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A FINITE-DIFFERENCE SCHEME FOR A LINEAR
MULTI-TERM FRACTIONAL-IN-TIME DIFFERENTIAL
EQUATION WITH CONCENTRATED CAPACITIES

ALEKSANDRA DELIC!, SANDRA ZIVANOVI(2 AND ZORICA MILOVANOVIC JEKNIC3

Abstract. In this paper, we consider a linear multi-term subdiffusion equation with coeffi-
cients which contain Dirac distributions. Also, we consider subdiffusion equations with dynamical
boundary conditions. The existence of generalized solutions of these initial-boundary value prob-
lems is proved. An implicit finite difference scheme is proposed and its stability and convergence
rate are investigated in both cases. The corresponding difference schemes are tested on numerical
examples.
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1. Introduction

Fractional calculus has been used as a powerful mathematical tool for the de-
scription of many phenomena in applied science. For example, fractional partial
differential equations emerge in the modelling of diverse processes such as anoma-
lous diffusion, processes in continuum mechanics as well as processes that occur in
viscoelastic media, porous materials, fluids etc. ([7],[13],[14],[11]). In general, frac-
tional derivatives are used for modeling processes with memory effects. Because of
the presence of an integral in the definition of fractional derivative, it is clear that
they are nonlocal operators.

The analytical solution of differential equations involving fractional derivatives,
in some simple cases, can be obtained by using the Laplace transform, the Fourier
transform, the Melin transform and some other techniques. Many authors have
investigated numerical algorithms including finite difference methods and finite el-
ement methods ([8],[18],[12]).

In ([10]) an initial boundary value problem for a generalized multi-term fractional
diffusion equation is considered. Solutions of Dirichlet and Robin boundary value
problems for multi-term variable distributed order diffusion equations are studied in
([2])- In this article we consider an initial boundary value problem for a multi-term
fractional in time equation with an interface. The coefficients of the equation may
contain Dirac’s delta distribution. It is the so-called problem with concentrated
capacity.

The paper is organized as follows. In Section 2 we introduce the Riemann—
Liouville and the Caputo derivatives and we mention their basic properties. In
Section 3 some new function spaces are defined, especially spaces involving func-
tions with fractional derivatives and anisotropic Sobolev spaces. In Section 4 we
formulate the initial-boundary value problem for a linear multi-term fractional in
time differential equation with concentrated capacities and define its weak solution.
The existence and uniqueness of its (weak) solution are proved. We propose an im-
plicit finite difference scheme and discuss its stability. The analysis of the error and
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the convergence rate of the scheme are presented in this section. One numerical
example which is in agreement with the theoretical results is also presented. In
Section 5 we consider a subdiffusion equation with a dynamical boundary condi-
tions. In addition to the existence and uniqueness of the solution, a finite difference
method is derived, together with its error analysis and convergence rate estima-
tion. At the end, as in Section 4, one numerical example which is in agreement
with theoretical results is also presented.

2. Fractional derivatives

Let u be a function defined on a nonempty bounded interval [a, b] and let k—1 <
a < k, k € N. The left Riemann-Liouville fractional derivative of order « is defined
as [14]

1 ds [t u(s
(1) 05, u(t) = F(kj—a)dtk/ (t_sga)-&-l—kds’ t>a,

where the T'(:) is the Gamma function. The right Riemann-Liouville fractional
derivative 05" u(t) is defined analogously.

The Caputo fractional derivative is obtained by interchanging the derivative and
integral operators in (1)

1 ¢ u®) (s
(2) Cag+u(t) = Tk —a) /a = S)O(H—)l—k ds.

These two definitions are not equivalent and are related by the relation

k—1 o
o _CHa ) (z —a)
02 u(t) = €0 u(t) + JZO O
In particular, 05 u(t) = C8g+u(t) if u(a)=v'(a)=---=u*"Y(a)=0.

Let us mention two properties of fractional derivatives that will be used hereafter.
For 0 < a < 1 and continuously differentiable functions u(t) and wv(t), the
following equality holds:

(3) (3;;11,, U)L2(a,b) = (u, 85):’1})[/2(&’1,) .

Also, if a > 0 and if u is an infinitely differentiable function in R, with suppu C
(a,b), then u satisfies the following relation (see [5]):

(4) (Og", u, 05 u)r2(ap) = cOSTQ ||8§‘+u||%2(a7+00) .

For functions of several variables, partial fractional derivatives are defined in an
analogous manner, for example,

o 1 ok [t u(x,s)
at’a-"_u(x’t)_I‘(k-_a)atk/a (t_s)mds, k_].<a<k, kGN.

3. Some function spaces

First, we introduce some notations and define some function spaces, norms and
inner products that are used hereafter. Let Q be an open domain in R™. As
usual, by C*(Q2) and C*(Q2) we denote the spaces of k-fold differentiable functions
defined on Q. By C°(Q) = C5°(Q) we denote the space of infinitely differentiable
functions with compact support in 2. The space of measurable functions whose
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square is Lebesgue integrable in €2 is denoted by L?(2). The inner product and
norm of L?(Q) are defined by

(u0)e = (o)1) = [ wvdf [l = ol = (w0
Q
We also use H*(Q) and H*(Q) = Hg(Q) to denote the usual Sobolev spaces [9],

whose norms are denoted by ||| e (q)-
For o > 0 we further set

|U|C$[a,b] = ||53+UHc[a,b]7 |U|Cz[a,b] = ”al;x_u”C[a,b]v
HUHQC;[a,b] = ||U||20[a]—[a’b} + |U|2cg;[a,b]v
|u|Hf;(a,b) = ||ag+u||L2(a,b)7 [ultre a5y = 105" ull2(a,p),
ullZg 0.0y = |\U||i1[a]—(a7b) + [ulFra (a,0):

where [a]~ denotes the largest integer < a. Then we define C%[a, b] as the space
of functions u € Cl®" [a,b] with finite norm |ullcgap- The space HE(a,b) is
defined analogously, while the space Hja: (a,b) is defined as the closure of C*(a, b) =
C§°(a,b) with respect to the norm || - [| ¢ (a,5). Since for a = k € Ny the fractional
derivative reduces to the standard k-th derivative, we have C% [a,b] = C*[a,b] and
Hk (a,b) = H*(a,b).
The following result holds.

Lemma 1. (see [8]) Fora >0, a # k+1/2, k € Ny, the spaces Hﬁ(a,b), H(a,b)
and H® (a,b) are equal and their norms are equivalent.

For vector valued functions mapping a real interval [0, T] or (0,7") into a Banach
space X we introduce the spaces C*([0,T], X), k € Ny and H*((0,T), X), a > 0,
in the usual way [9]. In an analogous manner we define the spaces C¢([0,7], X)
and H((0,T), X).

For «, 8 > 0, we introduce anisotropic Sobolev type spaces:

Ha,ﬁ(Q) = L2((0aT)7Ha(07 1)) n Hﬁ((O,T), LQ(Oa 1))
and
H:?:ﬂ(Q) = LZ((O7T>7 Ha(ov 1)) n Hf:((OvT)vL2(07 1))

Notice that for 0 < 8 < 1/2: H*?(Q) = H*?(Q) = H*#(Q).
Let £ € [0,1] and let Eg (0,1) be the space of functions defined on the interval
[0,1], with the inner product and norm

1
(v, 0)z20.) = /0 v(@)w(x)dz + v(€)w(), ||v||zg(0,1)=<v,v>§/§0,”.

For functions defined in the rectangle @ = (0,1) x (0,7), we define the space
LE(Q) = L%((0,7), Lg (0,1)), with inner product and associated norm
T
(v,w)zg(Q) :// v(@t)m(m,t)dmdt—}—/ v(&, t)w(E, t)dt,
Q 0

B _ 1/2
||UHL§(Q) = (Uav)zg(Q)~



268 A. DELIC, S. ZIVANOVIC AND Z. MILOVANOVIC JEKNIC

4. Problem with homogeneous Dirichlet boundary conditions

Let © = (0,1) and I = (0,T) be the space and time domain respectively and
Q = Q x I. We consider the following linear multi-term subdiffusion equation with
the presence of the concentrated capacities at the interior points z = &;:

m
. 0 ou
B K- g (rg) = fen. woee
(6) uw(0,t) =0, u(l,t)=0, tel,
(7) u(z,0) =0, z€,
where K;, i = 1,...,m, are positive constants and 6(z) is Dirac’s delta function.

The equality in (5) is considered in the sense of the theory of distributions [19]. An
analogous problem for m =1 is considered in [4] and for m =1 and a =1 in [6].
For the sake of the simplicity we assume that

§1 <& < <&n

and we set o = 0 and &,,41 = 1. If the right-hand side in (5) does not contain
singular terms, it follows that the solution of this problem for (z,t) € (U7 ,€;) x I,
Q; = (&,8&+1), 1 =0,1,...,m satisfies the differential equation

®) Z o5, 5 (v ) = fe0)

while for x =&, =1,2,...,m the following conjugation conditions are fulfilled
ou o
(10) |:p alj:| e = Ki8t70+u(§i,t).

We assume that coefficient p satisfies the usual regularity and ellipticity conditions
(11) pE€LX(Q), 0<po<plz)<pr

Taking the inner product of equation (5) with a test function v and formally
applying partial integration and relations (3)—(4) one obtains the following weak

formulation of the problem (5)-(7): find u € H**/2(Q) such that

(12) a(u,v) =1(v), VYve f{rl’a/z(Q), o= (o, an,. .., 00m),
where
HY2(Q) = () H*/2((0,T), L, (0,1)) N L2((0,T), (0, 1)).
=1
The bilinear form af(-,-) is given by

m

a(u,v) = Z {(815 (7)12 at T )Lz(Q) + K; ( + 0+ (gza ')a 1/2 (57,7 ))LQ(O,T)}

i—1
(0 o
P oz oz LQ(Q)’

and the linear functional I(-) is

l(v) = (f,v)r2(q) -
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In the space H*/2(Q) we define a norm || - ”f[lvaﬂ(Q) by

2 2 2
||u||ﬁ1,a/2(Q) = Z ||uHHo‘i/2((O,T),Z§_(0,1)) + ||UHL2((0,T),H1(O,1))'
=1 ‘

Theorem 1. Leta; € (0,1),i=1,...,m, f € L*(Q) and let the assumptions (11)

hold. Then the problem (5)-(7) is well posed in H-*/%(Q) and its weak solution
satisfies the a priori estimate

(13) lall 1,020 < ClF 220

The proof follows immediately using the relations (3)-(4), (11) and the Lax-
Milgram lemma.

From (13) we immediately deduce the a priori estimate

HUHEL&/?(Q) < C|fllz2(@)

in the weaker norm [9]

T
2 _
Iy = ||

4.1. Finite difference approximation. In the rectangle Q = [0,1] x [0,T]
we introduce the uniform mesh Qp, = @y X @,, where @, = {z; = ih|i =
0,1,...,N; h=1/N} and w, = {t; = jr|j=0,1,...,M; 7 =T/M}. We
also denote wy, = @, N (0,1), w, = w, N[0, 1), w,‘f =op,N(0,1], w, =0, N(0,T),
wr =w; N[0,T) and w) = @, N (0,T]. For the sake of simplicity, in the sequel
we suppose that &;, + = 1,2,..., m are rational numbers. Then one can choose the
step h, so that & € wy. We shall use standard notation from the theory of finite
difference schemes [16]:

m

> (T -ty

i=1

U )2y gy + ) s oy | .

v=uv(z,t), v=v(z,t+71),

v; = v(xt), tEw,, v =w(x,t;), =€,
h,t)— t h,t — t
T
For a function u which satisfies zero initial condition (u(z,0) = 0), the left Riemann-
Liouville fractional derivative of order « € (0,1) on the mesh @y, is approximated
by the Ll-algorithm [13]

=vg(x,t + 7).

l—« J
@ T a— [ j
(14) 0f u(, t;) ~ e o > aopuf =t (A ug) =1 (AP u),
k=1

where the coefficients aj_, = (j —k+ 1) = (G — k)" 1<k <j < M are
strictly decreasing;:
(15) l=ap>a1>--->apy—1>0.

The initial-boundary value problem (5)-(7) is approximated with the following
implicit finite difference scheme:

m

(16) Z[l + Kiéhfi]AzaJr’U - (pvi)w = fv (J?,t) € QhTa

=1
(17) 0(0,8) =0, v(1,t)=0, €,

(18) v(x,0) =0, z € Wy,
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where
ft) =T f(2.t), p(z)=I[p(x)+p@—h)]/2,
Ope, is the Dirac mesh function defined by

One, = On(z — &) = {(1)7/11 i i‘;h\{fi},

and T, is the Steklov smoothing operator [17]:

1/2
Tpf(x,t) = / f(x+ ha' t)da’

I+;1/2
Tfo(z,t) = E/z v(x',?dx’ =T, v(x+ h,t),
T2 f(a,t) = Ty (T () = / (=l (o + b ) o

We also assume that the coefficient p(x) may have discontinuities of the first kind
at the points = §; and redefine the values p(&;) and p(&; + h) in the following
manner:

p(&) = [p(& —0) +p(& —h)]/2, P& +h)=[p&+h)+p&+0)]/2.
Lemma 2. [1] Let 0 < o < 1. Then for any function v(t) defined on the grid i,
the following inequality is valid:

(19) vjAffmv > 2Ata0+( v?).

Lemma 3. [4] For every function v(t) defined on the grid @, , which satisfies v(0) =
0and 0 < <1, the followmg equality is valid:

11— M
a— 1 T i\2
§ (Afo (7)) = r2-a) 32:1 ay—;(v)

Let us define the following discrete inner products and norms:

(w,0)n = (V)20 = b D wl@)o(@),  [olla = vz, = (©,0);,

TEWH

(v = (0] oy = h Y w@(@),  [olln = o]l 2y = (0,0],

Iewf
1/2
[, 0)n = [0) oy =k D ul wlln = 1ol 2,y = 00032,
Iewh
(u U)hg = (U U L2 (wn) =h Z —|—u(§,) (51)7
TEWHL
12
oll, = I0lz; (o) = (0. 0)3, —H (1+ )0

(U U)h - ( Lz(wh =h Z Zu(§2)0(§1)7

TEWH

1/2
1/2
lolly = lollz, ) = (0,0)3 = <1+Zah&) o]

h



FD SCHEME FOR MULTI-TERM FRACTIONAL DIFFERENTIAL EQUATION 271

1/2 1/2
Ivllz2iquy = [ 7 D v D17 ez = | 7 Y oG ;
tewd tewd
1/2
lollzagry = |7 30 GOl |
tewsd

1/2

101 Brar2quy = | Ivallie@un +7 D ZAtm

t€w+ =1

Let H}, denote the set of functions defined on the mesh @y, Bre,v = (1 + K;0pe,) v
and Bpv = (1+ >, K;dpe,)v. Then, for each v € Hj, we have

(Bh&’l) ’U h = h Z +sz (61) = ”U”hg )

TrTEWH

(Bro,v)n =h Y o*(@) + ) K (&) = ||vll3,

TEWR =1

and

(B, 'v,v)p = h Z v*(z) + h? i V()
—~ Ki+h

z€wn\{&1,62,--,&m }

Theorem 2. The finite difference scheme (16)-(18) is absolutely stable and its
solution satisfies the a priori estimate

(20) 1ol 31.0r2(0uy < CllFllL2(@ur)-

Proof. Let us multiply the equation (16) with hv and sum over the nodes of the
mesh wy,

hyo ZvAtowﬁZK (& )AL ve(Ei 1) + (Pvz, valn = (F )

rEwWp 1=1

Using (19), the e-inequality and property (11) one can obtain

a; 1 3
LYY A ZK A2 (€, 0): + pollallf < ellol} + 11715

mewh =1

From the discrete Friedrichs inequality

1
lolln < %Ilvf]\h
for 0 < € < 8pyg it follows that
S A% B, + sl < CIAIR-
i=1

Multiplying the last inequality by 7 and summing over the mesh w;, one obtains
the a priori estimate (20). O
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4.2. Convergence of the finite difference scheme. Let u be the solution of
the initial-boundary value problem (5)-(7) and v the solution of the finite difference
problem (16)-(18). Then the error z = u — v is a solution of the problem

(21) Z Bhﬁi A?6+Z Z Bh& G+ 772 + Xz (337 t) € Qnr,
i i=1

(22) 20,6) =0, 2(1,8)=0, fca,

(23) 2(z,0) =0, =z € wp,

where

Ju _
= At O m= 05 u-Th). x =17 (s5) - pus

Theorem 3. The finite difference scheme (21)-(23) is absolutely stable and its
solution satisfies the a priori estimate

1/2
(24) el g1,y < © <HB/Q

4 HB—l/Q

The proof is analogous to the proof of Theorem 2, while the right-hand side
terms are estimated using summation by part and the inequality

1+2
lally <y =

12z] -

Thus, in order to obtain an error bound for the finite difference scheme (16)-(18)
it is sufficient to estimate the right-hand side terms in (24).

Lemma 4. [18] Let 0 < a < 1, u € C%([0,t],C(Q)) and t € w}. Then,

«
t,04 - At,0+u

(25) ‘C a

where Q; = (0,t) x Q.

Theorem 4. Let the solution u of the initial-boundary value problem (5)-(7) belong
to the space ﬂ:io(m;n:1 Czj ([07 TL Hz(Qv)) OC ([07 T]a HS(QZ)))QCQ([Oa T]a 0[07 1])
and p € ity H*(€;). Then the solution v of the finite difference scheme (16)-(18)
converges to u and the following convergence rate estimate holds:
(26) ||u — UHBLQ/Q(Q}LT) =0 (h2 4+ p2maxici<m Ot'i) .

Proof. Using inequality (25), for ¢ = 1,2,..., m we obtain

2
1/2 2—ay O%ul| —a
(27)  |IBpe. Cillz2@u,) < OT e max | 5| T cr? ([0.7),C[0.1])-
For x #¢&,1=1,...,m, the following integral representation is valid

x+h x x r_ 2
(28) u—T2u = —7/ / / (1 _le h x|> %(x'”,t) dz"'dx" dx’,
Tr— w/ z// x
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while for x = &;,i =1,2...,m,

1 [&ith ' o’ e 2
u—T2u = _E/ / / (1 2 A §z> %(x"’,t) dz"dz" da’

L[ o ¥ =&\ O%u

h [Ou ou
—g |:ax(§i+07t)_ax(§i_07t)] :

Now, from the previous integral representations and the Sobolev imbedding the-
orem it immediately follows that

—1/2
HBh / 77]"

<Ch? 0% u(-t v
L2(Qn-) ;tg%&);] ” t,0+U( )”HZ(Ql)
(29) —

m
2 .
SCh’ Z”uHCij([O,T],H2(Qi))’ J = 1727...77’)’7,.
=0

We decompose the term x in the following manner: x = x1 + x2 + X3, where

_( Ou _ _Ou

The terms y; have been estimated in [3]:

m
(30) ”XHLQ(Q;H.) <Ch? Z ||p||H2(Qi)
i=0

u||C([O,T],H3(Qi))-

The result (26) then follows from (27)-(30). O

FIGURE 1. The exact solution for ay = 0.45 and oy = 0.3.
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FIGURE 2. The exact solution and its approximation for a; = 0.7,
as = 0.4 at the last time level ¢t = 1, when h =276 and 7 = 27%.
TABLE 1. The experimental error results and the temporal con-
vergence orders for h = 271! fixed.
o | az | T Izllc@n.y | COUl-lle) | 12l 51ar2,,) | COU - I 51.02)
06| 0.2 | 27° | 5.0926e — 03 1.38 8.7437¢ — 03 1.39
276 1 1.9630e — 03 1.39 3.3284e¢ — 03 1.39
27 | 7.5081e — 04 1.40 1.2658¢e — 03 1.40
278 | 2.8521e — 04 1.40 4.8029¢ — 04 1.40
279 | 1.0732¢ — 04 1.44 1.8166e — 04 1.40
2710 | 3.9570e — 05 6.8716e — 05
0.6 | 0.8 | 27° | 1.6534e — 02 1.20 2.9581e — 02 1.22
276 | 7.1905¢ — 03 1.21 1.2673e — 02 1.22
2=7 | 3.1174e — 03 1.21 5.4461e — 03 1.22
2—8 | 1.3493e — 03 1.21 2.3457e — 03 1.21
279 | 5.8344e — 04 1.21 1.0121e — 03 1.21
2710 | 2.5201e — 04 4.3733e¢ — 04
0.4 055 | 27° | 5.0595¢ — 03 1.43 8.5222¢ — 03 1.45
276 | 1.8770e — 03 1.44 3.1175¢ — 03 1.45
2-7 | 6.9076e — 04 1.45 1.1384e — 03 1.46
2-8 | 2.5266e — 04 1.46 4.1498e — 04 1.46
279 1 9.1800e — 05 1.48 1.5114e — 04 1.45
2710 1 3.2940¢ — 05 5.5437¢ — 05

4.3. Numerical experiment. In this section, we present numerical results to
verify the theoretical error estimates stated in Subsection 4.2. We consider (5)-(7)
form =26 =1/4, & =1/2, Ky =421, Ky =27, p=1, and

f(z,t) :sin(ﬂm)(8g5+t3 + 85‘5}3 + 7r2t3)
+ X[0,1/4] () sin(47rx)(8,52’81t3 + aﬁéjaztg + 1677 at(,xéjs)
— X[1/2,) $in(2ma) (97§ 2 + 0762 47 — Ax® 0 1%),

where x4, (2) is the characteristic function of the interval [a,b] C R.
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TABLE 2. The experimental error results and the spatial conver-
gence orders for 7 = 2712 fixed.

ar | oz | b | zlle@ny | COU- o) | I2llg1ar2g,.y | COU - lg1ar2)

0.6 | 0.2 | 27% | 8.9210e — 02 2.04 1.9636e — 01 2.01
275 | 2.1746e — 02 2.01 4.8901e — 02 2.00
276 | 5.4047¢ — 03 1.99 1.2213e — 02 2.00
277 | 1.3587e — 03 1.99 3.0513¢ — 03 2.00
278 |1 3.4172¢ — 04 1.96 7.6172¢ — 04 2.01
279 | 8.7607e — 05 1.8955e — 04

0.6 | 0.8 | 27% | 8.8768¢ — 02 2.04 2.0151e — 01 2.01
275 | 2.1646¢ — 02 2.01 5.0183e — 02 2.00
276 | 5.3828¢ — 03 1.99 1.2533¢ — 02 2.00
277 | 1.3559¢ — 03 1.98 3.1319¢ — 03 2.00
278 | 3.4365¢ — 04 1.92 7.8539¢ — 04 1.90
279 1 9.0788¢ — 05 2.1036e — 04

0.4 ] 0.55 | 274 | 6.9047e — 02 2.04 1.5675e — 01 2.01
275 | 1.6820e — 02 2.00 3.9038¢ — 02 2.00
276 | 4.1968¢ — 03 2.00 9.7502¢ — 03 2.00
2-7 1 1.0520e — 03 2.00 2.4367e — 03 2.00
278 | 2.6346e — 04 1.99 6.0891e — 04 2.00
279 | 6.6434e — 05 1.5211e — 04

The exact solution is

6t3—041 6t3—a2

— sin(27x) =———.
) X[1/2,1] ( )F(4—a2)

u(z,t) = sin(wz)t® + X[0,1/4] () Sin(47mc)F(4fO[1

We solved the problem using the proposed implicit scheme. In Figure 2 we have
displayed the exact and numerical solutions on the last time level for comparison.
The errors and convergence order in the norms ||-||c(q@,,) and ||| g1.a/2(q, ) denoted
by CO(]| - |[¢) and CO(|| - || 51.a/2), respectively, are given in Table 1 and Table 2.
We may conclude that the temporal convergence rate is 2 — maxj<;<2{a;} while
the spatial convergence rate is 2.

5. Problem with dynamical boundary conditions

Let us consider the following subdiffusion equation:

o - 0 ou
(31) O, u+ 075 u— 2 (pf)ac> = f(x,t), (x,t) €Q,
with dynamical boundary conditions:
o ou(0,t s Ju(1,t =
32 K050 =p0 20 o0 un = 24D e

where K7 and K5 are positive constants, and subject to the homogeneous initial
condition (7).
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The associated bilinear form a(-,-) is given by

2
2 ; 2
= Z[ taOi atT v)L2(Q) + K0y to+ u(&, ), O a/ v(&i, - ))L2(07T)]
i=1
+< ou 81})
P55 ’
Oz’ Ox 12(Q)
where & = 0 and & = 1 and the linear functional I(-) is defined by

l(v) = (f,v)r2(Q) -

Lemma 5. Let «; € (0,1) and let the assumptions (11) hold. Then, the bilinear
form a(u,v) is bounded on H“*/?(Q) x H“*/?(Q). Moreover, this form satisfies
Garding’s inequality on Hl""/z(Q): there exist positive constants m and k such that

(33) a(u, u) + Klul72 gy > mllull? Vue HV2(Q).

H.e/2(Q)’

Proof. First, we show that the bilinear form is bounded. Using the Cauchy-Schwarz
inequality twice we obtain

Z[ téf 8tT )LZ(Q) +K( to+ u(&i, ), O 1/2 (517'))L2 oT)}

2
=1
n ou Ov
pax Oz 12(Q)
2

Z[ o7 ull 2@ 1975 ol 12y

K073 u(€s, a0 m 107 %0 s lnzom |

ou ov

T Oz Oz

Lz(Q)‘ L2(Q)

ou
Oz

1/2
LQ(Q)}

1/2
LQ(Q)}

2
< {Z (1083 2ull2(@) 1> + Kill 955 a6, 3o, | + 1

i=1

ov
Oz

<.
—

2
{Z ||8a % ||L2(Q) + K HataT2 (fu')HL?(o T):| +p1

) 1/2
<C {Z ||uHerl/2((0 T), Lg Q) + ”uHL2 (0,1, Hl(Q))}

1=

at

—

Mw

1/2
||’UHHQ1/2((O T), Lg (Q)) + ||/U||L2 ((0,1), Hl(Q))} :

s
Il
_
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Now let us show that Garding’s inequality holds.

k3 2 (673 2 i 2 a; 2
Z[ tOiu at,T/, )LZ(Q)+K( tOi (flv')v / (g“.))L2(O,T)j|

7

1
( u 6u>
0z ) 12

2

2
i/2 i/2
o 196 Pl 0.0y 2200 + KillOF (i, ME 0.0y | + 0 | 5
07| 2(q)
yiye7 /2 ou 2
5 (1055 Pl + KOG u(es Mo |+ |35
Using the inequality
oul|?
B Ml <[5 00RO
L3(Q)
we obtain
i/2 i/2
o (102 2l 0.2y 2o + Kl OFE P&, )2 o
Jrpo(”“”%z(cg) — [[w(0, ) 170,27y — (L, ) I720,7))
and
i/2
T 1028 PullE e o.my xce) + Kill O uleis Mo
2
9 9 ou
+ polllullZ2q) — w0, )72, — (L, )172(0,7) + Po .
92| 2q)

Next, using the e-inequality

@2
ox

2
lu(z, )72,y < € + g”uHi?(Q)v r=0,1,

L2(Q)

where is € > 0, we obtain

yiye7 2
o (1056l 0.1, 22000) + Kl O a6 Mo ) |

=1

ou|?

bo <||U|%2(Q) —2 )
L*(Q)

ox

oull?
ox

||uHL2(Q) + ’
LQ(Q)
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(e 77 2
[Haf 0y u”%?((O,T),L?(Q)) + Ki”é’t,ofr u(&s, ')H%P(O,T)}

=1
4 oul?
—HU() ((1 — 6) ||u||%2(Q) + (1 — 25) >
(@)
2

% L2
o (107 2l 0.7y 22ce) + K083 P&, M3ego.)

4 2 2
+ Po ((1 - 5) HUH%z(Q) + (1 —2¢) HUHHl(Q) —(1—2¢) ||U|L2(Q)> :

Further,

po (4
a(u,u) + 5 (5 - 25) JullZe(gy = ZCOS [Hat O+u||%2((O,T),L2(Q))

/2 Po
+ Kinat,oiu(&, Wiaom)] + 5 (1= 29) s g,
Taking 0 < € < % we obtain Garding’s inequality:

a(u,0) + wlulFaiq) 2 0%, gy

where £ = 2 (2 — 2¢) and

—1
1 + 1 + 1
m= .
Z?:l cos Tt Zle K cos 75 B(1-2¢)
O

Theorem 5. Let a; € (0,1), f € L*(Q) and let the assumptions (11) hold. Then,

the problem (31)-(32) is well posed in H*/2(Q) and its weak solution satisfies the
a priori estimate

(35) ull 1,02y < Cllfllz2 (@)
Proof. From the proof of the previous lemma it is obvious that
2 oull?
(36) alu,w) 2 C |3 Nullya, 2o 22 + ’ > ] :
£ ez 22, 0.0) ™ || 3z || 1
It can be shown that the following fractional Poincaré-Friedrichs inequality is valid
(5]):
(37) (e, )F 20,1y < Collfo, ul, 7201
where § € (0,1/2). Using (34), (36) and (37) it follows that
ou 2 2
il < | 2 S DI, < Gt
T |12

L2(Q) i=1

Finally, from (36) and (38) we obtain
> du|? 2

(39) a(u,u) 2 C4 Z lallfrecr20m,22 00 + || 7 o) llz2 @)

= C4Hu||f{1,a/2(Q)'
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The last inequality means that the bilinear functional a(u,v) is coercive. Now, from
the Lax-Milgram lemma it follows that we have a unique weak solution. Finally,
from

Callullfrara gy < alw,u) < I fllrz@llullza@) < 1flza@ lull 102y,
the a priori estimate (35) directly follows. O

5.1. Finite difference approximation. We approximate the problem (31) with
the following finite difference scheme

(40) [1 + Kléhfl]Az(l)JrU + []. + K2(5h§2]Ag(2)+’U - (]51)53)55 =f, €W, tE€ w;ﬁ

where
She, = {0, T € w,‘f She, = {O, T € wy
2/h, =0 " : 2/h, z=1"
2y(h), x=0
Vg = § Vg, T € W
—2v(1), z=1
and

p(z) = [p(z) + p(x — h)]/2.
An the right-hand side we have used Steklov smoothing operators

T2 f, =0
[ =Tuf =T%f, z€uw,
T2 f, z=1

where for z = 0 and z = 1 we act with the asymmetric Steklov averaging operators

h '
T2 f(a,t) = %/O (1 _ Z) PR a—

1 /
T f(z,t) = %/ <1—|—x }:1)f(x’,t)dx’, x =1
1

—h
Let us define the following inner products and norms

[w,oln = h Y ul@)o(x) + gu(O)v(O) + gu(l)v(l), Il = [v, ]/,
[0l Z @,y = 115 + [lva]l7,
[, )¢, = [, 0]n + u(0)v(0),  [[v]l5, = [“vv]iéf’
[u, v]ge, = [u, vl +u(L)v(1),  |[V][re, = [U’U];’Lg

and
1/2

2
5102y = | ol +7 30 D0 Ao lw(, 02,

tewd =1

The following relations are satisfied

N
[—(pvz)s, vln =h Y piv3,; > po(vs, v,

=1
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[Bhe,v, vln =[(1+ K1ne, v, v]n = [0, 0] + K10(0) < |[v]3,, |
[Bre,v, vln =[(1+ Kadne, Jv, vl = [v,0]n + K20 (1) < [[v][7, .
[Brv, v]n = [v,v]n + K10%(0) + Kov?(1) < |[v]\%,
e v2(0) *(1)
0 v2(1
=h h? h? :
By vl = h 3 @)+ e Y e
TEWH
The bilinear form a(u,v) is approximated with the discrete bilinear form:
2
ap(u,v) = Z[Bhfi APy upvln + T Z (puz, vz|p-
i=1 tEwi

Lemma 6. Let «; € (0,1) and let the assumptions (11) hold. Then, for sufficiently
small mesh sizes h and 7, the bilinear form ap(u,v) is bounded on the space of dis-

crete functions BlLa/2 (Qnr) x BlLa/? (Qnr). Moreover, this form satisfies Garding’s
inequality on BY*/%(Qn,): there exist positive constants m and & such that

(41) an(©,0) + Ellol1Z2 0,y = PG a2,

The proof is analogous to the proof of Lemma 5.

Theorem 6. The finite difference scheme (40) is absolutely stable and its solution
satisfies the a priori estimate

(12) Ty Y AL, + el < ClLAR .-
i=1,2 et

Proof. We multiply (40) with hv and sum over the mesh nodes @,. Using the
properties (19), (11) and the e-inequality we obtain

1 1 1,z
3L A% (0)ilke, + 5 [L AL (0)ile, + pollvalli < ello]li + IR

Using the inequality

1
01 < 5lles]l® + 208 + 0)
we obtain
1 « « €
S AL ) iig, + 511 AT eie, + (v — 5) lesllh < 22 (0 +03) + LR

Multiplying the last inequality by 7 and summing over the mesh w, we get

2 2 2
Z Ag(lu_ 1)) h£ +7 Z A?(QM )] hgz + HU@HL%QM)

tewy tewt

(43) e 1 2 7

tewi

In order to estimate the sum
(44) T Z va =T Z v (0,1)
tEwi tij

we will use Lemma 3. First, notice that the first summand on the left-hand side of
the inequality (43) contains the sum

M
(45) Y ARL(PO0) =t >y

tEwT j:l
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We will show that the sum (44) can be estimated by the sum (45).
Applying the mean value theorem for € (0, 1) we get the following estimate for

the coefficient agw ol

1—0(1 >1—041
(M —6)1 ~ M~

a5\14 0;1] 2 ag\l/[:()il] _ Ml—al _ (M _ 1)1—a1 _

= (]. —Ckl)Tal.

By using this in (45) we get
_ 1_a M
[1 — j
oy Sk e > s> ) = Cr X
— Oq — F(2 — 011) — "
J= J= tewy;
An analogous estimate can be obtained for
S
tEwi tEwi

So, by choosing a small enough ¢ we get the a priori estimate (42), where

Comax (4 ) (22 ) Ly 2
- max Coy,  Ca, ¢ 2pp —e) "de  4e(2po — €)

and 0 < e < 2pg. O

5.2. Error analysis. Let u be the solution of the initial-boundary value problem
(31)-(32) with the initial condition (7) and let v be the solution of the difference
problem (40). Then, the error z = u — v satisfies

2 2
(46) D Bue Ay 2 — (p22)e = Y (Bue,bi + i) + v, (2,1) € Qur,
i=1 i=1
(47) z2(xz,0) =0, z €y,
where
¢ = Afou—05,u, wi= 0 (u—Tu), i=12,

- 0 ou
=To-\p5 ) — (Puz)a-
v p <p6x> (Puz)
Theorem 7. Let the solution u of the initial-boundary value problem (31)-(32) and
(7) belong to the space ﬂ?zl(Cii (I, H*(Q:)) N C (I, H*(Q,))) N C*(I,C[0,1]) and
p € H%(Q). Then, the solution v of the finite difference scheme (40) converges to
u and the following convergence rate estimate holds:

(48) Hu o U]|]§1=a/2(QhT) -0 (h2 + T27maX1§i§2 ai) .

and

Proof. From the a priori estimate (42) we directly deduce the inequality
(49)
2
—-1/2
[12]l51./2(gry < C (Z (119illz2(qu.) + 1B Zailli2@un) + |[v1|Lz<Qh>) :
i=1

Thus, the problem of deriving a convergence rate estimate for the finite difference
scheme (40) is reduced to estimating the right-hand side terms in the inequality
(49). Using inequality (25), for ¢ = 1,2 we obtain

82

< C 2—max a;
ot

A~ 2—ay
CO) Wilzaaun) < O e o,

ulle2(jo,71,¢10,1)) -
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From integral representations (28) we have that

) h /
u—TfﬂL:u—E/ <1—1;L> u(z’,t)da’
0

/ 2
(1-2) Ea o pasrastar+ %), =0

and

9 1 g1 g1 ' 1\ o2
u—T2u= E/ / / <1 + 2 . ) %(m"’,t)dx”’dx”dm’
1-h Ja' Ja!

h Ou
+38x( ), @ ;

using the Sobolev imbedding theorem it immediately follows that

—1/2 .
IB;, il 12y <CR? max 07 u(-,t) (o)
(51) t€(0,T
2 ;o
SC’h ||u||Cii([0,T],H2(Q))7 1= 172

The term v is decomposed in the following manner: v = 22:1 vy, where



FD SCHEME FOR MULTI-TERM FRACTIONAL DIFFERENTIAL EQUATION

FI1GURE 3. The exact solution and its approximation for a; = 0.6,
as = 0.8 at the last time level t = 1, when h = 27% and 7 = 276,

for x € wy, while for x = 0 we have
0%u 0%u
_ T2+ e T2+ T2+7
Y1 x (p8x2> (T2"p) ( v oox2 )’

9%y
Vo = (Tg?JrP —p) <T3+8z2> )
ou
2+ YU
(Tf ax) /

ou
V3 = T3+ (p/8x> - (Tz%P/)
0
vy = (T7"p" — pa) (Tﬁ*az) :

ou
Vs = Pg <T$2+3(E - ux) ,

1/6:()

and, for z =1,

The terms v; are estimated as in [4]:

(52) M| r2(@n,) SCR?(Ipl 20 ull e 0,77, 72 () -
The result (48) follows from (50)-(52).

283
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FIGURE 4. The exact solution for a; = 0.6 and as = 0.8.
TABLE 3. The experimental error results and the temporal con-
vergence orders for h = 271! fixed.
ar | ax | 7 | |zlle@@uy | COU-le) | 2l grar(g,,) | COU -l 510s2)
0.6 0.2 | 275 | 4.9749¢ — 03 1.37 6.3275e — 03 1.39
276 1 1.9240e — 03 1.38 2.4173e — 03 1.39
277 | 7.3880e — 04 1.39 9.2194e — 04 1.39
278 | 2.8249¢ — 04 1.39 3.5114e — 04 1.39
279 1 1.0779¢ — 04 1.39 1.3366e — 04 1.39
2710 | 4.1145¢ — 05 5.0927e — 05
0.6 | 0.8 | 27° | 1.2679¢ — 02 1.19 2.0282¢ — 02 1.22
276 | 5.5663¢ — 03 1.19 8.6849¢ — 03 1.22
277 | 2.4342e — 03 1.20 3.7277e — 03 1.22
278 | 1.0622e — 03 1.20 1.6036e — 03 1.21
279 | 4.6297¢ — 04 1.20 6.9123e — 04 1.21
27101 2.0175¢ — 04 2.9858¢ — 04
0.4 | 0.55 | 275 | 3.7364e — 03 1.42 5.5162e — 03 1.45
276 | 1.4008¢ — 03 1.43 2.0178¢ — 03 1.45
2°7 | 5.2112e — 04 1.43 7.3689¢ — 04 1.45
278 1 1.9299¢ — 04 1.44 2.6890e — 04 1.45
279 | 7.1335e — 05 1.43 9.8191e — 05 1.45
2710 1 2.6416e — 05 3.5986e — 05

5.3. Numerical experiment. In order to verify the theoretical error estimates
from Subsection 5.2 we consider (5)-(7) for K1 = K3 =1, p=1 and

[, t) = cos(mz) (875, 4° + 078,17 + w2t°) + (1 — xQ)(é‘i‘Sitg +
+ 27 (x = 1) et + a;{gjt?’) —2(3x +2)07 13 +

04

a1t+o243
Dy 2t

2(3x — 1)073 t°.
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TABLE 4. The experimental error results and the spatial conver-
gence orders for 7 = 27 3fixed.

ar | oz | b | zlle@uy | COU-lle) | I2llg1arzg,,y | COU - lg10s2)

0.6 | 0.2 | 274 5.2243¢ — 03 2.00 7.0540e — 03 2.01
275 1 1.3063e — 03 2.00 1.7566e — 03 2.00
276 | 3.2652¢ — 04 2.00 4.3938¢ — 04 1.98
2-7 | 8.1575¢ — 05 2.00 1.1101e — 04 1.93
278 1 2.0337e — 05 1.73 2.9086¢ — 05 1.73
279 | 6.1287¢ — 06 8.7973¢ — 06

0.6 | 0.8 | 2% |5.1533¢ — 03 2.00 8.9737¢ — 03 2.00
2751 1.2908¢ — 03 1.99 2.2461e — 03 1.97
276 | 3.2462¢ — 04 1.90 5.7423¢ — 04 1.86
277 | 8.6749¢ — 05 1.35 1.5805¢e — 04 1.51
278 | 3.4144¢ — 05 0.70 5.5454e — 05 0.82
279 1 2.0992¢ — 05 3.1324e — 05

0.4 ] 0.55 | 27% | 4.8541e — 03 2.00 7.2254¢ — 03 2.01
275 | 1.2140e — 03 2.00 1.7988¢ — 03 2.00
276 1 3.0368¢ — 04 2.00 4.4965¢ — 04 1.99
2-7 | 7.6088¢ — 05 1.99 1.1331e — 04 1.95
2781 1.9190e — 05 1.78 2.9351e — 05 1.80
279 | 5.5716e — 06 8.4205¢ — 06

The exact solution is
o, 6137 6132

F(470&1) ].—‘(470[2)-
The problem (5)-(7) is approximated by the finite difference scheme (40). In Figure
3 we have displayed the exact and numerical solutions at the last time level, for
comparison. In Figure 4 we have displayed the exact solution with a; = 0.6 and
az = 0.8. The errors and convergence orders were considered in the norms ||-[|¢(q,.)
and || - ||§1,Q/Z(Qhr). Using the same labels for the error and convergence orders as
in Table 1 and Table 2 from Subsection 4.3., in Table 3 and Table 4 we present the
results obtained for this numerical example. We may conclude, as in the previous
section, that the temporal convergence rate is 2 — maxi<;<2{a;} while the spatial
convergence rate is 2.

u(z,t) = cos(ma)t® + z(1 — ) —2%(1 — )

Acknowledgments

This research was supported by the Ministry of Education, Science and Techno-
logical Development of the Republic of Serbia under the project 174015.

References

[1] A.A. Alikhanov, Boundary value problems for the diffusion equation of the variable order in
differential and difference settings, Appl. Math. Comp. 219 (2012) 3938-3946.

[2] A.A. Alikhanov, Numerical methods of solutions of boundary value problems for the multi-
term variable-distributed order diffusion equation, Appl. Math. Comp. 268 (2015) 12-28.

[3] D.Bojovi¢, B.S. Jovanovi¢, Convergence of finite difference method for the parabolic problem
with concentrated capacity and variable operator, J. Comput. Appl. Math. 189 (2006) 286—
303.



286

A. DELIC, S. ZIVANOVIC AND Z. MILOVANOVIC JEKNIC

[4] A. Deli¢, B.S. Jovanovié¢, Numerical approximation of an interface problem for fractional in

time diffusion equation, Appl. Math. Comput. 229 (2014) 467-479.

[5] V.J. Ervin, J.P. Roop, Variational formulation for the stationary fractional advection dis-

persion equation, Numer. Methods Partial Differential Equations 22 (2006), 558-576.

[6] B.S. Jovanovié, L.G. Vulkov, On the convergence of finite difference schemes for the heat

equation with concentrated capacity, Numer. Math. 89 (2001) 715-734.

[7] A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equa-

tions, N-H Mathematics Studies, Vol. 204, North-Holland, 2006.

[8] X. Li, C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM

J. Numer. Anal. 47 (2009) 2108-2131.

[9] J.L. Lions, E. Magenes, Non homogeneous boundary value problems and applications,

Springer—Verlag, Berlin and New York, 1972.

[10] Y. Luchko, Initial-boundary-value problems for the generalized multi-term time-fractional

diffusion equation, J. Math. Anal. Appl. 374 (2011) 538-548.

[11] F. Mainardi, Fractional calculus, in: A. Carpinteri, F. Mainardi (Eds.), Fractals and Frac-

tional Calculus in Continuum Mechanics, Springer-Verlag, New York, 1997.

[12] F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation, Appl.

Math. Lett. 9 (1996) 23-28.

[13] K.B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.

[14] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

[15] M. Renardy, R.C.Rogers, An Introduction to Partial Differential Equation, Springer, 2004.
[16] A.A. Samarskil, Theory of Difference Schemes, Pure and Appl. Math., Vol. 240, Marcel

(17)
(18]

(19]

Dekker Inc., 2001.

A. A. Samarskii, R.D. Lazarov, V. L. Makarov, Difference Schemes for Differential Equations
with Generalized Solutions, Vysshaya Shkola, Moscow 1987. (in Russian).

Z.Z. Sun, X.N. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl.
Numer. Math. 56 (2006) 193-209.

V.S. Vladimirov: Equations of the mathematical physics, Nauka, Moscow, 1988. (in Russian)

L2University of Belgrade, Faculty of Mathematics, 11 000 Belgrade, Serbia, 3University ” Union-

Nikola Tesla”, Faculty of Construction Management, Cara Dusana 62-64, Belgrade, Serbia

E-mail: adelic@matf.bg.ac.rs, sandra@matf.bg.ac.rs and zorica.milovanovic@gmail.com



