ℓα(Φ, eh) + (βββ · ∇wQhΦ, e0)Th

− ℓβββ(Φ, v) + (cΦ, e0)Th
.(38)

Using equation 9 and the error equation (24), we have

(α∇w(QhΦ),∇weh)Th
+ (βββ · ∇wQhΦ, e0)Th

= ℓα(u,QhΦ) + ℓβββ(u,QhΦ) + ℓc(u,QhΦ)− (ce0, Q0Φ).(39)

By combining (38) with (39), we obtain

||e0||2 = (c(u−Q0u), Q0Φ) + ℓα(u,QhΦ) + ℓβββ(u,QhΦ)

+ ℓα(Φ, eh)− ℓβββ(Φ, eh) + (ce0,Φ−Q0Φ).(40)

To bound the terms on the right-hand side of equation (40). We use the Cauchy-
Schwarz inequality, the trace inequality (13) and the definition of Qh and Qh to
get

|ℓa(u,QhΦ)| =

∣∣∣∣∣ ∑
K∈Th

⟨α∇u−Qh(α∇u) · n, Q0Φ−QbΦ⟩∂K

+ (Qh(α∇u)− α∇wQhu,∇wQhΦ)K

∣∣∣∣∣
≤

( ∑
K∈Th

||∇u−Qh∇u||2∂K

) 1
2
( ∑

K∈Th

||Q0Φ−QbΦ||2∂K

) 1
2

+ Chk+1|u|k+1|ϕ|2

≤ C

( ∑
K∈Th

h||∇u−Qh∇u||2∂K

) 1
2
( ∑

K∈Th

h2||Q0Φ−QbΦ||2∂K

) 1
2

+ Chk+1|u|k+1|ϕ|2
≤ Chk+1|u|k+1|Φ|2,

which implies

|ℓa(u,QhΦ)| ≤ Chk+1|u|k+1|Φ|2.(41)

The estimate (27), and Lemma 4 give

|ℓβββ(u,QhΦ)| =
∣∣(u−Q0u,∇ · (βββQ0Φ))Th

− ⟨u−Qbu,βββ · n(Q0Φ−QbΦ)⟩∂Th

∣∣
≤ Chk+1|u|k+1|Φ|2.(42)
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The estimates (26), (31), and Lemma 4 give

|ℓa(Φ, eh)|
=

∣∣⟨α∇Φ−Qh(α∇Φ) · n, e0 − eb⟩∂Th
+ (Qh(α∇Φ)− α∇wQhΦ,∇weh)Th

∣∣
≤ Chk+1|u|k+1|Φ|2.(43)

The estimates (27), (31), and Lemma 4 give

|ℓβββ(Φ, eh)|
=

∣∣(Φ−Q0Φ,∇ · (βββe0))Th
− ⟨Φ−QbΦ,βββ · n(e0 − eb)⟩∂Th

∣∣
≤ Chk+1|u|k+1|Φ|2.(44)

It follows from the Cauchy-Schwarz inequality and Lemma 4 that

|c(e0,Φ−Q0Φ)| ≤ Chk+1|u|k+1|||e0||| ≤ Chk+1|u|k+1|Φ|2.(45)

Similarly, it follows from the Cauchy-Schwarz inequality and lemma 4 that

|(c(u−Q0u), Q0Φ)| ≤ Chk+1|u|k+1|Φ|2.(46)

Now combining (40) with the estimates (41)-(46), we obtain

||e0||2 ≤ Chk+1|u|k+1|Φ|2,(47)

which combined with (34) and the triangle inequality, provides the required error
estimate (35). �

4. Numerical Experiments

The goal of this section is to present four of the numerical examples to verify the
theoretical results derived in previous sections. The stabilizer free weak Galerkin
finite element scheme (9) has been applied for the polynomial degrees k = 1, 2 on
a square domain and an L-shaped domain with uniform triangular partitions.

For polynomial degree k = 1, the numerical solution uh = {u0, ub} is obtained
from setting j = 2 in the weak gradient (7) and the following finite element space:

Vh = {v = {v0, vb} : v0|K ∈ P1(K), vb|e ∈ P1(e),K ∈ Th, e ∈ ∂K}.
For polynomial degree k = 2, the finite element space is given as follows:

Vh = {v = {v0, vb} : v0|K ∈ P2(K), vb|e ∈ P2(e),K ∈ Th, e ∈ ∂K},
and setting j = 3 in the weak gradient (7) to find the SFWG solution uh = {u0, ub}.
All numerical experiments are carried out on a Laptop computer with 12.0 GB
memory and Intel(R) Core (TM) i7-8550U CPU @ 1.80 GHz.

Example 4.1. In this example, we consider the problem (1)-(2) posed on the
domain Ω = (0, 1)2 with the following data: the diffusion coefficient matrix α =
I2, the convection coefficient βββ = (1, 2)T , the reaction coefficient c = sin(2xy), and
the f(x, y) term is given such that the exact solution is u(x, y) = sin(2πx) sin(2πy).
Table 1 lists errors and convergence rates in ||| · |||-norm and L2-norm. Numeri-
cal results show that the SFWG method with Pk elements has convergence rate of
O(hk) in H1 norm and O(hk+1) in L2-norm. Although the numerical rates of con-
vergence of the standard weak Galerkin scheme (4), in H1 and L2 norms, are the
same as those of the SFWG method, the SFWG method is more efficient and easier
to implement for the convection-diffusion equation (1)-(2).

Table 2 shows the computational time (in seconds) comparison between SFWG
finite element scheme (9) and weak Galerkin finite element scheme (4). As we can
see in Table 2 that the SFWG method is running faster than the standard weak
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Table 1. Error profiles and convergence rates for(
Pk(K), Pk(e), [Pk+1(K)]2

)
, k = 1, 2 finite element spaces.

SFWG elements WG elements

k h |||Qhu − uh||| Rate ∥Q0u − u0∥ Rate |||Qhu − uh||| Rate ∥Q0u − u0∥ Rate

1/2 3.5541E-00 - 2.4091E-01 - 3.9679E-00 - 2.5892E-01 -
1/4 1.7763E-00 1.00 8.4718E-02 1.51 1.9790E-00 1.00 9.5420E-02 1.44

1 1/8 8.7169E-01 1.03 2.6767E-02 1.66 9.7728E-01 1.02 2.9762E-02 1.68
1/16 4.3122E-01 1.02 7.1492E-03 1.90 4.8343E-01 1.02 7.8973E-03 1.91
1/32 2.1492E-01 1.00 1.8184E-03 1.98 2.4059E-01 1.00 2.0032E-03 1.98
1/64 1.0737E-01 1.00 4.5661E-04 1.99 1.2006E-01 1.00 5.0242E-04 2.00

1/2 1.5302E-00 - 8.3164E-03 - 1.5369E-00 - 2.0213E-02 -
1/4 5.2384E-01 1.55 1.0947E-02 -0.39 5.7207E-01 1.42 1.1749E-02 0.78

2 1/8 1.3121E-01 2.00 1.2747E-03 3.10 1.4378E-01 1.99 1.3705E-03 3.01
1/16 3.2542E-02 2.01 1.5431E-04 3.05 3.5654E-02 2.01 1.6613E-04 3.04
1/32 8.1111E-03 2.00 1.9095E-05 3.02 8.8770E-03 2.00 2.0542E-05 3.02
1/64 2.0262E-03 2.00 2.3779E-06 3.00 2.2155E-03 2.00 2.5572E-06 3.00

Table 2. Comparison of computation time (in seconds) of the
SFWG and the WG methods on the uniform triangular grid with
a different number of the elements.

k h No. of elements SFWG method WG method

1/2 8 0.3281 0.4219
1/4 32 0.0469 0.0469

1 1/8 128 0.2344 0.2344
1/16 512 1.3281 1.3750
1/32 2048 4.5938 5.2813
1/64 8192 29.5625 30.5156

Galerkin method (4). It can be observed in Table 2 that the computation time with
2048 elements by using the SFWG is 29.5625, which is less than 30.5156, needed
by using the standard weak Galerkin method. Therefore, when a large number of
elements are used the computation time becomes a significant factor. The SFWG
method is more efficient in accuracy and computation time.

Example 4.2. Interior layer-continuous boundary condition. This example
is adopted from [12]. Let the problem (1)-(2) be posed on square domain Ω =
(0, 1)× (0, 1) with the following data: βββ = (1, 0), and c = 1 and the exact solution
is given by

u(x, y) = 0.5x(1− x)y(1− y)

(
1− tanh

η − x

γ

)
,(48)

where the parameters η and γ control the location and thickness of the interior
layer. Figures 1 shows the numerical solution, the exact solution and the error
of the equation (48) on the uniform triangular meshes. Table 3 shows that the
SFWG scheme (9) with Pk(k), k = 1, 2 elements has convergence rate of O(hk+1) in
∥Q0u−u0∥ and O(hk) in |||Qhu−uh||| for the convection-diffusion-reaction problem
with the diffusion coefficient matrix α = 0.1I2 and α = 0.01I2, η = 0.5, and γ =
0.05. We can capture the interior layer accurately.

Example 4.3. L-shaped domain. In this example, we solve the problem (1)-(2)
on a L-shaped domain Ω = [−1, 1]2 \ (0, 1)× (−1, 0) partitioned into triangles with

the following data: α =

[
2 0
0 2

]
,βββ =

[
2x
2y

]
, c = 2xy, and the f(x, y) term is given

such that the exact solution is u(x, y) = x(1 − x)y(1 − y). The results reported in
Table 4 shows the errors and the numerical convergence rates in the L2 norm and
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Table 3. Error profiles and convergence rates for(
Pk(K), Pk(e), [Pk+1(K)]2

)
, k = 1, 2 finite element spaces.

When α = 0.1I2 When α = 0.0I2

k h |||Qhu − uh||| Rate ∥Q0u − u0∥ Rate |||Qhu − uh||| Rate ∥Q0u − u0∥ Rate

1/2 2.2770E-02 - 3.7286E-03 - 9.1971E-03 - 3.6434E-03 -
1/4 1.6433E-02 0.47 1.6279E-03 1.11 5.2288E-03 0.81 9.3178E-04 1.97

1 1/8 1.5076E-02 0.12 9.5359E-04 0.77 4.2468E-03 0.30 4.6206E-04 1.01
1/16 7.8536E-03 0.94 2.5914E-04 1.88 2.3020E-03 0.88 1.5014E-04 1.62
1/32 3.3953E-03 1.21 5.7185E-05 2.18 1.0588E-03 1.12 3.0678E-05 2.29
1/64 1.6808E-03 1.01 1.4411E-05 1.98 5.3007E-04 1.00 7.0847E-06 2.11
1/128 8.3836E-04 1.00 3.6166E-06 2.00 2.6495E-04 1.00 1.7257E-06 2.04

1/2 1.0284E-02 - 1.8411E-03 - 6.9487E-03 - 2.8192E-03 -
1/4 9.0976E-03 0.18 6.1503E-04 1.58 2.7526E-03 1.34 5.6747E-04 2.31

2 1/8 3.9788E-03 1.19 1.2294E-04 2.32 1.1827E-03 1.22 1.0512E-04 2.43
1/16 7.4666E-04 2.41 8.4507E-06 3.86 2.3511E-04 2.83 7.8587E-06 3.74
1/32 3.3477E-04 1.16 2.5129E-06 1.75 1.0489E-04 1.16 2.3771E-06 1.73
1/64 8.3991E-05 1.99 3.2724E-07 2.94 2.6461E-05 1.99 3.2317E-07 2.88
1/128 2.0896E-05 2.00 4.1188E-08 2.99 6.6013E-06 2.00 4.1069E-08 2.98

Table 4. Error analysis and convergence rates for Pk(K), (k =
1, 2) elements with [Pk+1(K)]2 weak gradient (j = k+1 in (7)) on
L-shape domain.

k h |||Qhu − uh||| Rate ∥Q0u − u0∥ Rate

1/2 1.0407E-00 - 5.2124E-02 -
1/4 5.2665E-01 0.98 1.3218E-02 1.98

1 1/8 2.6407E-01 1.00 3.3182E-03 1.99
1/16 1.3212E-01 1.00 8.3043E-04 2.00
1/32 6.6073E-02 1.00 2.0766E-04 2.00
1/64 3.3038E-02 1.00 5.1911E-05 2.00

1/2 1.1351E-01 - 3.1497E-03 -
1/4 2.8516E-02 1.99 3.7752E-04 3.06

2 1/8 7.1405E-03 1.00 4.6264E-05 3.03
1/16 1.7864E-03 1.00 5.7278E-06 3.01
1/32 4.4675E-04 1.00 7.1258E-07 3.00
1/64 1.1171E-04 1.00 8.8864E-08 3.00

Figure 1. WG solution (Left), exact solutions (Middle) and the
error (Right) for (P1(K);P1(e); [P2(K)]2) element and α = 0.1I2.

||| · ||| norm. The SFWG scheme with Pk elements has convergence rate of O(hk+1)
and O(hk) in L2-norm and H1 norm, respectively.

Example 4.4. As the final example, we use a L-shaped domain Ω = [−1, 1]2 \

(0, 1) × (−1, 0) with the following data: α =

[
2 0
0 1

]
,βββ = (1, 2)T , c = 1, and the

exact solution is u(x, y) = sin(πx) sin(πy) + x2. Table 5 shows the performance of
the SFWG scheme (9) for the problem (1)-(2) on polynomial of degrees k = 1, 2.
The results indicate that the SFWG method with Pk elements has convergence rate
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Table 5. Error analysis and convergence rates for the SFWG
scheme (9) on L-shaped domain Ω = [−1, 1]2 \ (0, 1)× (−1, 0).

k h |||Qhu − uh Rate ∥Q0u − u0∥ Rate

1/2 1.8632E-00 - 1.2581E-01 -
1/4 9.3121E-01 1.00 4.0281E-02 1.64

1 1/8 4.6375E-01 1.00 1.0780E-02 1.90
1/16 2.3156E-01 1.00 2.7431E-03 1.97
1/32 1.1574E-01 1.00 6.8887E-04 1.99
1/64 5.7863E-02 1.00 1.7241E-04 2.00

1/2 5.6650E-01 - 1.9072E-02 -
1/4 1.4311E-01 1.99 2.3484E-03 3.02

2 1/8 3.5605E-02 2.00 2.9224E-04 3.00
1/16 8.8820E-03 2.00 3.6469E-05 3.00
1/32 2.2192E-03 2.00 4.5531E-06 3.00
1/64 5.5474E-04 2.00 5.6868E-07 3.00

Figure 2. WG solution (Left), exact solutions (Middle) and the
error (Right) for (P1(K);P1(e); [P2(K)]2) element on a L-shaped
domain.

of O(hk+1) and O(hk) in L2-norm and H1 norm, respectively. The numerical
solution, the exact solution and their error are shown in Fig 2.

5. Conclusion

The stabilizer free weak Galerkin methods for the convection-diffusion-reaction
problems studied in this paper. The error estimates and convergence of the SFWG
scheme is derived. Numerical results show that while the same rate of convergence
can be obtained using standard weak Galerkin scheme (4) and SFWG scheme (9),
the SFWG method is more efficient and easier to implement for the convection-
diffusion-reaction (1)-(2).
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