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WELL-POSEDNESS AND THE MULTISCALE ALGORITHM FOR

HETEROGENEOUS SCATTERING OF MAXWELL’S EQUATIONS

IN DISPERSIVE MEDIA

YONGWEI ZHANG, LIQUN CAO, AND DONGYANG SHI

Abstract. This paper discusses the well-posedness and the multiscale algorithm for the hetero-
geneous scattering of Maxwell’s equations in dispersive media with a periodic microstructure or
with many subdivided periodic microstructures. An exact transparent boundary condition is de-

veloped to reduce the scattering problem into an initial-boundary value problem in heterogeneous
materials. The well-posedness and the stability analysis for the reduced problem are derived. The
multiscale asymptotic expansions of the solution for the reduced problem are presented. The con-

vergence results of the multiscale asymptotic method are proved for the dispersive media with a
periodic microstructure. A multiscale Crank-Nicolson mixed finite element method (FEM) is pro-
posed where the perfectly matched layer (PML) is utilized to truncate infinite domain problems.
Numerical test studies are then carried out to validate the theoretical results.

Key words. Maxwell’s equations, dispersive medium, well-posedness, the multiscale asymptotic
expansion, finite element method.

1. Introduction

Consider the transient electromagnetic wave incident on a three dimensional
dispersive media with a periodic microstructure or many subdivided periodic mi-
crostructures, which is called the scatter and is supposed to occupy the bounded
domain Ω ⊂ R3. Let Ω ⊂ R3 be a bounded Lipschitz polyhedral convex domain
or a bounded smooth domain with a microstructure as shown in Fig. 1(a). The
exterior of the volume Ω is denoted by Ωe = R3 \ Ω.

Suppose that (Einc,Hinc) is a plane wave incident on the scatter to generate scat-
tered field (Esc,Hsc), which satisfies the following time-domain Maxwell’s equations
in Ωe for t > 0:

(1)

{
η0∂tE

sc(x, t)− curlHsc(x, t) = 0,

µ0∂tH
sc(x, t) + curlEsc(x, t) = 0,

where η0 and µ0 are the constant permittivity and the constant permeability in the
“air region” Ωe, respectively. It is clear to note that (Einc,Hinc) also satisfies the
equation (1). In addition, the scattered field is required to satisfy the Silver-Müller
radiation conditions:

(2) x̂× (∂tE
sc × x̂) + x̂× ∂tH

sc = o(|x|−1), as |x| → ∞, t > 0,

where x̂ = x/|x|. The total field (Etot,Htot) in Ωe consists of the incident field and
the scattered field:

(3) Etot(x, t) = Einc(x, t) +Esc(x, t), Htot(x, t) = Hinc(x, t) +Hsc(x, t), t > 0.

In this paper, we investigate the well-posedness and the multiscale algorithm for the
heterogeneous scattering of Maxwell’s equations in dispersive media with a periodic

Received by the editors December 7, 2020 and, in revised form, January 25, 2021.
2000 Mathematics Subject Classification. 35B27, 35Q60, 78A25, 78A45, 78A48, 78M30,

78M40.

235



236 Y. ZHANG, L. CAO, AND D. SHI

microstructure or with many subdivided periodic microstructures. For the sake of
simplicity, we only discuss the corresponding problems in dispersive media with a
periodic microstructure in the sequel. Let Eε(x, t) and Hε(x, t)) be respectively the
electric field and the magnetic field in the scatter, which satisfy Maxwell’s equations
for the time-domain Lorentz model in Ω, for t > 0:

(4)



ηε(x)∂tEε(x, t)− curl Hε(x, t) + Jε(x, t) = F(x, t),

µε(x)∂tHε(x, t) + curl Eε(x, t) = 0,

∇ · (ηε(x)Eε(x, t)) = ρ(x, t), ∇ · (µε(x)Hε(x, t)) = 0,

∂tJε(x, t) + γeJε(x, t) + ωe0

∫ t

0

Jε(x, τ)dτ = ηε(x)ω
2
peEε(x, t),

where the parameters ηε(x) and µε(x) are permittivity and permeability tensor
inside Ω, respectively, ωpe is the electric plasma frequency, ωe0 is the electric res-
onance frequency, γe is electric damping frequency, the current F(x, t) is assumed
to be compactly supported in Ω, and Jε(x, t) is the polarization current density.
Here ε > 0 denotes the relative size of a periodic microstructure of heterogeneous
materials, i.e. 0 < ε = lp/L < 1, where lp, L are respectively the sizes of a periodic
cell and a domain Ω. If we assume that L = 1, without loss of generality, then the
reference periodic cell Q is defined as Q = {ξ = (ξ1, ξ2, ξ3) : 0 < ξi < 1, i = 1, 2, 3}
as shown in Fig. 1(b). If let ξ = ε−1x, then we have ηε(x) = η(xε ) = η(ξ) and

µε(x) = µ(xε ) = µ(ξ). Here η−1
ε (x) and µ−1

ε (x) denote the inverse matrices of
ηε(x) and µε(x), respectively.

Remark 1.1. It should be stated that the interaction of electrons or charged parti-
cles with an electric field is often treated classically by the equation of motion named
the DLS model[39] where the polarization current satisfies the following equation:

∂tJε(x, t) + γeJε(x, t) + ωe0

∫ t

0
Jε(x, τ)dτ = ηε(x)ω

2
peEε(x, t).

The model is often called a Lorentz oscillator which gives rise to polarization den-
sity, and thus, polarization current. Many models follow from this model. When
ωe0 = 0, the model reduces to the Drude model. Furthermore, if we set γe = 0, the
cold plasma model follows. Without loss of generality, in the rest of this article,
we will assume that all of the physical parameters are positive. By using the above
equation, we get

Jε(x, t) = ηεω
2
pe

∫ t

0
g(t− τ)Eε(x, τ)dτ = ηεω

2
peg(t) ∗Eε(x, t),

where g(t) = 1
αe−δt sin(αt), δ =

γe
2 , α =

√
ω2
e0 − δ2, the symbol ∗ denotes a

convolution of functions. Notice that ωe0 > δ in many real applications (see, e.g.,
[24]). If assume that ωe0 = 0, then we have

Jε(x, t) = ηεω
2
pe

∫ t

0
e−γe(t−τ)Eε(x, τ)dτ = ηεω

2
pee

−γet ∗Eε(x, t).

Furthermore, the transmission conditions across the boundary ∂Ω are imposed
for t > 0:

(5) n×Eε = n×Einc + n×Esc, n×Hε = n×Hinc + n×Hsc,

where n is the outward unit normal to ∂Ω.
In addition, the initial conditions in Ω or Ωe are given by

(6) Eε(x, 0) = U0(x), Hε(x, 0) = V0(x), Jε(x, 0) = 0,

where U0(x) and V0(x) are some given functions.
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(a) (b)

Figure 1. (a) A whole domain Ω of heterogenous materials with
a periodic microstructure; (b) the reference cell Q.

For the sake of simplicity, we set

(7) Eε =

(
Eε

Hε

)
, Aε =

(
ηε 0

0 µε

)
6×6

=
(
aij(

x

ε
)
)
6×6

.

Throughout this paper, the Einstein summation convention on the repeated
indices is adopted. Denote by C a generic positive constant independent of ε
without distinction. Moreover, the expression a<

:
b stands for a ≤ Cb. Denote the

Sobolev spaces of the vector-valued functions with boldface letters.
Let Br be the ball of radius r centered at the origin and choose sufficiently large

r such that Ω ⊂ Br. We make the following assumptions on the coefficients:
(A1). Let ξ = ε−1x. Suppose that η(ξ) = η(ξ)I3 and µ(ξ) = µ(ξ)I3, where I3 is

an 3× 3 identity matrix. Note that η(ξ) and µ(ξ) are rapidly oscillating 1-periodic
functions with piecewise constants, respectively.

(A2) Let aij = aji, aij ∈ L∞(Ω), and

(8) γ0|y|2 ≤ aijyiyj ≤ γ1|y|2, ∀y ∈ R6,

where |y|2 = yiyi, γ0 and γ1 are constants independent of ε.
(A3). Suppose that the incident field (Einc(x, t),Hinc(x, t)) has the traces on

∂Br belonging toH
2(0, T ;X ), where X = H− 1

2 (div; ∂Br), and F ∈ H1(0, T ;L2(Br)),
F(x, 0) = 0, U0,V0 ∈ H(curl, Br).

The problem (1)-(6) has many applications in electric, communication, materi-
als science and so forth(see, e.g.,[28, 33, 36] and the references therein). We first
recall some theoretical results for the well-posedness and stability analysis associ-
ated with the problem (1)-(6). The mathematical models for electromagnetic wave
propagation in dispersive isotropic media were investigated in [11] by employing
energy techniques, spectral theory and dispersion analysis of plane waves. The
time-dependent Maxwell’s equations with the constitutive relations of linear bian-
isotropic media were studied in [23] by applying the theory of abstract Volterra
equations and strongly continuous semigroups. To our knowledge, there are few
theoretical results of the well-posedness and stability analysis for the time-domain
scattering problem of Maxwell’s equations in heterogeneous dispersive media. In
this paper we will use the method of energy, the Lax-Milgram lemma, and the
inversion theorem of the Laplace transform to analyze the time-domain scattering
problem of Maxwell’s equations in heterogeneous dispersive media, where the latter
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method has also been adopted in [12, 19, 29]. The basic ideas are as follows: we first
intend to analyze the scattering problem of a transient electromagnetic plane wave
incident in a three-dimensional dispersive media. An exact transparent boundary
condition is developed to reduce the the scattering problem into an initial-boundary
value problem in heterogeneous materials. The well-posedness and stability analysis
for the reduced problem and a priori estimate of the electric field are studied.

It should be mentioned that, if we solve numerically the problem (1)-(6), we will
encounter some main difficulties. For example, a direct numerical method such as
the finite-difference time-domain (FDTD) method or finite element method can-
not produce accurate numerical solutions unless a very fine mesh is required. We
recall that the homogenization method gives the overall solution behavior by in-
corporating the fluctuations due to the heterogeneities. There are a great number
of results for the homogenization method of Maxwell’s equations in heterogeneous
materials (see, e.g., [3, 7, 25, 26, 32, 34, 35]). In particular, Griso et al.[1, 4, 6]
used the periodic unfolding method which was introduced in [14] to derive homog-
enization results of the time-dependent Maxwell’s equations in complex materials
that are described by constitutive laws involving the time evolution of the electric
polarization and magnetization. Barbatis and Stratis[2] studied the periodic ho-
mogenization of Maxwell’s equations for dissipative bianisotropic media in the time
domain, both in R3 and in a bounded domain with perfect conductor (PEC) bound-
ary condition. However, numerous numerical results have shown that the accuracy
of the homogenization method may not be satisfactory if ε is not sufficiently small
(see, e.g., [8, 9, 40, 41, 42]). To this end, some multiscale methods were presented,
for example, the localized orthogonal decomposition method in [18], the hetero-
geneous multiscale method (HMM) in [21, 13], the multiscale hybrid-mixed finite
element method in [27], and the multiscale asymptotic methods in [9, 26, 40, 41].
In this paper, we present the multiscale asymptotic expansions of the solution for
the reduced problem and derive the strong convergence results with an explicit rate
for the multiscale asymptotic solutions. Furthermore, a multiscale Crank-Nicolson
mixed finite element method is presented while the perfectly matched layer (PML)
method is utilized to truncate infinite domain problems.

This paper is outlined as follows. In Section 2, we introduce an exact time-
domain transparent boundary condition to reduce the transient electromagnetic
scattering from dispersive media into an initial-boundary value problem in het-
erogeneous materials. The well-posedness and stability analysis for the reduced
problem, and a priori estimate of the electric field are derived in Section 3. In Sec-
tion 4, we first present the formal multiscale asymptotic expansions of the solution
for the reduced problem, and then derive the strong convergence results with an
explicit rate for the dispersive media with a periodic microstructure. In section 5,
a multiscale Crank-Nicolson mixed finite element method for the scattering prob-
lem is proposed. Finally, some numerical results are carried out to validate the
theoretical results of this paper.

2. Transparent boundary conditions

In this section, we will introduce an exact time-domain transparent boundary
condition to reformulate the electromagnetic scattering problem (1)-(6) into an
equivalent initial-boundary value problem. For simplicity, without confusion we
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still use the symbols Eε and Hε in the following equations, for t > 0:

(9)



η̃ε∂tEε − curlHε + J̃ε = F(x, t), in Br,

µ̃ε∂tHε + curlEε = 0, in Br,

∂tJε + γeJε + ωe0

∫ t

0

Jεdt = ηεω
2
peEε, in Ω,

Eε|t=0 = U0, Hε|t=0 = V0, in Br,

J̃ε|t=0 = 0, in Br,

G [n×Eε] = n×Hε + g, on ∂Br,

where g = −n×Hinc +G [n×Einc] and G is the time-domain electric-to-magnetic
Calderón operator. Here notice that Eε = Etot, Hε = Htot in Br \ Ω and

(10) µ̃ε =

{
µε, inΩ

µ0, inBr \ Ω
, η̃ε =

{
ηε, inΩ

η0, inBr \ Ω
, J̃ε =

{
Jε, inΩ

0, inBr \ Ω
,

where I3 is an 3× 3 identity matrix.
Let Ĕsc(x, s) and H̆sc(x, s) be the Laplace transform of the scattering fields

Esc(x, t) and Hsc(x, t), respectively. Recall that

(11) L (∂tE
sc) = sĔsc(·, s)−Esc(·, 0), L (∂tH

sc) = sH̆sc(·, s)−Hsc(·, 0).
Given a vector field u, denote by uT = (x×u)× x the tangential component of

u in Br. By virtue of the frequency domain EtM Calderón operator Ge (see, e.g.,
[12]), we get the following transparent boundary condition imposed on ∂Br in the
s-domain:

(12) Ge[x̂× Ĕsc] = n× H̆sc.

Lemma 1. (see [12, Lemma 2.5]) It can be proved that the Calderón operator Ge

satisfies the following positivity condition:

−Re
∫
∂Br

Ge[x̂× Ĕsc] · ¯̆Esc
T dS ≥ 0,

where x̂× Ĕsc ∈ H− 1
2 (div, ∂Br).

We take the inverse Laplace transform of (12), and give the transparent boundary
condition in the time domain on ∂Br

(13) G [x̂×Esc] = x̂×Hsc,

where G := L −1 ◦Ge ◦ L .
By eliminating the magnetic field, we get an alternative transparent boundary

condition in the s-domain on ∂Br as follows:

(14) x̂× ((sµ0)
−1curl Ĕsc) +Ge[x̂× Ĕsc] = 0.

Taking the inverse Laplace transform of (14) yields an alternative transparent
boundary condition in the time-domain:

(15) x̂× (µ−1
0 curlEsc) + C [x̂×Esc] = 0,

where C = L −1 ◦ sGe ◦ L . We thus introduce the following lemma:

Lemma 2. see [38, Lemma 4.5-4.6] Given ς ≥ 0 and E(·, t) ∈ H(curl, Br) with
E(·, 0) = 0, we prove

(16) Re

∫ ς

0

∫
∂Br

(

∫ t

0

C [n×E](τ)dτ) · ĒT (x, t)dSdt ≤ 0,
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and

(17) Re

∫ ς

0

∫
∂Br

(

∫ t

0

C [n× ∂tE](τ)dτ) · ∂tĒT (x, t)dSdt ≤ 0.

Lemma 3. (see [38, Lemma 4.2-4.3]) Given ς ≥ 0 and E(·, t) ∈ H(curl, Br) with
E(·, 0) = 0, we have

Re

∫ t

0

∫
∂Br

G [n×E] · ĒT dSdt ≤ 0, Re

∫ t

0

∫
∂Br

G [n× ∂tE] · ∂tĒT dSdt ≤ 0.

3. The well-posedness and stability analysis

In this section, we will give the proofs of the well-posedness, stability analysis
and a priori estimate of the solution for the problem (9).

3.1. The first auxiliary problem. We first discuss the scattering problem of
time-harmonic Maxwell’s equations with a complex wavenumber, which is a fre-
quency version of the problem (9) under the Laplace transform.

Consider the auxiliary boundary value problem as follows:

(18)

{
curl ((sµ̃ε)

−1curl u) + sη̃εu+ j̆u = F̆, in Br,

n× ((sµ̃ε)
−1curl u) +Ge[n× u] = ğ, on ∂Br,

where j̆u =
sη̃εω

2
pe

s2 + γes+ ωe0
u, and s = s1 + is2 with s1, s2 ∈ R, s1 > 0.

Multiplying the complex conjugate of a test function v ∈ H(curl, Br), integrat-
ing over Br, and using integration by parts, we get the variational formulation of
the problem (18):

(19) a(u,v) = ⟨ğ,v⟩, v ∈ H(curl, Br),

where the sesquilinear form is

a(u,v) =

∫
Br

(sµ̃ε)
−1curl u · curl v̄dx+

∫
Br

sη̃εu · v̄dx

+

∫
Ω

sηεω
2
pe

s2 + γes+ ωe0
u · v̄dx− ⟨Ge[n× u],v⟩.

For the well-posedness of the variational problem (19) and stability analysis, we
have the following theorem:

Theorem 1. The variational problem (19) has a unique solution u ∈ H(curl, Br)
which satisfies

(20)
∥curl u∥L2(Br) + ∥su∥L2(Br) + ∥j̆u∥L2(Ω)<:s

−1
1 ∥sg∥H−1/2(div,∂Br)

+s−1
1 ∥|s|2g∥H−1/2(div,∂Br) + s−1

1 ∥sF̆∥L2(Br),

where s = s1 + is2 with s1, s2 ∈ R and s1 > 0.

Proof. Setting v = u in (19), we get

(21)

a(u,u) =

∫
Br

(sµ̃ε)
−1|curl u|2dx+

∫
Br

sη̃ε|u|2dx− ⟨B[n× u],u⟩

+

∫
Ω

1

ηεω2
pe

s̄|̆ju|2 +
γe

ηεω2
pe

|̆ju|2 +
ωe0

sηεω2
pe

|̆ju|2dx.

Here we use the fact that u =
1

η̃εω2
pe

(s+ γe + ωe0/s)̆ju.
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Following the lines of the proof of Theorem 2.1 of [12](see also Theorem 3.1 of
[19] and Theorem 3.1 of [29]), one can complete the proof of this theorem. �

3.2. The second auxiliary problem. Consider an auxiliary initial-boundary
value problem for the time-domain Maxwell’s equations with the perfect conduc-
tor(PEC) boundary condition:

(22)



µ̃ε∂tV(x, t) + curlU(x, t) = 0, in Br,

η̃ε∂tU(x, t)− curlV(x, t) + J̃u = 0, in Br,

∂tJu + γeJu + ωe0

∫ t

0
Judt = ηεω

2
peU(x, t), in Ω,

n×U(x, t) = 0, on ∂Br,

U(x, 0) = U0, V(x, 0) = V0, in Br,

J̃u|t=0 = 0, in Br,

where U0 and V0 are assumed to be compactly supported in Br, J̃u = Ju in Ω and

J̃u = 0 in Br \ Ω. By the similar arguments as those presented in [19, 29], we can
prove the following theorem:

Theorem 2. The auxiliary problem (22) has a unique solution (U,V), which sat-
isfies the stability estimates:
(23)
∥U∥L2(Br) + ∥V∥L2(Br)<:∥U0∥L2(Br) + ∥V0∥L2(Br),

∥∂tU∥L2(Br) + ∥∂tV∥L2(Br)<:∥U0∥L2(Br) + ∥curlU0∥L2(Br) + ∥curlV0∥L2(Br),

∥∂ttU∥L2(Br) + ∥∂ttV∥L2(Br)<:

{
∥U0∥L2(Br) + ∥curl curlU0∥L2(Br)

+∥curl curlV0∥L2(Br) + ∥curlV0∥L2(Br)

}
.

3.3. The well-posedness and stability analysis for the problem (9). In this
section, we derive the theoretical results of the well-posedness and stability analysis

for the problem (9). For the sake of convenience, set E = Eε, H = Hε and J̃ = J̃ε.

3.3.1. The well-posedness. Let e = E − U and h = H − V. It follows from
(9) and (22) that e and h satisfy the following initial-boundary value problem, for
t > 0:

(24)



curl e+ µ̃ε∂th = 0, curl h− η̃ε∂te− j̃e = F, in Br,

∂tje + γeje + ωe0

∫ t

0

je(x, τ)dτ = ηεω
2
pee, in Ω,

e|t=0 = 0, h|t=0 = 0, in Br,

j̃e|t=0 = 0, in Br,

T [n× e] = n× h− n×V + g, on ∂Br,

where j̃e = je in Ω and j̃e = 0 in Br \ Ω, g = −n×Hinc + G [n×Einc].

Let ĕ = L e and h̆ = L h. Taking the Laplace transform of (24) and eliminating

h̆, we get the following boundary value problem:

(25)

{
curl (sµ̃ε)

−1curl ĕ+ sη̃εĕ+ j̆e = −F̆, in Br,

n× ((sµ̃ε)
−1curl ĕ) + B[n× ĕ] = n× V̆ − ğ, on ∂Br,
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where j̆e =
sηεω

2
pe

s2 + γes+ ωe0
ĕ.

Multiplying the complex conjugate of a test function v ∈ H(curl, Br), integrat-
ing in Br, and using integration by parts, we obtain the variational formulation of
the problem (25):

(26) a(ĕ,v) = ⟨ğ − n× V̆,v⟩+
∫
Br

F̆ · v̄dx, v ∈ H(curl, Br),

where the sesquilinear form is given by

(27)

a(ĕ,v) =

∫
Br

(sµ̃ε)
−1curl ĕ · curl v̄dx+

∫
Br

sη̃εĕ · v̄dx

+

∫
Ω

sηεω
2
pe

s2 + γes+ ωe0
ĕ · v̄dx− ⟨Ge[n× ĕ],v⟩.

Next we give the proof of the well-posedness for the problem (26).

Lemma 4. The problem (26) has a unique solution ĕ ∈ H(curl, Br) such that

(28)
∥curl ĕ∥L2(Br) + ∥sĕ∥L2(Br) + ∥j̆e∥L2(Ω)<:s

−1
1

{
∥sg∥X

+∥sn× V̆∥X + ∥|s|2g∥X + ∥|s|2n× V̆∥X + ∥sF̆∥L2(Br)

}
,

where s = s1 + is2 with s1, s2 ∈ R and s1 > 0.

Proof. Setting v = ĕ in (27), we obtain

(29)

a(ĕ, ĕ) =

∫
Br

(sµ̃ε)
−1|curl ĕ|2dx+

∫
Br

sη̃ε|ĕ|2dx− ⟨B[n× ĕ], ĕ⟩

+

∫
Ω

1

ηεω
2
pe

s̄|̆je|2 +
γe

ηεω
2
pe

|̆je|2 +
ωe0

sηεω
2
pe

|̆je|2dx.

Taking the real part of (29) and using Lemma 1, we get

(30)
Re{a(ĕ, ĕ)}>

:

s1

|s|2
(∥curl ĕ∥2L2(Br)

+ ∥sĕ∥2L2(Br)
+ ∥j̆e∥2L2(Ω)

+∥s̆je∥2L2(Ω)) + ∥j̆e∥2L2(Ω).

It follows from the Lax-Milgram Lemma that the problem (19) has a unique
solution ĕ ∈ H(curl, Br). Furthermore, from (21) we prove
(31)

∥a(ĕ, ĕ)∥<
:

∥g − n× V̆∥X ∥ĕ∥
H− 1

2 (curl,∂Br)
+ ∥s−1F̆∥L2(Br)∥sĕ∥L2(Br)

<
:
∥g − n× V̆∥X ∥ĕ∥H(curl,Br) + ∥s−1F̆∥L2(Br)∥sĕ∥L2(Br)

<
:
(∥s−1g∥X + ∥s−1n× V̆∥X )∥sĕ∥L2(Br)

+(∥g∥X + ∥n× V̆∥X )∥curl ĕ∥L2(Br) + ∥s−1F̆∥L2(Br)∥sĕ∥L2(Br).

Combining (30)-(31) leads to

(32)

∥∇ × ĕ∥2L2(Br)
+ ∥sĕ∥2L2(Br)

+ ∥s̆je∥2L2(Ω) +
|s|2

s1
∥j̆e∥2L2(Ω)

<
:
s−1
1 (∥sg∥X + ∥sn× V̆∥X )∥se∥L2(Br)

+s−1
1 (∥|s|2g∥X + ∥|s|2n× V̆∥X )∥curlE∥L2(Br)

+s−1
1 ∥sF̆∥L2(Br)∥sĕ∥L2(Br).

Using the Cauchy-Schwarz inequality completes the proof of (28). �
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Theorem 3. Under assumptions (A1)–(A3), it can be proved that the problem (9)
has a unique solution (E,H) which satisfies

E ∈ L2(0, T ;H(curl, Br)) ∩H1(0, T ;L2(Br)),

H ∈ L2(0, T ;H(curl, Br)) ∩H1(0, T ;L2(Br)).

Furthermore, we have the following stability estimates:

(33)

max
t∈[0,T ]

(∥∂tE∥L2(Br) + ∥∂tH∥L2(Br) + ∥curlE∥L2(Br) + ∥curlH∥L2(Br)

+∥∂tJ̃∥L2(Br))<: max
t∈[0,T ]

∥∂tg∥X + ∥∂ttg∥L1(0,T ;X ),+∥g∥L1(0,T ;X )

+∥U0∥H(curl,Br) + ∥V0∥H(curl,Br) + ∥F∥H1(0,T ;L2(Br)).

Proof. Since∫ T

0

(
∥curl e∥2L2(Br)

+ ∥∂te∥2L2(Br)

)
dt<

:

∫ ∞

0

e−2s1t
(
∥curl e∥2L2(Br)

+ ∥∂te∥2L2(Br)

)
dt,

it suffices to estimate the integral∫ ∞

0

e−2s1t
(
∥curl e∥2L2(Br)

+ ∥∂te∥2L2(Br)

)
dt.

We take the Laplace transform on both sides of (24) and obtain

(34)

{
curl ĕ+ sµ̃εh̆ = 0, curl h̆− sη̃εĕ− j̆e = F̆, in Br,

B[n× ĕ] = n× h̆− n× V̆ + ğ, on ∂Br.

It follows from Lemma 4 that

(35)
∥curl ĕ∥L2(Br) + ∥sĕ∥L2(Br)<:s

−1
1 (∥sg∥X + ∥sn× V̆∥X

+∥|s|2g∥X + ∥|s|2n× V̆∥X + ∥sF̆∥L2(Br)).

Combining (34) and (28) implies

∥curl h̆∥L2(Br) + ∥sh̆∥L2(Br)<:s
−1
1 (∥sg∥X + ∥sn× V̆∥X

+∥|s|2g∥X + ∥|s|2n× V̆∥X + ∥sF̆∥L2(Br)) + ∥F̆∥L2(Br).

It follows from Lemma 44.1 of [37] that ĕ and h̆ are holomorphic functions of s
on the half-plane s1 > γ > 0, where γ is a positive constant. By applying Theorem

43.1 of [37], we can show that there is the inverse Laplace transform of ĕ and h̆,
which is supported in [0,∞].

Let e = L −1(ĕ), and h = L −1(h̆). Since ĕ = L (e) = F (e−s1te), where F is
the fourier transform with respect to s2, it follows from the Plancherel identity [15,
(2.46)] and (35) that∫ ∞

0

e−2s1t
(
∥curl e∥2L2(Br)

+ ∥∂te∥2L2(Br)

)
dt

=
1

2π

∫ ∞

−∞

{
∥curl ĕ∥2L2(Br)

+ ∥sĕ∥2L2(Br)

}
ds2

<
:
s−2
1

∫ ∞

−∞

{
∥sg∥2X + ∥sn× V̆∥2X + ∥|s|2g∥2X

+∥|s|2n× V̆∥2X + ∥sF̆∥2L2(Br)

}
ds2.

Recalling that F|t=0 = 0 in Br, g|t=0 = ∂tg|t=0 = 0 and n × V|t=0 = ∂t(n ×
V)|t=0 = 0 on ∂Br, we have L (∂tF) = sF̆ in Br, L (∂tg) = sg and L (∂t(n×V)) =
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sn× V̆ on ∂Br. It is not difficult to check that

|s|2ğ = (2s1 − s)sğ = 2s1L (∂tg)− L (∂ttg),

|s|2n× V̆ = (2s1 − s)sn× V̆ = 2s1L (∂t(n×V))− L (∂tt(n×V)).

We thus have∫ ∞

0

e−2s1t
(
∥curl e∥2L2(Br)

+ ∥∂te∥2L2(Br)

)
dt

<
:
(1 + s−2

1 )

∫ ∞

−∞
∥L (∂tg)∥2X + s−2

1

∫ ∞

−∞
∥L (∂ttg)∥2X + ∥L (∂tF)∥2L2(Br)

ds2

+(1 + s−2
1 )

∫ ∞

−∞
∥L (∂t(n×V)∥2X + s−2

1

∫ ∞

−∞
∥L (∂tt(n×V))∥2Xds2

<
:
(1 + s−2

1 )

∫ ∞

0

e−2s1t∥∂tg∥2Xdt+ s−2
1

∫ ∞

0

e−2s1t(∥∂ttg∥2X + ∥∂tF∥2L2(Br)
)dt

+(1 + s−2
1 )

∫ ∞

0

e−2s1t∥∂t(n×V)∥2Xdt+ s−2
1

∫ ∞

0

e−2s1t∥∂tt(n×V)∥2Xdt,

and further e ∈ L2(0, T ;H(curl, Br)) ∩H1(0, T ;L2(Br)). Similarly, we show that
h ∈ L2(0, T ;H(curl, Br))∩H1(0, T ;L2(Br)). Next it turns to the stability analysis.
For t ∈ (0, T ), consider an energy function

e(t) = ∥η̃1/2ε E(·, t)∥2L2(Br)
+ ∥µ̃1/2

ε H(·, t)∥2L2(Br)
+ ∥(η1/2ε ωpe)

−1J∥2L2(Ω).

We observe that

∫ t

0

e′(τ)dτ = ∥η̃1/2ε E(·, t)∥2L2(Br)
+ ∥µ̃1/2

ε H(·, t)∥2L2(Br)
+ ∥(η1/2ε ωpe)

−1J(·, t)∥2L2(Ω)

−∥η̃1/2ε U0∥2L2(Br)
+ ∥µ̃1/2

ε V0∥2L2(Br)
.

Using (9), Lemma 2, and integrating by parts, we have

(36)

∫ t

0

e′(τ)dτ = 2Re

∫ t

0

∫
Br

η̃ε∂tE · Ē+ µ̃ε∂tH · H̄+
1

η̃εω2
pe

∂tJ̃ · J̃dxdτ

= 2Re

∫ t

0

∫
Br

curl H · Ē− curl E · H̄dx− γeJ̃ · J̃− ωe0

∫ τ

0

J̃dζ · J̃

+E · J̃− J̃ · Ē+ F · Ēdxdτ

≤ −2Re

∫ t

0

∫
∂Br

g · ĒT dSdτ + 2Re

∫ t

0

∫
Br

F · Ēdxdτ

<
:
∥g∥L1(0,T ;X ) max

t∈[0,T ]
∥E∥H(curl,Br) + ∥F∥L1(0,T ;L2(Br)) max

t∈[0,T ]
∥E∥L2(Br).

We take the partial derivative with respect to t on both sides of (9), and get the

equations of ∂tE, ∂tH and ∂tJ̃ with the source ∂tg = −x̂×∂tH
inc+G [x̂×∂tE

inc] and

the initial condition ∂tE|t=0 = η̃−1
ε curlV0, ∂tH|t=0 = µ̃−1

ε curlU0, and ∂tJ̃|t=0 =

ηεω
2
peU0. Repeating the process of the proof of (36) for ∂tE, ∂tH and ∂tJ̃, we can
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prove

∥η̃1/2ε ∂tE(·, t)∥2L2(Br)
+ ∥µ̃1/2

ε ∂tH(·, t)∥2L2(Br)
+ ∥(η1/2ε ωpe)

−1∂tJ∥2L2(Ω)

−
{
∥η̃−1/2

ε curlV0∥2L2(Br)
+ ∥µ̃−1/2

ε curlU0∥2L2(Br)
+ ∥η̃1/2ε ωpeU0∥2L2(Br)

}
≤ −2Re

∫
∂Br

∂τg · ĒT (t)dS + 2Re

∫ t

0

∫
∂Br

∂ττg · ĒT dSdτ

+2Re

∫ t

0

∫
Br

∂τF · ∂τ Ēdxdτ

<
:

max
t∈[0,T ]

∥E∥H(curl,Br)( max
t∈[0,T ]

∥∂tg∥X + ∥∂ttg∥L1(0,T ;X ))

+ max
t∈[0,T ]

∥∂tE∥L2(Br)∥∂tF∥L1(0,T ;L2(Br)).

Combining with (36) ends the proof of (33). �

3.3.2. A prior estimate. Next we will derive a prior estimate for the electric
field. To demonstrate the impact of the different sources on the final estimate, we
consider the following initial-boundary value problems, for t > 0:

(37)



η̃ε∂ttE+ curl (µ̃−1
ε curlE) + ∂tJ̃ = 0, in Br,

∂tJ+ γeJ+ ωe0

∫ t

0

Jdτ = ηεω
2
peE, in Ω,

E|t=0 = 0, η̃ε∂tE|t=0 = 0, in Br,

J̃|t=0 = 0, in Br,

x̂× (µ̃−1
ε curl E) + C [x̂×E] = g2, on ∂Br,

and

(38)



η̃ε∂ttE+ curl (µ̃−1
ε curlE) + ∂tJ̃ = ∂tF, in Br,

∂tJ+ γeJ+ ωe0

∫ t

0

Jdτ = ηεω
2
peE, in Ω,

E|t=0 = U0, η̃ε∂tE|t=0 = curlV0, in Br,

J̃|t=0 = 0, in Br,

x̂× (µ̃−1
ε curl E) + C [x̂×E] = 0, on ∂Br,

where η̃ε and µ̃ε have been defined in (10), respectively. Here J̃ = J in Ω and J̃ = 0
in Br \Ω, g2 = x̂× (µ−1

ε curl, Einc)+C [x̂×Einc]. The variational problem of (37)
is to find E ∈ H(curl, Br) for t > 0, ∀w ∈ H(curl, Br) such that

(39)

∫
Br

η̃ε∂ttE · w̄dx = −
∫
Br

µ̃−1
ε curlE · curl w̄dx

−
∫
Ω

∂tJ · w̄dx+ ⟨C [n×E]− g2,w⟩.

Theorem 4. Let E ∈ H(curl, Br) be solution of (37). Under assumptions (A1)–
(A3), for any fixed T > 0, it holds that

(40)
∥∂tE∥L∞(0,T ;L2(Br)) + ∥curlE∥L∞(0,T ;L2(Br))

<
:
T∥g2∥L1(0,T ;X ) + ∥∂tg2∥L1(0,T ;X ),
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and

(41)
∥E∥L2(0,T ;H(curl,Br)) + ∥∂tE∥L2(0,T ;L2(Br))<: T 3/2∥g2∥L1(0,T ;X )

+(T + T 1/2)∥∂tg2∥L1(0,T ;X ).

Proof. It should be mentioned that the proof of this theorem is followed the lines
of the proof of Theorem 4.4 of [29](see also Theorem 4.2 of [19]). But there are
some essential different points. Here we only give these differences.

For ς ∈ (t, T ), define ψ1(x, t) =
∫ ς

t
E(x, τ)dτ, x ∈ Br. Choosing w = ψ1 in

(39), integrating (39) in [0, ς], and taking the real part, we get

(42)

∫ ς

0

∫
Br

η̃ε∂ttE · ψ̄1dxdt+

∫ ς

0

∫
Br

µ̃−1
ε curlE · curl ψ̄1dxdt

= −
∫ ς

0

∫
Ω

∂tJ · ψ̄1dxdt+

∫ ς

0

⟨C [n×E]− g2,ψ1⟩dt.

The terms on the left-hand side of (42) can be treated by virtue of [29, Theorem
4.4] and [19, Theorem 4.2]. Here we only estimate the terms on the right-hand side
of (42). It follows from [29, (4.15)] and (37) that

Re

∫ ς

0

∫
Ω

∂tJ · ψ̄1dxdt = Re

∫
Ω

J · ψ̄1|ς0dx+Re

∫ ς

0

∫
Ω

J · Ē dxdt

= Re

∫ ς

0

∫
Ω

J · Ēdxdt =
1

2

{
∥ 1

η
1/2
ε ωpe

J(·, ς)∥2L2(Ω)

+

∫ ς

0

∫
Ω

γe|J|2dxdt+ ∥ ω
1/2
e0

η
1/2
ε ωpe

∫ ς

0

J(·, ζ)dζ∥2L2(Ω)

}
.

For 0 ≤ t ≤ ς ≤ T , it follows from [29, (4.16)] that

(43)
Re

∫ ς

0

∫
∂Br

g(x, t) · ψ̄1dSdt = Re

∫ ς

0

∫ t

0

∫
Br

g(x, τ) · ĒT (t)dxdτdt

≤
∫ ς

0

∥g(·, t)∥Xdt

∫ ς

0

∥E(·, t)∥H(curl,Br)dt.

Using Lemma 3 and [29, (4.16)] gives
(44)

Re

∫ ς

0

∫
∂Br

C [n×E] · ψ̄1dSdt = Re

∫
∂Br

∫ ς

0

( ∫ t

0

C [n×E](x, τ)dτ
)
· ĒT (t)dtdS ≤ 0.

Combining (42)-(44), for any ς ∈ [0, T ], we have

(45)

∥η̃1/2ε E(·, ς)∥2L2(Br)
+ ∥ 1

η
1/2
ε ωpe

J(·, ς)∥2L2(Ω) +

∫ ς

0

∫
Ω

γe|J|2 dxdt

+

∫
Br

µ̃−1
ε |
∫ ς

0

curlE(x, t)dt|2dx+ ∥ ω
1/2
e0

η
1/2
ε ωpe

∫ ς

0

J(·, ζ)dζ∥2L2(Ω)

≤ 2

∫ ς

0

∥g(·, t)∥Xdt

∫ ς

0

∥E(·, t)∥H(curl,Br)dt.

Since the right-hand side of (45) contains the term
∫ ς

0
(∥curlE∥2 + ∥E∥2)1/2dt,

one cannot immediately give a prior estimate. To this end, we consider the following
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equations, for t > 0;

(46)



η̃ε∂tt(∂tE) + curl (µ̃−1
ε curl ∂tE) + ∂ttJ̃ = 0, in Br,

∂ttJ+ γe∂tJ+ ωe0J = ηεω
2
pe∂tE, in Ω,

∂tE|t=0 = 0, ∂ttE|t=0 = 0, in Br,

∂tJ̃|t=0 = 0, in Br,

x̂× (µ̃−1
ε curl ∂tE) + C [x̂× ∂tE] = ∂tg2, on ∂Br,

where ∂tg2 = x̂ × (µ̃−1
ε curl ∂tE

inc) + C [x̂ × ∂tE
inc]. By introducing a function:

ψ2(x, t) =
∫ ς

t
∂τE(x, τ)dτ, x ∈ Br, 0 ≤ t ≤ ς, and repeating the process of the

proof of (42), we obtain

(47)

∥η̃1/2ε ∂tE(·, ς)∥2L2(Br)
+ ∥ 1

η
1/2
ε ωpe

∂tJ(·, ς)∥2L2(Ω) +

∫ ς

0

∫
Ω

γe|∂tJ|2 dxdt

+∥µ̃−1/2
ε curlE(·, t)∥2L2(Br)

+ ∥ 1

η
1/2
ε ωpe

J(·, ε)∥2L2(Ω)

= 2Re

∫ ς

0

⟨C [n× ∂tE]− ∂tg,ψ2⟩dt.

Using Lemma 3 and [29, (4.16)] implies

(48)

Re

∫ ς

0

∫
∂Br

C [n× ∂tE] · ψ̄2dSdt

= Re

∫
∂Br

∫ ς

0

( ∫ t

0

C [n× ∂tE](x, τ)dτ
)
· ∂tĒT )dtdS ≤ 0,

and

(49)

∫ ς

0

∫
∂Br

∂tg · ψ̄2dSdt = Re

∫
∂Br

∫ ς

0

(

∫ t

0

∂τg(x, τ) dτ) · ∂tĒT (t)dtdS

= Re

∫
∂Br

(

∫ t

0

∂τg(x, τ) dτ) · ĒT (x, t)|ς0dS

−Re

∫
∂Br

∫ ς

0

∂tg(x, t) · ĒT (x, t)dtdS

≤ Re

∫ ς

0

∥∂tg(·, t) ∥Xdt ∥E(·, ς)∥H(curl,Br)

+Re

∫ ς

0

∥∂tg(·, t)∥X ∥E(·, t)∥H(curl,Br)dt.

For any ς ∈ [0, T ], using (45) and (47)-(49), we get

(50)

∥E(·, ς)∥2L2(Br)
+ ∥∂tE(·, ς)∥2L2(Br)

+ ∥curlE(·, ς)∥2L2(Br)

<
:

∫ ς

0

∥g(·, t)∥Xdt

∫ ς

0

∥E(·, t)∥H(curl,Br)dt

+

∫ ς

0

∥∂tg(·, t)∥Xdt ∥E(·, ς)∥H(curl,Br)

+

∫ ς

0

∥∂tg(·, t)∥X ∥E(·, t)∥H(curl,Br)dt.
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Taking the L∞-norm with respect to ς on both sides of (45) yields

∥E∥2L∞(0,T ;L2(Br))
+ ∥∂tE∥2L∞(0,T ;L2(Br))

+ ∥curlE∥2L∞(0,T ;L2(Br))

<
:
(T∥g∥L1(0,T ;X ) + ∥∂tg∥L1(0,T ;X ))∥E∥L∞(0,T ;H(curl,Br)).

By applying the Young inequality, we complete the proof of the estimate (40).
Integrating (50) with respect to ς over [0, T ] and using the Cauchy-Schwarz

inequality, we have

∥E∥2L2(0,T ;H(curl,Br))
+ ∥∂tE∥2L2(0,T ;L2(Br))

<
:
(T 3/2∥g∥L1(0,T ;X )

+(T + T 1/2)∥∂tg(·, t)∥L1(0,T ;X ))∥E∥L2(0,T ;H(curl,Br)).

Therefore, using the Young inequality, we complete the proof of (41). �

Theorem 5. Let E ∈ H(curl, Br) be the solution of the problem (38). Under
assumptions (A1)–(A3), for any fixed T > 0, it holds that

(51) ∥E∥L∞(0,T ;L2(Br))<: ∥U0∥L2(Br) + T∥curlV0∥L2(Br) + ∥F∥L1(0,T ;L2(Br)),

and

(52)
∥E∥L2(0,T ;L2(Br))<: T 1/2∥U0∥L2(Br) + T 3/2∥curlV0∥L2(Br)

+T 1/2∥F∥L1(0,T ;L2(Br)).

Proof. For any ς ∈ [0, T ], similar to (45), we have

(53)

∥η̃1/2ε E(·, ς)∥2L2(Br)
+ ∥ 1

η
1/2
ε ωpe

J(·, ς)∥2L2(Ω) +

∫ ς

0

∫
Ω

γe|J|2 dxdt

+

∫
Br

µ̃−1
ε |
∫ ς

0

curlE(x, t)dt|2dx+ ∥ ω
1/2
e0

η
1/2
ε ωpe

∫ ς

0

J(·, ζ)dζ∥2L2(Ω)

= 2Re

∫ ς

0

∫
Br

∂tF · ψ̄1dxdt = 2Re

∫
Br

F · ψ̄1|ς0dx

+2Re

∫ ς

0

∫
Br

F · Ē dxdt = 2Re

∫ ς

0

∫
Br

F · Ēdxdt

≤ 2

∫ ς

0

∥F(·, t)∥L2(Br)∥E(·, t)∥L2(Br)dt.

Taking the L∞-norm with respect to ς on both sides of (53), and applying the
Young inequality, we complete the proof of (51). Integrating (53) with respect to ς
over [0, T ] and using the Cauchy-Schwarz inequality implies the estimate (52). �

4. Multiscale asymptotic method

In this section, we first present the multiscale asymptotic expansions of the
solution for the reduced problem (9) and then we give the convergence results with
an explicit rate for the multiscale solutions.

4.1. Definitions of cell functions and the homogenized equations. In order
to facilitate the implementation of the multiscale expansions of the reduced problem
problem (9), we first introduce two sets of cells functions. We refer to [8] for the
definitions of two sets of cell functions associated with η(ξ) and µ(ξ) respectively:

(54) θηk(ξ), θ
η
kl(ξ), Θ

η
1(ξ), Θ

η
2(ξ); θµk (ξ), θ

µ
kl(ξ), Θ

µ
1 (ξ), Θ

µ
2 (ξ), k, l = 1, 2, 3,

where θηk(ξ), θ
η
kl(ξ), θ

µ
k (ξ), θ

µ
kl(ξ) are scalar cell functions and Θη

1(ξ), Θ
η
2(ξ), Θ

µ
1 (ξ),

Θµ
2 (ξ) are matrix-valued cell functions defined in the unit cell Q = (0, 1)3.
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The scalar cells functions θηk(ξ), θ
η
kl(ξ), θ

µ
k (ξ), θ

µ
kl(ξ) are defined in turn

(55)


∂

∂ξi

(
ηij(ξ)

∂θηk(ξ)

∂ξj

)
= −∂ηik(ξ)

∂ξi
, ξ ∈ Q,

θηk(ξ) = 0, ξ ∈ ∂Q,

(56)


∂

∂ξi

(
ηij(ξ)

∂θηkl(ξ)

∂ξj

)
= −

∂
(
ηik(ξ)θ

η
l (ξ)

)
∂ξi

−ηkj(ξ)
∂θηl (ξ)

∂ξj
− ηkl(ξ) + η̂kl, ξ ∈ Q,

θηkl(ξ) = 0, ξ ∈ ∂Q,

(57)


∂

∂ξi

(
µij(ξ)

∂θµk (ξ)

∂ξj

)
= −∂µik(ξ)

∂ξi
, ξ ∈ Q,

θµk (ξ) = 0, ξ ∈ ∂Q,

and

(58)



∂

∂ξi

(
µij(ξ)

∂θµkl(ξ)

∂ξj

)
= −

∂
(
µik(ξ)θ

µ
l (ξ)

)
∂ξi

−µkj(ξ)
∂θµl (ξ)

∂ξj
− µkl(ξ) + µ̂kl, ξ ∈ Q,

θµkl(ξ) = 0, ξ ∈ ∂Q,

where the homogenized coefficient matrices q(η) = (η̂kl) and q(µ) = (µ̂kl) are
calculated by

(59) η̂kl =

∫
Q

(
ηkl(ξ) + ηkp(ξ)

∂θηl (ξ)

∂ξp

)
dξ, µ̂kl =

∫
Q

(
µkl(ξ) + µkp(ξ)

∂θµl (ξ)

∂ξp

)
dξ.

Let

(60)

{
θη = (θη1 , θ

η
2 , θ

η
3)

θµ = (θµ1 , θ
µ
2 , θ

µ
3 ),

θη2 =


θη11 θη12 θη13

θη21 θη22 θη23

θη31 θη32 θη33

 , θµ2 =


θµ11 θµ12 θµ13

θµ21 θµ22 θµ23

θµ31 θµ32 θµ33

 .

Remark 4.1. Under the assumptions (A1)–(A2), the existence and uniqueness
of the solutions for the cell problems (55)-(58) can be established based upon Lax-
Milgram lemma. Note that the problems (55)-(58) require the homogeneous Dirich-
let’s boundary conditions instead of the usual periodic boundary conditions.

Next we give the definitions of the matrix-valued cell functions Θη
1(ξ), Θ

η
2(ξ),

Θµ
1 (ξ) and Θµ

2 (ξ). We define Θη
1,p(ξ), Θ

µ
1,p(ξ), p = 1, 2, 3 in the following ways:

(61)


curlξ(η

−1(ξ)curlξΘ
η
1,p(ξ)) = −curlξ(η

−1(ξ)ep), ξ ∈ Q,

∇ξ ·Θη
1,p(ξ) = 0, ξ ∈ Q,

Θη
1,p(ξ)× ν = 0, ξ ∈ ∂Q, p = 1, 2, 3,

(62)


curlξ(µ

−1(ξ)curlξΘ
µ
1,p(ξ)) = −curlξ(µ

−1(ξ)ep), ξ ∈ Q,

∇ξ ·Θµ
1,p(ξ) = 0, ξ ∈ Q,

Θµ
1,p(ξ)× ν = 0, ξ ∈ ∂Q, p = 1, 2, 3,
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where Θη
1,p(ξ) and Θµ

1,p(ξ), p = 1, 2, 3 are the vector-valued functions, ν = (ν1, ν2, ν3)

is the outward unit normal to ∂Q, e1 = {1, 0, 0}T , e2 = {0, 1, 0}T , e3 = {0, 0, 1}T ,
aT denotes the transpose of a vector a. Let

Θη
1(ξ) = (Θη

1,1(ξ),Θ
η
1,2(ξ),Θ

η
1,3(ξ)), Θµ

1 (ξ) = (Θµ
1,1(ξ),Θ

µ
1,2(ξ),Θ

µ
1,3(ξ)).

Remark 4.2. The definitions of Θη
1,p(ξ), Θ

µ
1,p(ξ), p = 1, 2, 3 in (61) and (62) are

similar to (4.128) of Ref. [3]. However, the essential difference is that we take a
perfect conductor boundary condition instead of the periodic boundary condition of
Ref. [3]. Under assumptions (A1)–(A2), the existence and uniqueness of problems
(61) and (62) can be established based upon Lax-Milgram lemma.

Following the idea of Ref. [8] and [9], the second-order vector-valued cell functions
Θη

2,p(ξ) and Θµ
2,p(ξ) are defined as follows:

(63)



curlξ(η
−1(ξ)curlξΘ

η
2,p(ξ)) = −curlξ(η

−1(ξ)Θη
1,p(ξ))

−η−1(ξ)curlξΘ
η
1,p(ξ)− η−1(ξ)ep + q(η−1)ep +∇ξζ

η
2,p(ξ), ξ ∈ Q,

∇ξ ·Θη
2,p(ξ) = 0, ξ ∈ Q,

Θη
2,p(ξ)× ν = 0, ξ ∈ ∂Q, p = 1, 2, 3,

and

(64)



curlξ(µ
−1(ξ)curlξΘ

µ
2,p(ξ)) = −curlξ(µ

−1(ξ)Θµ
1,p(ξ))

−µ−1(ξ)curlξΘ
µ
1,p(ξ)− µ−1(ξ)ep + q(µ−1)ep +∇ξζ

µ
2,p(ξ), ξ ∈ Q,

∇ξ ·Θµ
2,p(ξ) = 0, ξ ∈ Q,

Θµ
2,p(ξ)× ν = 0, ξ ∈ ∂Q, p = 1, 2, 3,

where η−1(ξ) and µ−1(ξ) denote the inverse matrices of η(ξ) and µ(ξ), respectively.
By using [3, (11.46)], the homogenized coefficient matrices q(η−1) and q(µ−1) are
calculated by

(65)
q(η−1) = M

(
η−1(ξ) + η−1(ξ) curlξ Θ

η
1(ξ)

)
,

q(µ−1) = M
(
µ−1(ξ) + µ−1(ξ) curlξ Θ

µ
1 (ξ)

)
,

where the matrix-valued functions Θη
1(ξ) = (Θη

1,1(ξ),Θ
η
1,2(ξ),Θ

η
1,3(ξ)) and Θµ

1 (ξ) =

(Θµ
1,1(ξ),Θ

µ
1,2(ξ),Θ

µ
1,3(ξ)) are given in (61) and (62), respectively, Mv =

∫
Q
v(ξ)dξ.

The functions ζη2,p(ξ) and ζµ2,p(ξ), p = 1, 2, 3 in (63) and (64) are the solutions
of the following elliptic equations:

(66)

{
−∆ξζ

η
2,p(ξ) = ∇ξ · G̃η(ξ), ξ ∈ Q,

ζη2,p(ξ) = 0, ξ ∈ ∂Q,

and

(67)

{
−∆ξζ

µ
2,p(ξ) = ∇ξ · G̃µ(ξ), ξ ∈ Q,

ζµ2,p(ξ) = 0, ξ ∈ ∂Q,

where ∇ξ· = divξ, and

(68)
G̃η(ξ) = −η−1(ξ)curlξ Θ

η
1,p(ξ)− η−1(ξ)ep + q(η−1)ep,

G̃µ(ξ) = −µ−1(ξ)curlξ Θ
µ
1,p(ξ)− µ−1(ξ)ep + q(µ−1)ep.

It can be verified that

(69) ∇ξ · (G̃η(ξ) +∇ξζ
η
2,p(ξ)) = 0, ∇ξ · (G̃µ(ξ) +∇ξζ

µ
2,p(ξ)) = 0,
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and

(70) ζη2,p, ζµ2,p ∈ H2(Q) ∩H1
0 (Q).

Therefore, we define the matrix-valued function Θη
2(ξ) = (Θη

2,1(ξ),Θ
η
2,2(ξ),Θ

η
2,3(ξ))

and Θµ
2 (ξ) = (Θµ

2,1(ξ),Θ
µ
2,2(ξ),Θ

µ
2,3(ξ)).

Using the Fourier transform on both sides of (4) with respect to t, we obtain the
time-harmonic Maxwell’s equations in Ω as follows:

(71)


iωηε(x)

[
1 +

ω2
pe

ω2 − iωγe − ωe0

]
Eε(x, ω)− curl Hε(x, ω) = F(x, ω),

iωµε(x)Hε(x, ω) + curl Eε(x, ω) = 0,

∇ · (ηε(x)Eε(x, ω)) = ρ(x, ω), ∇ · (µε(x)Hε(x, ω)) = 0.

The homogenized Maxwell’s equations associated with (71) can be written as

(72)


iωq(η)(1 +

ω2
pe

ω2 − iωγe − ωe0

)E0(x, ω)− curl H0(x, ω) = F(x, ω),

iωq(µ)H0(x, ω) + curl E0(x, ω) = 0,

∇ · (q(η)E0(x, ω)) = ρ(x, ω), ∇ · (q(µ)H0(x, ω)) = 0,

where q(η) and q(µ) are the homogenized coefficient matrices of η and µ, respec-
tively. By virtue of the inverse Fourier transform, we obtain the homogenized
Maxwell’s equations associated with the original problem (1)-(6) in Ω as follows,
for t > 0:

(73)


q(η)∂tE0(x, t)− curl H0(x, t) + J0(x, t) = F(x, t),

q(µ)∂tH0(x, t) + curl E0(x, t) = 0,

∂tJ0(x, t) + γeJ0(x, t) + ωe0

∫ t

0

J0(x, τ)dτ = q(η)ω2
peE0(x, t),

which is coupled to the exterior problem (1)-(2) via the boundary conditions (5).
Here the initial conditions (6) are prescribed, the scattering field and the total
filed in Ωe are denoted by (Esc

0 (x, t),Hsc
0 (x, t)) and (Etot

0 (x, t),Htot
0 (x, t)), respec-

tively. The homogenized coefficient matrices q(η) = (η̂ij) and q(µ) = (µ̂ij) can be
calculated by (59).

Using the time-domain transparent boundary condition, we reformulate the scat-
tering problem of the homogenized Maxwell’s equations (73) into the following
initial-boundary value problem, for t > 0:

(74)



q(η)∂tE0 − curlH0 + J̃0 = F(x, t), in Br,

q(µ)∂tH0 + curlE0 = 0, in Br,

∂tJ0 + γeJ0 + ωe0

∫ t

0

J0dτ = q(η)ω2
peE0, in Ω,

E0|t=0 = U0, H0|t=0 = V0, in Br,

J̃0|t=0 = 0, in Br,

G [n×E0] = n×H0 + g, on ∂Br,

where J̃0 = J0 in Ω and J̃0 = 0 in Br \ Ω. Here we take E0 = Etot
0 , H0 = Htot

0 ,
q(µ) = µ0I3 and q(η) = η0I3 in Br \ Ω.
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Figure 2. (a) the symmetry of Q. (b) the sides of Q.

4.2. Multiscale asymptotic expansions. Now we refer to [8] for the definition
of the multiscale asymptotic expansions of the solution for the reduced problem (9)
in Ω, for t > 0:

(75)

E(1)
ε (x, t) = E0(x, t) + ε∇

(
θηk(ξ)E0k(x, t)

)
− εΘµ

1 (ξ)q(µ)∂tH0(x, t),

E(2)
ε (x, t) = E0(x, t) + ε∇

(
θηk(ξ)E0k(x, t) + εθηkl(ξ)∂xl

E0k(x, t)
)

−εΘµ
1 (ξ)q(µ)∂tH0(x, t)− ε2Θµ

2 (ξ)curlx
(
q(µ)∂tH0(x, t)

)
,

(76)

H(1)
ε (x, t) = H0(x, t) + ε∇

(
θµk (ξ)H0k(x, t)

)
+ εΘη

1(ξ)q(η)∂tE0(x, t),

H(2)
ε (x, t) = H0(x, t) + ε∇

(
θµk (ξ)H0k(x, t) + εθµkl(ξ)∂xl

H0k(x, t)
)

+εΘη
1(ξ)q(η)∂tE0(x, t) + ε2Θη

2(ξ)curlx
(
q(η)∂tE0(x, t)

)
,

where (E0(x, t),H0(x, t)) is the solution of the scattering problem of the homog-
enized equations (74). The homogenized coefficient matrices q(η) and q(µ) have
been given above. In Br \ Ω, we define

(77) E(s)
ε (x, t) = Etot

0 (x, t), H(s)
ε (x, t) = Htot

0 (x, t), s = 1, 2,

where E
(s)
ε (x, t)|t=0 = U0, H

(s)
ε (x, t)|t=0 = V0.

In order to derive the convergence results for the multiscale asymptotic expan-
sions (75)-(77), we need to impose the following conditions on the coefficient ma-
trices and the initial conditions:

(A4). Let ξ = ε−1x and the coefficient matrices η(ξ) = η(ξ)I3 and µ(ξ) =
µ(ξ)I3, where I3 is an 3 × 3 identity matrix. Assume that η(ξ) and µ(ξ) are
symmetric with respect to the middle plane ∆k of Q = (0, 1)3, where ∆k, k = 1, 2,
are illustrated in Figure 2(a) in the two dimensional case.

(A5). ∇ ·U = 0, ∇ ·V = 0.

Remark 4.3. The condition (A4) indicates that composite materials satisfy geo-
metric symmetric properties in a periodic microstructure, which will be only used
for deriving the convergence results for the multiscale asymptotic method.

Next we give convergence theorems for the multiscale asymptotic solutions de-
fined in (75)-(77).

Theorem 6. Suppose that Ω ⊂ R3 is the union of entire periodic cells, i.e.,
Ω =

∪
z∈Iε

ε(z + Q), where Iε = {z ∈ Z3, ε(z + Q) ⊂ Ω} and ε > 0 is any fixed
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small parameter. Let (Eε(x, t),Hε(x, t)) be the solution of the reduced problem (9),

and let (E
(1)
ε (x, t),H

(1)
ε (x, t)) and (E

(2)
ε (x, t),H

(2)
ε (x, t)) be the first-order and the

second-order multiscale asymptotic solutions defined in (75)-(77), respectively. Un-
der assumptions (A1)–(A5), if (E0,H0) ∈ H1(0, T ;H3(Ω)) ∩ H2(0, T ;H2(Ω)) ∩
H3(0, T ;H1(Ω)), T < ∞ and arbitrary, then we obtain the following error esti-
mates:
(78)

∥curl(Eε −E(s)
ε )∥L∞(0,T ;L2(Br)) + ∥∂t(Eε −E(s)

ε )∥L∞(0,T ;L2(Br))

+∥curl(Hε −H(s)
ε )∥L∞(0,T ;L2(Br)) + ∥∂t(Hε −H(s)

ε )∥L∞(0,T ;L2(Br)) ≤ C(T )ε,

where s = 1, 2, and C(T ) is a constant independent of ε, but dependent of T .

Proof. We prove Theorem 6 only for the case s = 1. The case s = 2 is similar. Due
to the limitation of space, the details are omitted.

For the sake of simplicity, we set

E(1)
ε =

(
E

(1)
ε

H
(1)
ε

)
, R1 =

(
R

(1)
1

R
(2)
1

)
,
−→
∇× =

(
0 curl

−curl 0

)
,
−→
∇ =

(
∇ 0
0 ∇

)
,

−→∇· =
(
div 0
0 div

)
, J =

(
ω2
peg(t) 0
0 0

)
6×6

=
(
aij(

x

ε
)
)
6×6

,

θ =

(
θη1 θη2 θη3
θµ1 θµ2 θµ3

)
, Θ1 =

(
0 −Θµ

1

Θη
1 0

)
.

From (75)-(76), it is not difficult to check that

E(1)
ε = E0 + ε

−→
∇(θE0) + εΘ1A0∂tE0.

Using (4), (73) and (75)-(76), taking into account curl → curlx + ε−1curlξ, we
get

(79) Aε∂t(Eε − E(1)
ε ) =

−→
∇ × (Eε − E(1)

ε )−AεJ ∗ (Eε − E(1)
ε ) +R1,

which holds in the sense of distributions and

(80)

R1 = (A0 −Aε −Aε
−→∇ξθ)∂tE0 − εAε

−→∇x(θ∂tE0))− εAεΘ1A0∂ttE0

+ε
−→
∇x × (Θ1A0∂tE0)) +

−→
∇ξ × (Θ1A0∂tE0))− εΘ1

−→
∇x ×A0∂tE0

+(A0 −Aε −Aε
−→∇ξθ)J ∗ E0 − εAε

−→∇x(θ(J ∗ E0))− εAεΘ1(J ∗ A0∂tE0),

where ∗ denotes a convolution of functions with respect to t defined in Introduction.
Set

(81)

G1(ξ,x, t) = (A0 −Aε −Aε
−→
∇ξθ)∂tE0,

G2(ξ,x, t) = (A0 −Aε −Aε
−→∇ξθ)J ∗ E0,

G3(ξ,x, t) =
−→
∇ξ × (Θ1A0∂tE0)).

Under the assumptions of this theorem, for any fixed t ∈ (0, T ), we can check
that Gi(ξ,x, t), i = 1, 2, 3 are bounded and measurable in (ξ,x), 1-periodic in ξ,
and Lipschitz continuous with respect to x uniformly in ξ. Furthermore, we get

(82)

∫
Q

Gi(ξ,x, t)dξ = 0, i = 1, 2, 3.
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Given (E0,H0) ∈ H1(0, T ;H3(Ω))∩H2(0, T ;H2(Ω))∩H3(0, T ;H1(Ω)), T < ∞
and arbitrary. Applying [31, Lemma 1.6], we show that, for k = 1, 2,

(83)

∣∣∣∣ max
t∈[0,T ]

∫
Ω

R
(k)
1 · v̄dx

∣∣∣∣ ≤ C(T )ε∥v∥L∞(0,T ;H1(Ω)), ∀v ∈ L∞(0, T ;H1(Ω)),

where C(T ) is a constant independent of ε, but dependent of T .
By taking into account div → divx + ε−1divξ, we recall (4), (75), and obtain

(84)

−→
∇ · (Aε(Eε − E(1)

ε )) =
−→
∇ · (AεEε)−

−→
∇ · (AεE(1)

ε )

=
−→
∇ · (A0E0)−

−→
∇ · (AεE(1)

ε ) = −ε−1−→∇ξ · (Aε +Aε
−→
∇ξθ)E0

−(Aε +Aε
−→∇ξθ −A0)

−→∇x · E0 −
−→∇ξ · (Aε

−→∇x(θE0))

−
−→
∇ξ · (AεΘ1A0∂tE0)− ε

−→
∇x · (AεΘ1A0∂tE0)

= −(Aε +Aε
−→
∇ξθ −A0)

−→
∇x · E0 −

−→
∇ξ · (Aε

−→
∇x(θE0))

−
−→∇ξ · (AεΘ1A0∂tE0)− ε

−→∇x · (AεΘ1A0∂tE0) ≡ H1(ξ,x, t).

Here we have used the fact that
−→
∇ · (AεEε) =

−→
∇ · (A0E0) = 0, which holds in the

sense of distributions under the assumptions (A1)− (A5).
Set

(85)

G4(ξ,x, t) = −(Aε +Aε
−→
∇ξθ −A0)

−→
∇x · E0,

G5(ξ,x, t) = −
−→
∇ξ · (Aε

−→
∇x(θE0)),

G6(ξ,x, t) =
−→∇ξ · (AεΘ1A0∂tE0).

For any fixed t ∈ (0, T ), similarly we can show that the functions Gk(ξ,x, t), k =
4, 5, 6 are bounded and measurable in (ξ,x), 1-periodic in ξ, Lipschitz continuous
with respect to x uniformly in ξ, and

(86)

∫
Q

Gk(ξ,x, t)dξ = 0, k = 4, 5, 6.

Setting Gk = (G(1)
k ,G(2)

k )T and applying [31, Lemma 1.6] again, we have

(87) max
t∈[0,T ]

∣∣∣∣∫
Ω

G(i)
k (

x

ε
,x, t) · v̄dx

∣∣∣∣ ≤ C(T )ε∥v∥L∞(0,T ;H1(Ω)), i = 1, 2,

where k = 4, 5, 6, and C(T ) is a constant independent of ε, but dependent T .

Set H1 = (H(1)
1 ,H(2)

1 )T . Similarly, for any fixed t ∈ (0, T ), combining (84) and
(87) leads to

(88) max
t∈[0,T ]

∣∣∣∣∫
Ω

H(k)
1 (

x

ε
,x, t) · v̄dx

∣∣∣∣ ≤ C(T )ε∥v∥L∞(0,T ;H1(Ω)), k = 1, 2.

Set πε(x, t) = (π
(1)
ε , π

(2)
ε )T , where π

(1)
ε and π

(2)
ε are respectively the solutions of

the following elliptic equations:

(89)

 −∆π
(k)
ε (x, t)) = H(k)

1 (xε ,x, t), x ∈ Ω,

π
(k)
ε (x, t) = 0, x ∈ ∂Ω, k = 1, 2,

where t ∈ (0, T ) plays the role of a parameter. Combining (88)-(89), for any fixed
t ∈ (0, T ), we have

(90) ∥π(k)
ε ∥H1(Ω) ≤ Cε, k = 1, 2,
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where C is a constant independent of ε.
If we take

(91) Ẽ(1)
ε (x, t) = E(1)

ε (x, t)−A−1
ε

−→∇πε(x, t),

then it is obvious that

(92)
−→∇ ·

(
Aε(Eε(x, t)− Ẽε

1 (x, t))
)
= 0.

Assume that Ω is the union of entire cells. We recall the boundary conditions of
cell functions θηk , θ

µ
k , Θ

η
1 and Θµ

1 , and obtain

(93)
(Eε(x, t)−E(1)

ε (x, t))× n = (Esc(x, t)−Esc
0 (x, t))× n, x ∈ ∂Ω,

(Hε(x, t)−H
(1)
ε (x, t))× n = (Hsc(x, t)−Hsc

0 (x, t))× n, x ∈ ∂Ω,

where (Esc,Hsc) and (Esc
0 ,Hsc

0 ) satisfy (1)-(2), and n is the outward unit normal

to ∂Ω. Furthermore, for any fixed t ∈ (0, T ), we know that π
(k)
ε ∈ H2(Ω) ∩H1

0 (Ω),
and obtain (see [3, p. 144])

(94) ∇π(k)
ε × n = 0.

For x ∈ ∂Ω, we thus get

(95)
(Eε(x, t)− Ẽ

(1)
ε (x, t))× n = (Esc(x, t)−Esc

0 (x, t))× n,

(Hε(x, t)− H̃
(1)
ε (x, t))× n = (Hsc(x, t)−Hsc

0 (x, t))× n.

From (79) and (91), we have

(96) Aε ∂t(Eε − Ẽ(1)
ε ) =

−→
∇ × (Eε − Ẽ(1)

ε )−AεJ ∗ (Eε − Ẽ(1)
ε ) +R1,

where

(97) R1 = R1 −
−→∇(∂tπε) +

−→∇ × (A−1
ε

−→∇πε) + J ∗
−→∇πε(x, t)

where R1 has been given in (80) and R1 = (R(1)
1 ,R(2)

1 )T .

Denote by e = Eε − Ẽ
(1)
ε , h = Hε − H̃

(1)
ε , es = Esc −Esc

0 , and hs = Hsc −Hsc
0 ,

where (es,hs) satisfies (1)-(2). It follows from (79) and (93) that (e,h) is the
solution of the following initial-boundary value problem, for t > 0

(98)



η̃ε∂te− curl h = −η̃εω
2
peg(t) ∗ e+R(1)

1 , in Br,

µ̃ε∂th+ curl e = R(2)
1 , in Br,

e|t=0 = 0, h|t=0 = 0, in Br,

G [n× e] = n× h, on ∂Br,

where R(1)
1 = R(2)

1 ≡ 0 in Br \ Ω.
Since ηε and µε are respectively rapidly oscillating 1-periodic functions with

piecewise constants thanks to (A1)− (A2), using (92), we have

(99)
∥div e∥2L2(Ω)<:∥η

2
εdiv e∥2L2(Ω) = ∥div (ηεe)∥2L2(Ω) = 0,

∥div h∥2L2(Ω)<:∥µ
2
εdiv h∥2L2(Ω) = ∥div (µεh)∥2L2(Ω) = 0.

For any fixed t ∈ (0, T ), set j(·, t) = ηεω
2
peg(t) ∗ e and define an energy function

as follows:

e(t) = ∥η̃1/2ε e(·, t)∥2L2(Br)
+ ∥µ̃1/2

ε h(·, t)∥2L2(Br)
+ ∥(η1/2ε ωpe)

−1j(·, t)∥2L2(Ω).

We observe that∫ t

0

e′(τ)dτ = ∥η̃1/2ε e(·, t)∥2L2(Br)
+ ∥µ̃1/2

ε h(·, t)∥2L2(Br)
+ ∥(η1/2ε ωpe)

−1j(·, t)∥2L2(Ω).
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From (98)-(99), using Lemma 3, Corollary 3.6 of [20, p. 55] and integrating by
parts, we get

(100)

∫ t

0

e′(t)dt = 2Re

∫ t

0

∫
Br

{
η̃ε∂te · ē+ µ̃ε∂th · h̄+

1

η̃εω2
pe

∂tj · j̄
}
dxdτ

≤ 2Re

∫ t

0

∫
∂Br

G [n× e] · ēT dSdτ + 2Re

∫ t

0

∫
Ω

R(1)
1 · ē+R(2)

1 · h̄ dxdτ

≤ 2Re

∫ t

0

∫
Ω

{
R(1)

1 · ē+R(2)
1 · h̄

}
dxdτ

≤ C(t)ε
{

max
t∈[0,T ]

∥e∥H(curl,Ω) + max
t∈[0,T ]

∥h∥H(curl,Ω)

}
.

By taking the partial derivative with respect to t on both sides of (98), we can
follow (100) for ∂te and ∂th and get the following estimate:

∥η̃1/2ε ∂te(·, t)∥2L2(Br)
+ ∥µ̃1/2

ε ∂th(·, t)∥2L2(Br)
+ ∥(η1/2ε ωpe)

−1∂tj(·, t)∥2L2(Ω)

≤ 2Re
∫ t

0

∫
Ω

{
∂τR(1)

1 · ∂τ ē+ ∂τR(2)
1 · ∂τ h̄

}
dxdτ

≤ 2Re
∫
Ω

{
∂tR(1)

1 · ē+ ∂tR(2)
1 · h̄

}
dx− 2Re

∫ t

0

∫
Ω

{
∂ττR(1)

1 · ē+ ∂ττR(2)
1 · h̄

}
dxdτ

≤ C(t)ε
{

max
t∈[0,T ]

∥e∥H(curl,Ω) + max
t∈[0,T ]

∥h∥H(curl,Ω)

}
.

Therefore, using (100), we complete the proof of (78). �

Theorem 7. Suppose that Ω ⊂ R3 is the union of entire periodic cells, i.e., Ω =∪
z∈Iε

ε(z + Q), where Iε = {z ∈ Z3, ε(z + Q) ⊂ Ω} and ε > 0 is any fixed

small parameter. Let (Eε(x, t),Hε(x, t)) be the solution of the reduced problem

(9), and let (E
(1)
ε (x, t),H

(1)
ε (x, t)) and (E

(2)
ε (x, t),H

(2)
ε (x, t)) be the first-order and

the second-order multiscale asymptotic solutions defined in (75)-(77), respectively.
Under assumptions (A1)–(A5), if (E0,H0) ∈ H1(0, T ;H3(Ω))∩H2(0, T ;H2(Ω))∩
H3(0, T ;H1(Ω)), then we have the following error estimates:

(101) ∥curl(Eε −E
(s)
ε )∥L2(0,T ;L2(Br)) + ∥∂t(Eε −E

(s)
ε )∥L2(0,T ;L2(Br)) ≤ C(T )ε,

where s = 1, 2 and C(T ) is a constant independent of ε, but dependent of T .

Proof. Due to the limitation of space, we only give the proof of (101) for the case
s = 1. The case s = 2 is similar.

Set

Eε − Ẽ(1)
ε =

(
e
h

)
.

From (98), by eliminating h, we get the following initial-boundary value problem:

(102)


η̃ε∂tte = curl µ̃−1

ε curl e− ∂tJ̃e + ∂tR(1)
1 + curl (µ̃−1

ε R(2)
1 ), in Br

e|t=0 = 0, ∂te|t=0 = 0, in Br

n× (µ̃−1
ε curl e) + C [n× e] = 0, on ∂Br,

where C = L −1 ◦ sGe ◦ L and Je = ηεω
2
pe

∫ t

0
g(t− τ)e(x, τ)dτ , J̃e = Je in Ω and

J̃e = 0 in Br \ Ω.
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For ς ∈ (t, T ), we introduce an auxiliary function ψ1(x, t) =
∫ ς

t
e(x, τ)dτ, x ∈

Br. Following the lines of the proof of Theorem 4, we prove

(103)

∥η̃1/2ε e(·, ς)∥2L2(Br)
+ ∥ 1

η̃
1/2
ε ωpe

J̃e(·, ς)∥2L2(Br)
+

∫ ς

0

∫
Br

γe|J̃e|2 dxdt

+

∫
Br

µ̃−1
ε |
∫ ς

0

curl e(x, t)dt|2dx+ ∥ ω
1/2
e0

η̃
1/2
ε ωpe

∫ ς

0

J̃e(·, ζ)dζ∥2L2(Br)

≤ 2Re

∫ ς

0

∫
Br

{
∂tR(1)

1 + curl (µ−1
ε R(2)

1 )
}
· ψ̄1 dxdt.

Furthermore, we have

(104)

∫ ς

0

∫
Br

∂tR(1)
1 · ψ̄1dxdt =

∫
Br

R(1)
1 · ψ̄1|ς0dx+

∫ ς

0

∫
Br

R(1)
1 · ē dxdt

=

∫ ς

0

∫
Br

R(1)
1 · ē dxdt ≤ C(T )ε∥ e∥L2(0,T ;H(curl,Ω)),

and
(105)∫ ς

0

∫
Br

curl
(
µ̃−1(xε )R

(2)
1

)
· ψ̄1dxdt =

∫
Br

∫ ς

0

∫ t

0
curl

(
µ̃−1(xε )R

(2)
1

)
dτ · ēdtdx

=
∫
Br

∫ ς

0

(
curlx

(
{
(
µ̃−1(ξ) + µ̃−1(ξ)curlξΘ

µ
1 (ξ)

)
q(µ)− I3 −∇ξθ

µ(ξ)}H0(x, t)
)

+ε−1{curlξ
(
µ̃−1(ξ) + µ̃−1(ξ)curlξΘ

µ
1 (ξ)

)
q(µ)H0(x, t)}

−curlξ
(
∇x∂tH0(x, t)θ

µ(ξ)
)
− curlξ

(
Θη

1(ξ)q(η)∂tE0(x, t)
)

+curlξ

(
µ̃−1(ξ)curlx

(
Θµ

1 (ξ)q(µ)H0(x, t)
))

−εcurlx
(
∇x∂tH0(x, t)θ

µ
)
− εcurlx

(
Θη

1(ξ)q(η)∂tE0(x, t)
)

+εcurlx

(
µ̃−1(ξ)curlx

(
Θµ

1 (ξ)q(µ)H0(x, t)
)))

· ē dtdx.

Using (2.4) of [8] and (11.46) of [3, p. 145], it can be shown that∫
Q

(
(µ−1(ξ) + µ−1(ξ)curlξ Θ1)q(µ)− I3 −∇ξθ

µ
)
dξ = q(µ−1)q(µ)− I3 = 0.

Here we have used the fact q(µ−1) = q(µ)−1 (see (5.61)-(5.62) of [3, p. 64]). On
the other hand, we recall the cell problem (2.7)-(2.8) defined in [8] and have

curlξ
(
µ−1(ξ) + µ−1(ξ)curlξΘ

µ
1

)
= 0.

Similarly, we use [31, Lemma 1.6] and obtain

(106) |
∫ ς

0

∫
Ω

curl
(
µ−1(

x

ε
)∂tR(2)

1

)
· ψ̄1dxdt| ≤ C(T )ε∥e∥L2(0,T ;H(curl;Ω)),

where C(T ) is a constant independent of ε, but dependent of T .
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By taking the partial derivative with respect to t on both sides of (102), we
follow (103) for ∂te and ∂th, and then get the following estimate:

(107)

∥η̃1/2ε ∂te(·, ς)∥2L2(Br)
+ ∥ 1

η
1/2
ε ωpe

∂tJe(·, ς)∥2L2(Ω) +
∫ ς

0

∫
Ω
γe|∂tJe|2 dxdt

+∥µ̃−1/2
ε curl e(·, ς)∥2L2(Br)

+ ∥ 1
η1/2ε ωpe

Je(·, ε)∥2L2(Ω)

≤ 2Re
∫ ς

0

∫
Br

(∂ttR(1)
1 + curl (µ̃−1

ε ∂tR(2)
1 )) · ψ̄2 dxdt

≤ 2Re
∫
Br

∫ ς

0

∫ t

0
(∂ττR(1)

1 + curl (µ̃−1
ε ∂τR(2)

1 ))dτ · ∂tē dtdx

≤ 2Re
∫
Br

∫ ς

0
(∂ttR(1)

1 + curl (µ̃−1
ε ∂tR(2)

1 )) · ē dtdx

≤ C(T )ε∥e∥L2(0,T ;H(curl;Ω)).

Therefore, by combining (103), we complete the proof of (101). �

5. A multiscale Crank-Nicolson mixed finite element method and nu-
merical examples

5.1. A multiscale Crank-Nicolson mixed finite element method. Based on
the theoretical results presented in Section 3, we first introduce a multiscale Crank-
Nicolson mixed finite element method for heterogeneous scattering problems of
Maxwell’s equations (1)-(6). The method can be described as follows:

Step 1. Compute the scalar cell functions θηk(ξ), θ
µ
k (ξ), θ

η
kl(ξ), θ

µ
kl(ξ), k, l =

1, 2, 3 and the matrix-valued cell functions Θη
1(ξ), Θ

µ
1 (ξ), Θ

η
2(ξ), Θ

µ
2 (ξ) in the unit

cell Q = (0, 1)3, respectively. Then compute the homogenized coefficient matrices
q(η) and q(µ), respectively.

Step 2. Solve numerically the scattering problems of the homogenized Maxwell’s
equations (73).

Step 3. Use the difference quotients to compute the derivatives of the solution
(E0(x, t),H0(x, t)) for the homogenized time-dependent Maxwell’s equations (73).
The detailed formulas can be found in [8, 9, 10].

At Step 1, we refer to [8, 9] for computing the scalar cell functions θηk(ξ), θ
µ
k (ξ),

θηkl(ξ), θµkl(ξ), k, l = 1, 2, 3 and the matrix-valued cell functions Θη
1(ξ), Θη

2(ξ) ,
Θµ

1 (ξ), Θµ
2 (ξ). For the numerical algorithms and the convergence, we refer the

reader to [9, 10, 30, 40, 42]. Once the cell functions θηk(ξ), θµk (ξ), k = 1, 2, 3
are calculated numerically, we can get the numerical solutions of the homogenized
coefficient matrices q(η) and q(µ) by using the formulas (59).

Next we focus on discussing the numerical computation for the scattering prob-
lem of the homogenized Maxwell’s equations (74). In the real computation, we
replace the homogenized coefficient matrices q(η) and q(µ) by their numerical solu-
tions η̂h0 and µ̂h0 , where h0 is the mesh size for solving the cell problems. Therefore,
the modified homogenized Maxwell’s equations associated with (74) can be written
as follows, for t > 0

(108)



η̂h0∂tE0 − curlH0 + J̃0 = F, in Br,

µ̂h0∂tH0 + curlE0 = 0, in Br,

∂tJ0 + γeJ0 + ωe0

∫ t

0
J0dτ = η̂h0ω2

peE0, in Ω,

E0(x, 0) = U0, H0(x, 0) = V0, in Br

J̃0(x, 0) = 0, in Br,

G [n×E0] = n×H0 + g, on ∂Br.
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(a) (b) (c)

Figure 3. (a) A whole domain Ω of composite materials with
two subdivided periodic microstructures: blue and grey; (b) the
reference cell Q = (0, 1)3; (c) the reference cell Q∗ = (0, 1)3.

Remark 5.1. Using Proposition 3.3 of [9], we can estimate the difference between
the solution of the modified homogenized Maxwell’s equations (108) and that of the
homogenized Maxwell’s equations (74).

At Step 2, we employ the lowest order divergence and curl conforming (called
Raviart-Thomas-Nédélec) tetrahedral element, utilize PML to truncate infinite do-
main, and use the implicit Crank-Nicolson scheme to solve the scattering problems
of the modified homogenized Maxwell’s equations in a coarse mesh and at the larger
time step.

Remark 5.2. The error analysis of the Crank-Nicolson mixed finite element method
for solving the modified homogenized Maxwell’s equations with constant coefficients
and the PML equations can be found in the paper [22, 28]. Based on the theoretical
results of the proposed multiscale method in this paper (see Theorems 6 and 7), it is
not difficult to obtain the error estimates for the multiscale Crank-Nicolson mixed
finite element method. Due to the limitation of space, we omit the convergence
results and their proofs.

5.2. Numerical examples. To validate the multiscale method and the conver-
gence results presented in this paper, next we give some numerical examples.

Example 5.1. We consider the time-dependent scattering problems (1)-(6) of
Maxwell’s equations in dispersive media with two subdivided periodic microstruc-
tures, which are displayed with different colors such as blue and grey. The different
reference cells Q and Q∗ are shown in fig. 3:(b) and (c), respectively. The whole

domain Ω of composite materials is shown in fig. 3:(a). Here we take ε = 1
4 , and

the excitation is a plane wave from the direction (θinc, ϕinc). The incident electric
field is given by

Einc = (cosαθ̂ + sinαϕ̂)Ê0f
(
t− k̂inc · (r− r0)/c0

)
,

where α is the polarization angle, Ê0 is the peak field strength, r0, is a reference

position vector, c0 = 1 is the speed of light, k̂inc is the unite vector along the incident

direction, and f
(
t−k̂inc·(r−r0)/c0

)
is the temporal profile of the incident field. Here

a tapered sinusoidal temporal profile is given by f(t) = (1 − exp(−t/τp)) sin(ω0t),
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Table 1. Comparison of computational costs in Examples 5.1.

Original eqs. Scalar cell eqs. Matrix-valued cell eqs. Homogenized eqs.

Elements 769250 92090 92090 233631

Dof 5539923 17406 112228 1691124

The time step ∆t = 0.001 ∆t′ = 0.005

Table 2. Comparison of the computational errors.

∥e0∥(0)
∥Eε∥(0)

∥e1∥(0)
∥Eε∥(0)

∥e0∥(1)
∥Eε∥(1)

∥e1∥(1)
∥Eε∥(1)

∥h0∥(0)
∥Hε∥(0)

∥h1∥(0)
∥Hε∥(0)

∥h0∥(1)
∥Hε∥(1)

∥h1∥(1)
∥Hε∥(1)

Case 4.1 0.0283 0.0174 0.2706 0.1572 0.0809 0.0404 0.5835 0.3933

Case 4.2 0.0191 0.0118 0.1487 0.0796 0.1094 0.0650 0.6060 0.4087

where τp = 4T0 and T0 = 2π/ω0.

Case 4.1. µ(
x

ε
) =


5.0, in a cube of Q,
1.0, others of Q,
0.1, in a cube of Q∗,
1.0, others of Q∗,

η(
x

ε
) =


2.5, in a cube of Q,
1.0, others of Q,
0.01, in a cube of Q∗,
1.0, others of Q∗,

Case 4.2. µ(
x

ε
) =


1.0, in a cube of Q,
4.0, others of Q,
0.01, in a cube of Q∗,
1.0, others of Q∗,

η(
x

ε
) =


2.5, in a cube of Q,
8.0, others of Q,
0.1, in a cube of Q∗,
1.0, others of Q∗.

In order to demonstrate the numerical accuracy of the proposed method, the ex-
act solution (Eε(x, t),Hε(x, t)) of the time-dependent Maxwell’s equations (1)-(6)
with rapidly oscillating coefficients must be available. Since the elements of the co-
efficient matrices η(xε ) and µ(xε ) maybe are discontinuous, generally speaking, it is
an extremely difficult task or even impossible to give the exact solution of the above
Maxwell’s equations. To this end, we replace the exact solution (Eε(x, t),Hε(x, t))
by the numerical solution in a very fine mesh and at a small time step. It should
be emphasized that this step is not necessary in the real applications.

Without confusion we denote by (Eε(x, t),Hε(x, t)) the numerical solution of
the time-dependent Maxwell’s equations (1)-(6) in a fine mesh and at a small
time step, and let (E0,h(x, t),H0,h(x, t)) be the numerical solution of the modi-
fied homogenized Maxwell’s equations in a coarse mesh and at the larger time step.

(E
(1)
ε,h(x, t), H

(1)
ε,h(x, t)) are the first-order multiscale numerical solutions of the prob-

lems (1)-(6) based on (75)-(76), respectively. Set e0 = Eε − E0,h, e1 = Eε − E
(1)
ε,h,

h0 = Hε −H0,h, and h1 = Hε −H
(1)
ε,h. For convenience, We introduce the notation

∥u∥(0) = ∥u(·, T )∥L2(Ω) and ∥u∥(1) = ∥u(·, T )∥H(curl;Ω).
Comparison of computational costs for solving the related problems is listed in

Table 1. The relative numerical errors of the homogenization method and the first-
order multiscale method in the L2(Ω)-norm and in the H(curl; Ω)-norm at the
time T = 8.0 for Cases 4.1 and 4.2 are shown in Table 2. The evolution of the
relative errors of the homogenization method and the first-order multiscale method
for computing (Eε(x, t),Hε(x, t)) in L2(Ω) norm and in H(curl; Ω) norm for Cases
4.1 and 4.2 are displayed in Fig. 4-5. Comparison of the computational results for
the related component of the solutions is displayed in Fig. 6.
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Figure 4. The evolution of the relative errors for computing
Eε(x, t) in L2(Ω) norm and in H(curl; Ω) norm in the following
cases: (a)Case 4.1; (b)Case 4.2 .
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Figure 5. The evolution of the relative errors for computing
Hε(x, t) in L2(Ω) norm and in H(curl; Ω) norm in the following
cases: (a)Case 4.1; (b)Case 4.2 .
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Figure 6. comparison of the computational results for the third
component of the reference solution Eε,the homogenized solution

E0, and the first-order multiscale solution E
(1)
ε (x, t) at time t =3.0s

in the case 4.1 : (a) in the line z = 0.625, x = y; (b) in the
line x = y = z; comparison of the computational results for the
first component of the reference solution Hε,the homogenized so-

lution H0, and the first-order multiscale solution H
(1)
ε (x, t) at time

t =3.0s in the case 4.1 : (c) in the line x = 0.375, y = z; (d) in the
line x = 0.625, y = z.

Remark 5.3. By observing the above numerical results, we note that it fails to pro-
vide satisfactory results for the homogenization method. The multiscale approach,
however, results in more accurate numerical solutions for the scattering problem of
time-dependent Maxwell’s equations in dispersive media with a periodic microstruc-
ture or with many subdivided periodic microstructures. Therefore, the numerical
results confirm the convergence results presented in this paper.

5.3. Concluding remarks. Finally, we give some remarks and present some un-
solved problems.

Remark 5.4. Provided that the solution (E0(x, t),H0(x, t)) of the homogenized
Maxwell’s equations (73) with constant coefficients is smooth enough, the error
estimates are obtained. Rigorous regularity analysis for the solutions of 3D time-
dependent Maxwell’s equations is very challenging and still open. We refer the
reader to these references [6, 16, 17]. However, the formal multiscale asymptotic
expansions are useful in developing the efficient numerical method for 3D time-
dependent Maxwell’s equations in heterogeneous dispersive media.

Remark 5.5. We assume that a domain Ω is the union of entire periodic cells in
Theorems 6 and 7. The convergence for the multiscale method of this paper in a
general domain Ω is still an unsolved problem to authors.
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