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APPROXIMATIONS BY MINI MIXED FINITE ELEMENT FOR
THE STOKES-DARCY COUPLED PROBLEM ON CURVED
DOMAINS

MARIA GABRIELA ARMENTANO AND MARIA LORENA STOCKDALE

Abstract. In this work we solve a Stokes-Darcy coupled problem in a plane curved domain
using curved elements. We approximate the velocity-pressure pair by applying the MINI-element
method, for the whole coupled problem. We show that, under appropriate assumptions about the
curved domain, the proposed method has optimal accuracy, with respect to solution regularity, and
has a simple implementation. We also present numerical tests which show the good performance
of the proposed method.
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1. Introduction

The aim of this paper is to introduce and analyze a finite element scheme for
solving the Stokes-Darcy coupled problem on curved domains by using curved ele-
ments. These elements are suitable for use along the curved part of the boundary
and the curved part of the interface I'. There are a wide number of papers devoted
to the numerical resolution of the Stokes-Darcy coupled problem (see, for exam-
ple, [4, 24, 25, 29, 30, 32] and the references therein). However, to the authors’
knowledge, all analysis for the approach are restricted, in general, to the case of
polygonal domains and polygonal interface or by replacing the curved domain €2
with a polygonal domain Q. In [34] the authors consider curved interface and
work on the interface with a “coarse scale” allowing for the grids, of the Stokes and
Darcy regions, to be non-matching across interfaces. We note that, ignoring the dif-
ference between the domain 2 and its polygonal approximation 2, or ignoring the
difference between the interface I'; and its polygonal approximation I'y j,, we could
introduce an error which can not be compensated by an accurate approximation
in the polygonal domain. Taking this observation in mind, different finite element
techniques have been developed to deal with curved domains by considering curved
finite elements that fit exactly the boundary (see, for example, Bernardi [9], Ciarlet
and Raviart [22], Scott [33] and Zlamal [37]). In this work, we consider curved
element like those introduced in [37], which are suitable for the curved part of the
interface or the boundary of the whole domain under consideration.

In the recent paper [4] the authors propose an alternative formulation of the
coupled problem which allows them, in particular, to use the classical MINI elements
obtaining optimal order of approximation. In this paper we generalize the ideas
introduced in [4] to solve the Stokes-Darcy coupled problem in curved domains
by using curved triangles which fit the curved part of the domain. We prove that,
under appropriate assumptions of the curved domain, our finite element formulation
satisfies the discrete inf-sup conditions, obtaining as a result optimal accuracy with
respect to solution regularity. It is important to point out that our ideas could be
extended to other families of elements. We focused on the MINT elements since it
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is one of the simplest, lowest order and straightforward implementations that we
could consider by using the same continuous finite element for the Stokes and Darcy
equations. Numerical experiments are also presented, which confirm the excellent
stability and optimal performance of our method.

The rest of the paper is organized as follows. In Section 2 we state the modified
coupled Stokes-Darcy problem in a curved domain. Section 3 is devoted to describe
the curved elements under consideration. In Section 4 we present the finite element
approximation of the modified Stokes-Darcy problem. Finally, in section 5, we
present numerical examples.

2. Problem statement

We consider a bounded open domain 2 C R? divided into two open subdomains
Qg and Qp, where the indices S and D stand for fluid and porous regions, respec-
tively. We assume that @ = Qg U Qp, Qs NQp =0 and Qs N Qp =T so, I';
represents the interface between the fluid and the porous medium. The remaining
parts of the boundaries are denoted by I's = 9Qg \ 'y and I'p = 9Qp \ Ty, as
illustrated in Figure 1. We suppose that I';, I's and I'p are piecewise smooth Lip-
schitz boundaries, more precisely, that I';, I's and I'p belongs to piecewise C**1
with k& > 1 sufficiently large to fulfill our requirements.

FiGUuRrE 1. Example of two-dimensional curved domain 2.

We denote by ng the unit outward normal direction on 0Q2g and by np the
normal direction on d€)p, oriented outward. On the interface I';, we have ng =
—Nnp.

The Stokes-Darcy coupled problem describes the motion of an incompressible vis-
cous fluid occupying a region §2g which flows across the common interface through
a porous medium living in another region (1p saturated with the same fluid. The
mathematical model of this problem can be defined by two separate set of equations
and a set of coupling terms.

For any function v defined in €2, taking into account that its restriction to Qg
or to Qp could play different mathematical roles (especially their traces on I'y), we
define vg = v|g, and vp = vl]q,.

In Qg, the fluid motion is governed by the Stokes equations for the velocity ug
and the pressure pg:

—pAug + Vps = fs, in Qg,
(1) div us = 0, in Qs,
us = 0, in Fs,

where fs € (L?(Qs))? represents the force per unit mass and u > 0 the viscosity.
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In Qp, the porous media flow motion is governed by Darcy’s law for the velocity
up and the pressure pp:

%up + Vpp = fp, in Qp,

(2) div up = ¢gp, in QD,
up -np = O7 in FD,
where fp € (L?(Qp))? represents the force per unit mass, gp € L*(Q2p) a source
and K denoting the permeability tensor reduced to a positive scalar in the isotropic
case considered here.
In T';, we consider the following interface conditions (see, for example, [25]):
up -np+ug-ng =0,
(3)

«
psmns — pVusns — pp ng —u\/?(us-t)t =0,

where the first equation represents mass conservation and the second is due to the
balance of normal forces and the Beavers-Joseph-Saffman condition, with Vu =

(ggj) i @ a parameter determined by experimental evidence and ¢ the tan-
i/ 1<i,j<2

gent vector on I'; (we recommend [8] for more details on the interface conditions).

We will denote with boldface the spaces consisting of vector valued functions.
The norms and seminorms in H™ (D), with m an integer, are denoted by || - ||m,p
and |- |, p respectively and (-, -)p denotes the inner product in L*(D) or L?(D) for
any subdomain D C 2. The domain subscript is dropped for the case D = (). Let
H(div,Q) = {v € L?(Q) : divv € L?(Q)}, Ho(div,Q) = {v € L?(Q) : divv €
L*(Q),v-np=0onTp}and L§(Q) = {qg € L*(Q) : [,q =0}

We define the spaces

V = {vecH(div,Q): vs € H(Q2s),v=00nTg, and v-np =0on I'p}
and
Q:L(Q)(Q)’

. 1 1
.00+ div vI[§.0,)2 = (V[ as +IVI )?

with the norms [[v|v = ([v[3 as+IIv Hdiv.op)

and ||¢llo = |l¢llo respectively.
The mixed variational formulation of the coupled problem (1)-(3) can be stated as
follows [4, 29, 30]: Find (u,p) € V x Q that satisfies

a(u,v)+b(v,p) =F(v) VveV,
b(u,q) = G(q) VqeQ,

where the bilinear forms a(-,-) and b(-, ) are defined on V x V and V x @, respectively,
as:

(4)

a(u,v) =p Vu:Vv+,ui

w
us-t)(vs -t +—/ u-v,
o e FI( s-t) (vs 1) + o o

and
b(v,q) = —/ div vgq.
Q

Finally, the linear forms F' and G are defined as:

F(v):/ va+/ fsv and G(q):—/ gD q.
Qp Qs Qp

Then, using the classical theory of mixed methods (see, e.g., Theorem and Corollary
4.1 in Chapter I of [27]) it follows the well-posedness of the continuous formulation (4)
and so the following theorem holds.
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Theorem 2.1. There exists a unique (u,p) € V x Q solution to (4). In addition, there
exists C, depending on the continuous inf-sup condition constant for b, the coercivity
constant (on the null space of b) for a and the boundedness constants for a and b, such
that

[ullv +llplle < C{lIfs|

In our previous work [4], with the purpose in mind of the development of a unified
discretization for the coupled problem using the same continuous finite element spaces, we
introduce a modification to the Darcy equation and we define a modified coupled Stokes-
Darcy problem. The variational form of the modified problem is defined as follows: Find
(u,p) € V x Q satisfying

0,25 + D]

0,2p + llgpllo,0p }-

%) { a(u,v)+b(v,p) =L(v) VveEV,

b(u,q) =G(q) VqeQ,
where the bilinear forms a(-,-) and b(-,-) are defined on V X V, V x Q, respectively, as:
a

VE Jr,

a(u,v) =p Vu:Vv—F%/ u-v+ divudiv v+ pu (us - t) (vs - t),
2p p

Qs

and
b(v,q) = f/ div vq.
Q

Finally, the linear forms L and G are defined as:

L(v):/ va+/ fsv+/ gp divv and G(q):—/ gpq.
2p Qs p Qp

Applying the general abstract setting of mixed formulation (see, e.g., Section 5 in
Chapter I of [13]) it follows the well-posedness of the continuous formulation (5). The
following result holds.

Theorem 2.2. There exists a unique (u,p) € V X Q solution to (5). In addition, there
ezists a positive constant C, depending on the continuous inf-sup condition constant for
b, the coercivity constant for a and the boundedness constants for a and b, such that

lullv +llplle < C{lifsllo.as + [1fo]

0.2p + llgpllo,0p }-

3. Curved elements

The curved elements under consideration, which we use to represent convincingly the
curved boundaries of the domain and the interface, were introduced by Zlamal in [37]
and can be seen as a natural generalization of the triangular elements. We consider all
triangulations of the given domain 2 into triangles completed along the curved part of
the boundaries I'7, I's and I'p by curved elements.

In order to describe the curved elements under consideration, we denote by I' a generic
curved boundary (I' could represent the curved part of I'r, I's or I'p). For our analysis
some regularity conditions about the boundaries have to be assumed.

Hypothesis (Ha): We assume that, I can be divided into a finite number of arcs such
that each has a parametric representation (¢(s),¥(s)), a < s < b, with functions ¢ and ¢
the class C**! and such that at least one of the derivatives of ¢ and v is different from
zero in (a, b).

We also assume that the boundary of the curved elements consist of an arc 151?3 cr
and of segments P; P>, P,Ps with P and Ps in the curved boundary and P> € Q (see
Figure 2). We denote by T the interior of this curve, and by hr and 67 the greatest side
and smallest angle of the triangle of vertices Pi, P> and P;. Note that we use the same
notation to call the curved elements as for classical triangles.

Let 7" be the classical reference triangle, i.e., the triangle of vertices (0,0),(1,0) and
(0,1). Then, for each triangle 7' in the triangulation we introduce an application F

which maps the closed triangle 7' to the closed triangle T. In fact, if we denote by
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FI1GURE 2. Curved triangle.

(z5,y5),1 < j <3, the coordinates of the vertices P; of T then, the mapping F' it can be
defined as (see [37]):

(6) F(&n) = Fo(&n) + (1 =& —=n)(@(n), ¥(n))

where Fy is the affine transformation 7" in the vertices triangle Pi, P, and Ps, i.e.,

(7) Fo(§,m) = (z1 + (22 — 21)§ + (w3 — 21)n, 91 + (Y2 — y1)€ + (y3 — y1)n),

and the functions ® and ¥ are defined as:

(8) o(n) = P(s1+ (s3 — 51)17)_—77901 — (x5 — 1)1
and
(9) (n) = Y(s1+ (s3 — 31)177)_:7 y1— (ys — y1)n

with s; and s3 the values of the parameters corresponding to the vertices P and Ps
respectively. We remark that the point n = 1 is only an apparent singularity, indeed, it is
possible to extend ®(n7) and ¥(n) for 7 = 1 such that they belong to C* for 1 € [0, 1] (see
7). A

Then, given a polynomial function (&, n) in 7', with degree p, we can define a function
v(z,y) in T as: v(z,y) = 6(F ' (x,y)).

The following lemma, that relates the seminorm of the functions v(z,y) and (&, ),
will be very useful in the demonstrations to be performed, it is a particular case of the
Theorem 4.3.2 of [20] or from Lemma 1 of [3].

Lemma 3.1. If4: T — R is a function on Hk(T), fork = 0,1, the function v = toF ' :
T — R belong to H*(T) and there is a constant C' such that

1 ~
(10) [lo.r < |JF|Z plolo s, VO € L(T)

1 N
(11) [oliz < CLIrl2 AIDF aorlol, 7, Vo€ H'(T)

The next theorem presents some properties of the transformation F, its demonstration
is part of Theorem 1 of [37].

Theorem 3.1. Let ' be of class C**! piecewise with k > 1. If T > 79 with 1o a constant
> 0 and h is sufficiently small, the transformation F maps T one to one on T. The
Jacobian Jr(€,m) of this mapping is different from zero on T, the side R1R3 is mapped on
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the arc 171}3, the sides R1R2 and RaRs3 are linearly mapped on the sides Pi1 P> and P2 Ps,
respectively. The mapping and its inverse mapping are of class C*. In addition,

(12) c1h? < |Jr (&, m)| < cah?®,  c¢1 = constant > 0,

(13) D'a(&,m) = O("),  D'y(&,m) =0, 1<l <k,

(14) D'¢(z,y) = O(h™"), D'n(z,y)=O0(h™"), il =1,

where i = (i1, 12), |i| = i1 + 12, D'u(z,y) = % and Dv(€,n) = % .

4. Finite element approximation of the modified Stokes-Darcy problem

In this section, following the ideas introduced in [4], we apply the MINI-element (in
the whole domain) to approximate the velocity-pressure pair, with the particularity that
we consider curved elements along the curved part of I'y, I's and I'p.

Let {Tn}r>0 be a family of triangulations of Q such that any two triangles in 75 share
at most a vertex or an edge and each element T' € Ty, is in either Qs or Qp. Let T;°
and T;P be the corresponding induced triangulations of Qs and Qp. We assume that
the family of triangulations {7} satisfies a minimum angle condition, i.e., there exists a
constant 6y > 0 such that 07 > 6y, for any T € T;,. We also assume that the triangulation
Th satisfies that: for T € T, we have that T and I' share at most a vertex or an edge
(in particular, T' can not have two edges in I'). We emphasize that now T represents
indistinctly a triangle with straight edges or a triangle with a curved edge.

Let Vi, C V and Qn C Q be finite element spaces. The weak formulation (5) leads to
the following discrete problem: Find (vi,pr) € Vi X Qp, that satisfies

a(un,ve) + (v, pr) = L(vh) Vvi € Vy,
b(un,qn) = G(qn) Yaqn € Qn.

The discretization is said to be uniformly stable if there exist constants §,7 > 0,
independent of h, such that

(15)

a(vi,vi) = 8|[vall¥y Vva € Vi,

(16) b(Vh, qn
sup 2Rt 5 e Van € Q.
ozv,ev, |[Vallv

From now on, C represents a positive generic constant, not necessarily the same in each
occurrence, which can depend on the mesh only through the parameter 6.

For any subdomain D C Q, k € N, we denote by Wi(D) = {v € C°(D) : v|r =
o|4#(F~ (2,y)) with 9| € Px(T) VY T € T, ND}. Note that, due to the presence of curved
triangles, the transformation F may not be an affine transformation and therefore the
functions in Wy (D) are not necessarily polynomial.

To define then the bases of the spaces involved and the functions relevant to our anal-
ysis, we will use definitions in reference elements (similar arguments to the ones we will
show here are used in the work [3]).

We introduce the following notation

& = {all edges in T}, N = {all vertices in Ty},

and we denote by N the number of vertices in N.
Let A be a set, we define

Ea={le&:tC A}
We decompose
& =Eqg U&qp Ulrg Uér, Ulr,.
For n € N we denote
wn:U{T|T€ThandneT}.
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For any T € Tj, we define
wr = U{wn |n is a vertex of T }.

For £ € £r; we define
we=TsUTp,
where Ts and T denote the two triangles sharing ¢, with Ts € 7;° and Tp € T,P.
The corresponding bubble function in each triangle is defined as follows: for T' € Ty,
let
_ [ bp(F () inT
br(@,y) _{ 0 in Q\ 7T,

where ET is the classic cubic bubble given by ET = S(O,O),TS(LO),TS(OJ),T’ where 8(0,0),% 5(170%7:
and 5(0,1),T denote the barycentric coordinates of T. As the transformation F send bound-

aries on boundaries, it is clear that the function br it is still a bubble function in 7'
Using the properties (12) and (14), it is easy to see that the bubble function satisfies:

(17) /bT < Chy and  |br|r <C.
T

We can associate any patch wy, with a reference patch @, as follows (see Figure 3): Let
N, the number of triangles in w,, then the corresponding reference patch w,, is the regular
polygon with N, sides of length 1 that is centered at the origin 0 and is triangulated by
N, triangles that share the vertex 0. The patch w, can be related to the reference patch
by the following homeomorphism F,,, : @, — w, with F,,, (0) = n which has the form

(18) F, |r:=FoF"

where the mapping F'a is the affine transformation between T and the triangles in @y,.

FIGURE 3. w, and @,.

On the other hand, we can associate any patch w, with a reference patch @, (see
Figure 4). Moreover, if we enumerate the vertices of T's and Tp so that the vertices of ¢
are numbered first, i.e., e; and ey the vertices of £ we denote by e5 and e’ the vertices
in Qs and Qp respectively. Then, associated with w, we can define a transformation
Fy, 1 ¢ = we, where @y = TyUTy with Ty = T and T, the triangle of vertices (0,0), (1,0)
and (0, —1). The homeomorphism F,, : &y — we has the form

(19) Fur:=FoF;"

where the mapping F4 is the affine transformation between T and the triangles in @wy.
In addition, we can define a side bubble function, b, as:

_ b(FS () inwe,
be(w,y) = { 0 in Q\ we,

where BZ is the piecewise quadratic bubble function defined by IE)Z|TZ = 8(0,0),T}- 5(170)’@,,
1=1,2.
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T

T

FIGURE 4. wy and @y.

Associated with each side ¢ € I'; we define the bubble functions ve,1 ¥ ve,2 with support
in wy as follows. Let 71 = 7' the classic triangle of reference, i.e., the triangle of vertices
(0,0), (1,0) y (0,1) and T the triangle of vertices (0, 0), (1,0) and (0, —1). For each triangle
Ty C we (k=S or D), we denote by e1, ez and e3 the vertices of Ty, such that e; and e
are vertices of ¢ and e3 is the vertex of T} that is not over I';. If we denote by (z;,y;),
1 < j < 3, the coordinates of vertices e; of T (k = S or D), then the transformation of

T; (i = 1 or 2) in the triangle of vertices ey, ez and e3 it can be defined as in (19).

For example in T1 we consider the Lagrangian bases Bl,Tl and ,63277;1 such that: BLTI (3,0 =

L B2, (3,0) = 0and B, 7, (0,1) = 0,and B, 7, (7,0) = 0, By 7, (,0) = Tand B, 7, (0, 1) =
0. Therefore, the corresponding base functions in Ts turn out to be 8rs,i = B, 5 ©
Fujzl(ac7 y), i = 1,2. Applying the same reasoning in T, we obtain that the corresponding
base functions in Tp are Brp,i = BL@ o FJZI (z,y), i = 1,2, where /él;ﬁz and Bg,:@ are
such that: ,@177@2(%,0) =1, Bl,Tz(%’O) = 0 and B1,T2(07_1) = 0, and B27T2(%70) =0,
By.z,(2,0) =1 and B, 4 (0,—1) = 0. ) ) )
Then, we define the bubbles vg1 and ve,2 such that, ve;|rg = (5(0,0),T15(1,o),T151,T1)

OFW_ll (.T,y) y UZ,i‘TD = ((5(070%7%25(1’0)17%26177%2) o Fw_zl(a:, y), 1= 1, 2 (see Figure 5)

The finite element spaces for velocities and pressures are

Vi = { vi € L*(2), valas € (C°(2s))* valas € (C°(2p))” :
Valr = Vnl i (F (2,9)), Vulp € (PUT) @ < by >)?,
VT € Tn:ErNér, =0,and vp|r = Vals, (Fo, (z,9)),
Vilz, € (PU(Th) & < by, >)*
® < 30,0),7,0(1,0.7: B1, 73 00,002 01,008, Pa, 2, > (e 0 Fuy),
VI €Tn:Er NEr; =L wherei=1if T =Tg or i = 2 if not,
vi=0onTg,vy-np=0onTp andth~nD+vf~ns:00nF1}

and

Qn ={anlas € C°(Qs), anlas € C°(Qp) :
anlr = Gnl#(F " (2,9)), 4y € PL(T) ¥V T € To} N L3(Q).
The space corresponding to the velocities V}, is formed by functions of the form

0
v=v + E cr br + g (oue,1ve,1M0 + o 200,2M0),
TeT, teér,
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FIGURE 5. The bubble functions 00 7 00.0.4 0.7 and

5(0,0),T15(1,0),T132,T1 (above) and ¥;1 and 9,2 on &y (bellow).

Y is a continuous function on Qp and Qg (v°|7 = ¥°|; o F~'(x,y) where ¥°|; is

where v
a piecewise linear vector field on T), br it is a bubble function in the triangle 7', cr it is a
constant vector, v,,1 and vg,2 are the bubble functions defined above with support in wy,
and oy, ¢ = 1,2 are constants.

The space corresponding to the pressures Q1 is formed by continuous functions qn Over
Qp and Qg where gu|r = G| 0 F~'(2,y) ¥ Gnl4 is a piecewise linear function on 7.

We use the theory of mixed finite elements to conclude the existence and uniqueness
of the solution by finite elements of the discrete problem (15) for these spaces. In order
to demonstrate the discrete inf-sup condition (16), we want to construct an operator
II; : HO(Q) —— V, such that

1) b(v —TILv,qn) =0 YveEHNQ) VYaun € Qn.
2) [Mpvllv < Clvli

We call Wo(wn) = {k € C%wn) : Klw, = &lo, o B3 (z,y) with &|e, € Po(,) and
n € NsUT'7UQp}. To define the operator IT, we use Clement’s interpolator.

For any n € N and v € L? (wn), we can define P,,, : L? (wn) = Wo(wr) the orthogonal
projection of v in Wy(w,) with respect to the internal product in L?(w,) that fulfills

/ vpo = P, (1}) Po Vpo € WO(Wn)a

1
'Pw" (U) = m/ V.

To each triangulation 7;, we can associate a “reference triangulation” 7, connecting,
for all n € N, patches w, with its correspondmg reference patches @y,

Let {¢,}Z€{1 .,n} the Lagrangian base in T, ie., given a node 7, ¢;(7;) = 1 and is
zero in the rest of the nodes of the mesh 7y,.

For any v = (v1,v2) € L?(Q) and n € N we can define Py, (v) = (Pu, (v1), Pu,, (v2)).
Then, we consider the following Clement’s interpolator:

= Z ngi(F*1 (z,9))Pu,, (V).

To build the global operator IT;, we impose a condition on each vertex n € N according
to its location in the domain.

and then
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o Iv(n) =Py, (v) ifneQs,neQpornely
nv(n) = 0 in another case,

where I'° denote, as usual, the interior of I';.

We observe that II,v = ((II5v)1, (IInVv)2) then, to simplify notation, we call ITj ;v =
(IIpv); for 1 < j < 2.

For each ¢ € &r,;, we have two degrees of freedom more over ¢ and therefore we can
impose that

/Hhv-nwz/VD'nz% vy € Wi(l'r),
L £

where m, represents the unit normal vector in ¢ with external orientation to Qp and
Wi(Lr) = {¢ € C°(Tr) : ¢le = (| 0 F,M(w,y) with {|; € Pi(f) Ve€TnNT1}

The other condition, related to the bubble in each triangle T' € T, that we consider to
define the operator is the following:

(20) /Hhv- DF_I(j,:)dmdy:/v- DF™'(4,))dedy j=1,2,
T T
2¢  9¢
where DF ™! refers to the Jacobian matrix of F~!, i.e., DF ™! (z,y) = gﬁ; g%
8z oy

Now, we write a formula for the global operator on each T' € 7,. Note that there are
two cases to consider:

a)T €Tn:ErNér, =0.
b)TGE:gTﬂf;Fl:f.

a) For any triangle T' € Tp that has no sides in I';, we denote by n;, 1 < i < 3,
its vertices and by n; the corresponding ones in T. Let Bl be the Lagrange bases in T,
that is, 8i(7;) = 1 and it is zero in the rest of the nodes of T'. In addition, we consider
B = BZ|T o F~ !z, y). For each j = 1,2, we observe that the operator restricted to 7" has
the form:

3 . .
I, v|r(z,y) = Y o Bi(x,y) +7 br(z,y),
i=1
where
aj _ {Pwm (’Uj) ifn; € 525771,1‘ €Qporn; € F?,
0 ifniel“gornieFD,

and the constant 7 is obtained using (20), i.e

fT bTa dx dy fT br aé dx dy
fTbTBx dxdy fTbTBy dZEdy ( 2)
— <IT(V Zz 1&[0‘1 {) DF” 1(1 )dmdy>‘
Jr(v =30 Biled af])DF 1(2,:) de dy
Let

M- fTbTaidxdy fTbTa‘sdxdy
fTbT dx dy fTbTaydmdy

note that in the case where the transformation was affine, that is, F(&,n) = Fo(§,n),
we have M = ([, br dzdy) DF~ Y, y) = ([, brdxdy) DFy Y(x,v), which is obviously
invertible.

Without loss of generality, we can assume from now on that:

Assumption (A1): The transformation F(&,n) is such that VT € T4, M is nonsingular.
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Considering the previous hypothesis, we obtain, by a simple calculation, that

7' _i[(/TngZ dxdy) </T(V_Zﬂ"[a} a?])DF_l(l,:)da:dy>

_ (/Tngj dxdy) (/T(v—;ﬁi[a} af])DF—l(z,;)dxdy)]

72_2[_ (/TngZ da:dy) </T(v—Zﬁi[a§ a?])pplu,;)dmdy)

i=1

+ </Tng§dmdy> (/T(v—;@[ai o?)) DF1(2, :)dmdy>]7

where A = det (M), i.e.,

and

A= /ngdxdy /bT@dxdy - /bT%dxdy /bT@d:cdy
r O r Oy T 0y r Oz
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We observe that in the case where F(£,n) = Fo(&,n) this results in: A = ([, by dx dy)?
- det (DFy ' (x,y)). Using v', 4% and A, we can write the expression of the operators as

follows
vl (2, y)
3
= aiBilr(a,y)
1 P) 3 B
+ A </TbT@Zdwdy> (/T(V—;ﬂz[all a?])DF 1(1,:)da:dy>
3
_ </ bT% dxdy) (/(V—Z@[ag O‘?])DF1(271)dwdy)]bT(m7y)
Ty T i—1
and

Iy 2v 7 (2, y)

3
= aiBilr(z,y)
=1

_ (/TngZ dxdy) (/T(v;ﬂz[all a?})DF%l,:)dmdy)
3
+ </TngfC dxdy) (/T(vZﬂi[oz% af])DF1(2,:)dxdy>:|bT(:E,y).

gt
A

Now, we modify the projector to consider the different conditions imposed on the

vertices when we define the operator

B (v;) Po.,.. (v;) ifn; € Qs,n; € QAp or n; € 'Y,
wn, \Uj) = S . —
i 0 ifn;, €l's or n; € I'p,

and therefore f’wni (v) = (ﬁwni (v1),75wni (v2))-
Then, we use the following modified interpolator

Iv(z,y) = Z $i(F ! (@, 9))Pu,, (v).
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Using the above, we can rewrite the operator as follows

</TngZ dxdy) (/T(v—fv(:my))DFl(L:) d:cdy)

Iy v (z,y)

. 1
=Liv(z,y)lr + 3

(21) - </Tng§ dzdy) </T(v—i’v(z,y))DF_l(Q,:)dxdy> br(z,y)
and
Iy 2vir(z, y)
=Tov(x,y)|r

- </TngZ dxdy) </T(v—fv(x,y))DF_l(1,:) dwdy)

(22) + </Tng§ dxdy) </T(v—fv(:c,y))DF_l(Z:)dmdy)}b;r(m,y).

b) Let T' € Ty, be a triangle with one side in I'7, that is, ErN&r, = ¢. For each j = 1,2,
we observe that the operator restricted to T' has the form:

A

3
I vir(z,y) = Y ol Bilr(z,y) + 7 br(z,y)

1=1
+(aeve1 + ae2ve2)lr (@, y) ne;(x, y),

where

7

ol = 'Pwni (’U]') if n;, € Qs,n; € Qp or n; €'Y,
0 ifn;eTgorn; €lp .

We define, in the same way as we did previously, the corresponding operator

Pwni (vj) ifn; € Qs,n; € Qp or n; €17,
0 ifn,-efs Or?’LiEFD,

P, (v5) = {

and the interpolator

N
Iv(z,y) = Y 6i(F(x,9))Pu,, (v),
i=1
with Pu,, (v) = (Po,, (v1), P, (v2)).
To determine 77, a1 and g2, in principle, we observe that in this case, we have two
degrees of freedom more on ¢, therefore we can impose that

(23) /Hhv “npy = /vD ‘ney, YVvyeWi(Tr),
¢ ¢

where n, represents the unit normal vector in ¢ with outward orientation to 2p. Then,
~7 is obtained in such a way that (20) holds.
Therefore, we observe that the operator restricted to T has the form:
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0, 1 v|7(z,y) =Livir(z,y)

1 on ~ —1
— — —Iv)DF™(1,:
+A /TbTayda:dy(/T(v v) (1,:)dz dy

_ / (cg,1ve,1 + Ofg’gl)[g)n[DF_l(l, ) dx dy)
T
& = —1
— [ br—=dxdy (v—=Iv)DF™(2,:)dzdy
r Oy T

_ / (cvg,1ve,1 + ag,gvg,g)ngDF_l(Q, D) dx dy):| br(z,y)
T
(24) + (ag,1ve,1 + au2ve2) |7 (2, y)ne,1 (z, y)

and

Iy 2v|7(2,y) =Zov|r(z,y)
+l[f/bT@dxdy /(vffv)DF71(1 ) dz dy
A r Oz T ’

- / (cg,1ve,1 + OteyQ’l)zyg)ngDFil(L D dx dy)
T
0¢ ~ -1
+ [ br—=dzdy (v—Zv)DF™ " (2,:)dzdy
r Oz T

_ / (ce,1v01 + ae,zvz,z)ngDFfl(Z, ) dx dy)] br(z,y)
T

(25) + (ae,lvf,l + a[’2’l)£72)|T(-'177 y)nlﬂ(:ry y)7

where, in view of the condition (23), ay,1 and g2 are such that

(26) /(azﬁﬂ)&l + aupve2)|Ty = /(VD 7.'ZV) “ney, YVyeWi(Tr),
' 14

with, for T C we, vei|lr = ((5(0’0)7@ O(1,0).7, ij) o F;'(w,y) (where j = 1if T = Ts
or j = 2 if not). It is easy to prove that a1 and oy exist and are unique. First, we
note that the number of condition that define a1 and ay2 (two because v € W1 (I'r)) is

equal to the degree of freedom (two because we have two unknowns). To demonstrate the
existence of ay,1 and oy 2, it is enough to prove uniqueness, that is,

/(az,lve,l +apove2)|ry=0 Vye Wi(I';) ifandonlyif a1 =ar2=0.
£

If we consider ¢, = [(ag,l/@lj«j + ag,QBZTAj) o F,,! (z,y)]|¢, we have that ¢, € Wi(T's)
and fe(Sw,Om 5(170%@) o F; pey =0 Vv € Wi(I'y). Taking, in particular, v = ¢
we obtain [,(0(.0) 7, 0(1,0).7,) © F;'¢; = 0. We parametrize ¢ in the following way,
&(t) = (¢,0) with 0 < ¢ < 1. Then, as F,,(£(t)) is a parametrization of £ we get
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2 2 1 2
0= /[(5(0,0),@ 5(1,0),1}) o F,, ¢

1 A ~ ~ ~
= | (G0, 002, 2 EDN@01Br g, +0naBaz,) o €O

ot ’ ot
where (F., (£(t)))s, 1 <1 < 2, represents the i-th coordinate of the transformation.
Then, (ag@/;’ljﬂj + ag,232jj) 0&(t) =0 for all ¢, 0 <t <1, and therefore they must be
ag1 = ag2 = 0 as we wanted to see.
We have to verify that the operator I, satisfies the following lemma.

Lemma 4.1. The operator defined above satisfies that
b(v —uv,qn) =0, Vv eHNQ), Yan€ Q.

Proof. Considering that
b(v,qn) = — div vgp — div v qp,

we have that

b(v—IIpv,qn) = —/

div (v —IIpv) gn — / div (v — IILV) gn.
Qp

Qg
Summing over all the triangles in both domains, integrating by parts in each triangle
we obtain

b(v—TIyv,qn) == » /Tdiv (v-TLv)gn — > /T div (v — II,v) g

:TCZQ:D (D/T(V—HhV)th—/ath(j—Hhv).nD)
+T§S (/T(V_Hhv) Van —/ath(v—HhvynS) .

For any ¢ € £qg U £, we choose a normal unit vector n, and we denote the two
triangles that share that side as Ti, and Tout, with 1, pointing to the outside of Tou,. We

define
vnd, = (V) ne= (v, ) -7

which corresponds to the jump of the normal component of v through the side ¢. Note
that this value is independent of the direction of the normal vector chosen ng.
Rewriting the integrals on the edges of the triangles, we obtain

b(v —IInv,qn)
= Z /(v—Hhv)Vq;L—F Z /(V—HhV)th
Tcop VT Tcas” T
1
Y Y [v-mviada- Y [v-mw) e
TCQp te€rnQp V¢ teep, V't
- [/(VD —1II,v)- mpqp,n + /(vs —IILv) - msgs,n)
teep, Ut ¢
1
-3 >y /[(v—Hhv)-nZ]é - Y /(V—Hhv).nsqh
TCQg teErnsg V¢ teerg 7t

=I+1I+1IT4+1V+V4+VI+VII
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The purpose now is to analyze the value of each of the previous terms taking into
account the presence of curved triangles.

I - II) We want to see that
/T(vfl'[hv)-Vqs,hdxdyzo VT C Qs
and
/(V—Hhv)-VqD,hdxdyZO VT CQp.
T

We will prove the first equality, the second is deduced in the same way. As
Gs,n € Pi(T), its gradient is constant, therefore we have to

/ (v —II,v)Vgsndedy = / (v —TL,v) V" Gs.n DF (2, y) dz dy.
T T

Now, let’s suppose V¢4, = [C1 Cs] then

/ (v —II,v) V"Gs,, DF ™ (2, y) dz dy
T

0 0 0. 0
= /T(Vl — thlv)(Cla—i + CzafZ) =+ (V2 — Hh,QV)(Clafj + Cs afZ) dx dy.
Rearranging and applying (20) we obtain
0 0
/Tcl[(vl — Hh,1v)£ + (v2 — Hhﬁ")yj]
+ Caf(vi — I 1v)@ + (vo —II, gv)@} dz dy
T 0x 0y

201/(V—Hhv)DF_1(1,:)dxdy
T

+Co / (v —II,v)DF~'(2,:) dz dy = 0.
T
and we conclude that
/ (v —II,v) Vgs,ndrdy = 0.
T

IV - VII) If £ € érg, v = 0 = II,v and therefore fl(v —II,v) - ns gy = 0. On the other
hand, if £ € &, v = 0 = II4v and thus fé(v —IIyv) -npagy, =0.
III-VI) For the continuity of the normal component of v and II,v we have that
fé [(v —IInv) -ngl, gn =0, for any ¢ € Eag U Eayy,.
V) If £ € &r,, as v € Hg(Q) we have that [,(v® —II4v) - nsqsn = [,y —v7)-
np gs,n- Then, to prove that f/_, (vP—-TI,v)-np qD,h—i—fL,(vs—Hhv) nsqs,n =0,
it is enough to see that:

/HhV~ 77,D5:/VD~ npo V6€W1(F1),
14 4

that is fulfilled by the property (23). Therefore, we can assure that the term V
is canceled.

Then, we conclude that the operator Il satisfies the first condition of the Fortin
operator, that is,

b(v —TIv,qn) =0 YveEHHQ) Yaun € Qn.

Finally, we need to prove that the operator satisfies the following lemma.
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Lemma 4.2. There exist a constant C > 0, independent of h, such that

1
ITvlly = (Tl g + TP gino, ) < ClIVIL.

|Hhv|iﬂs = |Hh,1v|iﬂs + |Hh,2v|iﬂs-

We will start by calculating the operator’s seminorm Il ;v (note that the analysis is
similar if instead of IT; 1 v we have II, 2v)

Mpavlio, = Z T av|?r + Z T av|ir.
TCQg:EpnEr, =0 TCQg:EpNEr, #0
We will analyze, in principle, the term I = > [TLn,1v|7 . From [21] we

TCQg:ErNEp, =0
have that

1<c (TCQS:;SFI—@ Ziv(z, )i r
+TCQS:§£FI:®|bT(z,y) 2 (‘(/TbT%Z dxdy)(/T(v—iv)DF*(l,;)dxdy)
- (/Tng—i dx dy) (/T(v —fV)DF_1(2,:)da:dy)‘2)/|A|2>.
Applying (17) we obtain
r<c( Y mveylhs

TCS)S‘STHSFI:V)

¥ /bT—dxdy (/(v—fv)DF_l(l,:)dxdy>

TCQg: sTerI

27) - (/Tng—j dmdy) (/T(vfiv)DF*(z:)dmdy)D/\AF).

Examining the second term we have

‘(/Tng—Z dxdy) (/T(v—fv)DF_l(l,:)dxdy)
(/ bT25 dxdy) (/(v iv)DF*l(z,:)da;dy)‘2

‘/bT—d:cdy‘ ‘/ V—Iv DF_I( ,:)dacdy‘2

+‘/TbT67y 2]-

Using the Cauchy-Schwarz inequality, the results (12) and (14), change of variables and

(v—1Iv)DF'(2,:)

T

that |T|% ~ hr it is easy to see that
2 2
‘/bT?dxdy‘ <ChZ  and ‘/bT%dmdy‘ < ChZ.

Using the same results as before and con51der1ng the approximation property given in

page 84 of [15] for ||91 — Ilv||0 7 and ||02 —Igv||0 4 we obtain

_ 2
‘/(V_IV)DF_I(l,:)dxdy‘ < Ch3 ||Vl
T
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and
N 2
‘/(vfIv)DF71(2»5)d$dy‘ < ChzlIvr-
T

In the previous bound, it was used that: ||01]1,6, < C|lv1
the first inequality holds by (10).
Then,

lLwr < Clv

|1,0p, where

‘(/TbT%Z dmdy) (/T(vfiv)DF*(L:)dmczy)
— (/Tng—jdmdy) (/T(v—fv)DFfl(Q,:)da:dy)‘2

<Chr|v|3.

Recalling that in the affine A = ([, br dxdy)®det(DF; '(z,y)) and considering the
bounded (17) and (12), it is easy to see that in this case O(|A|) = h%-.

Assumption (A2): The transformation F is such that, VT € Ty, there exist a constant
C > 0 such that |A|> > C ht.

From (27) we obtain

<o Y Ev@yfice+ Y V)

TCQg:ErNEr, =0 TCQg:EpNEr, =0

For the first term, we observe that fixed ¢ (node of the triangle T'), 1 < ¢ < 3, the
gradient of P, (v1) is zero, applying the second bounded of (10) we obtain

Tiviir = v = Pa,, (v)lir <C|Tv —Ps, (01l 7.

Applying an inverse estimate (see, for example, Lemma 3.1 of [21]) and the previous
approximation property we conclude

1TV = Pa,, (1)l 7 < CITv = Pay, (01)llo,7

IN

C (IZv = dllo.z + lor = Pa, (0l )
< Cldulher +Cllor = Pay, (01)lg 7

From the approximation property given on page 85 of [15] we obtain that

191 = Pay, ()llo. 7 < Chay, |01]1,05,
then
\Ziviir < Cloler + Che, [01]16, -
As hg, < Chy (see, for example, Lemma 1 of [36])

\ilvh,T < C||tr

|175JT'

For the observation we made earlier, |Ziv|1,7 < C ||V||1,wp-
Since the number of triangles in a neighborhood wx,; is bounded by a uniform constant,

r<c < > VI r + > IIVIf) < ClIvIfE.

TCQg:EpNEr, =0 TCQg:ErNEr, =0

We continue now with the analysis of the term I] = > [TI,,1v|3 7, that is,
TeQg:ErNEr, #0
the case where T has only one side in the interface that we denote by .
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From (24) we have that

11 <c < > [ Zov(@, )i r

TCQg:EpNEr, #0

+ {/dea:dy‘ []/ (v —TV)DF N (1,:) dedy]|

TCQg: ngspI;&w

2
+‘/(ae,1ve,1 +ag,2vg,2)ngDF_l(1,:)dxdy‘ :|
T

Jr‘/TngTidycdy‘2 [‘/T(vi'v)DF_1(2,:)dﬂﬂdy‘2

2
+]/(ag,1w,1 +a,g,zw,z)mDF*(Q,;)da;dy] :|}|bT(w,y) 2
T

(28) + Z (e, 1ve,1 + e 2ve2) neali > .
TCQg:EpnEr, #0

We observe that the constants a1 and ay,2 can be obtained by solving the nonsingular

system (26) with vei|7 = (80.0).7,0(1.0).74 Bity) © Fu (1)
More precisely, if we denote by f.,,; to the continuous functions defined on w, such

that S, ;T = Brj, j = 1,2, by a simple calculation we can see that
C -
(29) lawe, ;| < mhs max (v—1Iv) ng Bu,,;
‘
therefore,

/ (a1 + arave)neDF (1, )2
T

0 06\ 2
SC/ (e, 1ve1 + 042,2114,2)7%1*5 + (oe,1ve,1 + az,2w,2)nz,2£)
oz oy
3

OEN2
<C/ (071071 + af 207 2)ni, 1( ) + (0f1via + af 207 2 (*E) )
Ox Oy
Using (14) and the inequality (29), we can affirm that

0 0
C/ (o 1”41"‘%2”@2)”@1(85) +(a1’1v£1+a£2v?2)n£2(82) )

C
Sy g§?§|0¢e,i\ /T(Ue,1+vz,z)

2

C / ~ / 9 9
<——— v—1Iv V1 + Vo).
_hQTW(Z( )|> [ @h +0i2)

Using Cauchy-Schwarz and change of variables

};ﬁ(/guv_ivnf/T(le +072)

Cle ~ cC . . =z
S5z Mz v —Zv|3, / (71 + vin) < hTHV - IV||(2),2/ (Vi1 +vi2)-
T T T T
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As ||v — fv(w)”oj < C’\ﬂé [I¥|l1,2.., considering the definition of bubble functions, ve,1
and vg,2, and making a change of variables, we obtain

C . 2
S —1vi2, / (W21 +02y)
T

h%

C .2 : 5 5 1,2 5 2 5 —1,2
3@”"' Loy /T((‘Sm,om5<1,o>,T151,T”1) 0 Fuy )™ + ((000,0y,7, 91,0y, 7 Boy ) © Fioy )
<O ee. [ Guoosd 2|7p| < OV
7EHV| 1,04 T( (0,0),T4 (1,0),7"“1) |Jr| < HVHl,wT

where in the last inequality we use that [ 3?020)7TA5(TL1270)’T = %ﬁ\ together with

the bounded (14).

Therefore,
|/(Oéz,1w,1 + a2ve2)neDF (1, 2
T
<IT| (e, 1ve1 + ae2ve2)ne DF (1, )H(Q)T

SCHE|IVIIE -

Moreover, by changing variables, using a classical inverse inequality and the previous
observation we obtain

1
[(a1ve,1 + g pve2)ne 1|1, < C—||(ag1ve,1 + ar2ve2)neillor < Clv1wp-

hr
Therefore, using these estimates in the expression (28) of the operator along with the
fact that

|j1v(xvy)|1,T SOHV”LwTv
|/bT@dmdy\2 <Ch?2,
T Oy
|/bT%d:rdy\2 <Ch?,
T Oy
|/T(vffv)DF71(1,:)da:dy’ <OV 1

| / (v = Zv)DF (2,3 de dy | <CR3 |V r,
T

as we proved earlier, we can conclude that
Mrviies < O]
Finally, we want to estimate ”HhVHH(div,QD)'
As ”HhVHH(diV,QD) < |[IIpv||1,0p, with the same reasoning to the previous one for

ITI; ;v[} og, we can conclude that
Mnviliep < Cllv]s-
Then, we can say that the operator II, v is bounded, that is, there is a positive constant
C such that |[II,v|v < Cv|:. O
The operator IT;, meets Lemmas 4.1 and 4.2 and therefore the inf-sup discrete condition
is satisfied, that is, there is a positive constant 5 such that
b(vh, qn
sup  Avmdn) BllanllQ: ¥ an € Qn.
ozvievy, |IVallv

Since the bilinear form a is coercive and continuous, b is continuous and satisfies the
discrete inf-sup condition, using the abstract theory of mixed methods, we can enunciate
the following results.

Theorem 4.1. There exist a unique solution (un,pn) € Vi, X Qn of the problem (15).



222 M. G. ARMENTANO AND M. L. STOCKDALE

Theorem 4.2. Let (u,p) € V x Q be the solution of the weak formulation (5) of the
coupled problem. Let (un,pn) € Vi X Qn be the solution of the discrete problem (15).
Then, there is a constant C, independent of the meshsize, such that:

u—u +|lp — <C{ inf |Jlu—-v + inf - .
l wllv +llp —prlle < {VhevhH nllv thQth anlle}

Finally, considering that the classic error estimates of the Clement interpolator can
be extended to the case of domains with curved triangles (should be applied techniques
similar to those used in, for example, Lemma 2 of [3]) and using the known results of
Sobolev’s space interpolation error (Theorem 1.4 of [27]) we can conclude the following
result.

Corollary 4.1. Let (u,p) € V x Q be the solution of the weak formulation (5) of the
coupled problem such that u € V and p € Q are smooth enough, that the norms on the
right hand side of (30) are finite for some ri,r2 € (0,1]. Then, the discrete solution (un, pn)
of problem (15) satisfies the error estimation

(30) lu—unllv+llp—prlle < C{R™ [ullitr 05 + 2" [0llitrs 0p +h(lp

195 +plep)}
5. Numerical experiments

In this section we present some test cases to show the good performance of our method.
We define the individual errors by,

eo(ps) = |lps — ps,ullo,as eo(pp) = |lpp — po,nllo.op
eo(vs) = [[vs — vsnllo,s eo(vp) = [vp — vp,nllo.0p
eo(div vp) = [|div(vp — vp,n)llo,0p e1(vs) = |vs — vsnli,05

and the rates of convergence are given by,

lo (EL'(D))
9\ @) . .
ri(0) = ——5H— O € {vs,vp,div vp,ps,pp} and i = 0,1
log(37)

where h and b’ denote two consecutive mesh-sizes with errors e; and e}. Using the previous

TABLE 1. Mesh-sizes, errors and rates of convergence (Example 1).

h eo(vs) | ro(vs) | eo(vp) | ro(vp) | eo(ps) | To(ps) | eo(pp) | ro(pp)
0.0308 | 0.0005 | 2.0243 | 0.0079 | 0.8383 | 0.0092 | 1.4152 | 0.0014 | 1.2806
0.0154 | 0.0001 | 2.0155 | 0.0041 | 0.9571 | 0.0033 | 1.4835 | 0.0006 | 1.3235
0.0077 | 0.0000 | 2.0058 | 0.0018 | 1.1371 | 0.0012 | 1.4983 | 0.0002 | 1.4158

TABLE 2. Mesh-sizes, errors and rates of convergence (Example 1).

h eo(div vp) | ro(div vp) | e1(vs) | ri(vs)
0.0308 | 0.0101 0.8634 0.0922 | 1.0159
0.0154 | 0.0055 0.8869 0.0457 | 1.0114
0.0077 | 0.0028 0.9254 0.0228 | 1.0067

definition of 7;, we present for the first example, in Tables 1 and 2, the convergence
history for a set of shape regular triangulations of the domain, in Tables 3 and 4, the
corresponding for the second one and in Tables 5 and 6, the corresponding for the third
example. For simplicity, in the first two examples, all the parameters such as K, a and
p are set to 1. We mention that, since is difficult to construct examples satisfying the
entire coupled Stokes-Darcy problem (1)-(3) (in particular, the homogeneous interface
conditions (3)), the numerical experiments could include nonhomogeneous terms for the
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TABLE 3. Mesh-sizes, errors and rates of convergence (Example 2).

h eo(vs) | ro(vs) | eo(vp) | mo(vp) | eo(ps) | ro(ps) | eo(pp) | ro(pp)
0.1884 | 0.0289 | 1.9518 | 0.0233 | 1.2349 | 0.2847 | 1.3193 | 0.0085 | 1.2560
0.0942 | 0.0072 | 2.0029 | 0.0097 | 1.2706 | 0.1060 | 1.4253 | 0.0031 | 1.4833
0.0471 | 0.0018 | 2.0103 | 0.0038 | 1.3562 | 0.0385 | 1.4628 | 0.0011 | 1.5378

TABLE 4. Mesh-sizes, errors and rates of convergence (Example 2).

h eo(div vp) | ro(div vp) | e1(vs) | ri(vs)
0.1884 | 0.0258 0.8303 0.8102 | 0.9855
0.0942 | 0.0134 0.9451 0.4040 | 0.9990
0.0471 | 0.0068 0.9786 0.2012 | 1.0055

TABLE 5. Mesh-sizes, errors and rates of convergence (Example 3).

h eo(vs) | ro(vs) | eo(vp) | ro(vp) | eo(ps) | To(ps) | eo(pp) | ro(pD)
0.0313 | 0.0005 | 1.9831 | 0.0258 | 1.2013 | 0.0277 | 1.4229 | 0.0075 | 1.6198
0.0156 | 0.0001 | 1.9974 | 0.0105 | 1.2993 | 0.0100 | 1.4642 | 0.0025 | 1.5660
0.0078 | 0.0000 | 2.0037 | 0.0040 | 1.3787 | 0.0036 | 1.4823 | 0.0009 | 1.5296

TABLE 6. Mesh-sizes, errors and rates of convergence (Example 3).

h eo(div vp) | ro(div vp) | e1(vs) | r1(vs)
0.0313 | 0.5056 0.9965 0.1378 | 1.0024
0.0156 | 0.2532 0.9974 0.0689 | 1.0013
0.0078 | 0.1268 0.9983 0.0344 | 1.0007

interface conditions and therefore is necessary to modify (only) the right-hand side in (5).

We also comment that, in practice, mass conservation and Neumann condition have to
be imposed in a weak way. Indeed, when we assemble the system matrix we must add
equations that ensures the normal continuity of the velocity and the boundary condition,
ie, [.(Vi -mp+ vy -ms)y =0 and fFD v -npy=0, Yy {CT): vl € Pi({)}.

5.1. First example: Curved boundary. We consider the regions Qs = {(z,y) € R? :
z € (—1,1) and 0 < y < v1—22} and Qp = {(z,9) € R* : x € (—1,1) and —
V1 —22? < y < 0}. The interface results, T'; = {(z,y) € R* : z € (—=1,1) and y = 0}
(see Figure 6). Note that both I's and I'p are curved.

We select the right-hand terms fs, gs =: div us, fp, gp and the boundary conditions
according to the analytical solution given by

(&% +y?) 2,2
_ _[—ve (1—=(="+y))
ps(@,y) = pp(z,y) = cos(w(z” +y°)).
In this first example it is satisfied that up-np =0in I'p, us =0in I's and up -np +
us-nsg =01in I'y.

In Figures 7, 8, 9, 11, 12 and 13 we show the approximate and exact values of the

velocities and in Figures 10 and 14 of the pressures. It is clear from these figures that the
finite element spaces used provide very accurate approximations to the unknowns.
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FIGURE 8. Contours of the first components of vg and vgy
(Example 1).
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FIGURE 9. Contours of the second components of vg and vgy
(Example 1).

Tables 1 and 2 show that optimal rate of convergence can be also reached with our
method.

5.2. Second Example: Curved interface. Let Qp = {(z,y) e R®:z € (—1,1) and 0<
y < —z’+3}and Qs = (—1,1) x (—1,1)\ 2p be a porous medium completely surrounded
by a fluid (see Figure 15). The particularity of this example is that there is no I'p because
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FIGURE 10. pg and pg,;, pressure figures (above) and pressure con-
tours (bellow) (Example 1).

FIGURE 12. Contours of the first components of vp and vpp,
(Example 1).

the boundary of Q2p represent the interface, I';. Note that one of the edges that make up
the interface is being considered curved.
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FIGURE 15. Full curved domain (Example 2).

FIGURE 14. pp and pp pressure figures (above)
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FIGURE 16. Vector chats vg and vg; (Example 2).



APPROXIMATIONS FOR THE STOKES-DARCY PROBLEM ON CURVED DOMAINS 227

02 o2

05 05
04 ot
08 4 o8 n
08 o8,

E p 15
o8 o8 o¢ 92 o 02 04 08 08 1 Y 0s 95 04 0z 0 o0z o4 05 08 1

FIGURE 17. Contours of the First components of vg and vgy
(Example 2).
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FIGURE 18. Contours of the second components of vg and vgp,

(Example 2).

FIGURE 19. pg and pgp, pressure figures (above) and pressure
contours (bellow) (Example 2).

FIGURE 20. Vector charts vp and vp ; (Example 2).
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FIGURE 24. Full curved domain (Example 3).
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and vg (Example 3).
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(Example 3).
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FIGURE 27. Contours of the second components of vg and vg
(Example 3).

We set the appropriate forcing term fs and the source gp, such that the following
solution to the Stokes-Darcy coupled problem, with fp = 0, is exact

—4(a® — 1)*(y* - 1)2/)

4z - 1D(y* - 1)z
pp(z,y) = —sin(z)e.

us(z,y) = (

ps(z,y) = —sin(x)e”

Figures 16 and 19 show, respectively, the approximate and exact velocities and the
approximate and exact values of the pressure for the Stokes region, while Figures 20 and
23 display the corresponding figures for the Darcy region. Tables 3 and 4 show that
optimal rate of convergence can be also reached with our method. Figures 17-18 and
21-22 show the first and the second component for the exact and approximate velocities
for the Stokes region and the Darcy region.
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FIGURE 28. pg and pgp, pressure figures (above) and pressure
contours (bellow) (Example 3).

FIGURE 29. Vector charts vp and vp ; (Example 3).
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FiGUuRE 30. Contours of the first components of vp and vpj
(Example 3).

5.3. Third Example. The purpose of this third example, which matches with Example
1 in [19], is to confirm the good performance of our mixed finite element scheme in com-
parison with other stable elements. This example consist of a porous unit square, coupled
with a semi-disk-shaped fluid domain, i.e., Qp = (0,1) x (0,1) and Qs = {(z,y) € R? :
z€(0,1) and 1 <y<1l+,/3— (z— 1)} (see Figure 24).

We set the appropriate forcing terms fs, fp and the source gp, such that the following
solution to the Stokes-Darcy coupled problem is exact

us(o,y) = (—wsin(mﬁ)cos(ﬂ@) wp (2, y) = (ﬂsin(7m)cos(7ry)>

meos(mx)sin(ny) weos(mx)sin(my)
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FIGURE 31. Contours of the second components of vp and vp j
(Example 3).
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FIGURE 32. pp and pp p, pressure figures (above) and pressure
contours (bellow) (Example 3).

ps(x,y) = cos(mzx)cos(my) pp(x,y) = cos(mx)cos(my).

Note that this solution satisfies up -np+us-ng = 0 in I'; and the boundary condition
up -np =0 in I'p. However the Dirichlet condition for the Stokes velocity in I's is non-
homogeneous.

Figures 25 and 28 show, respectively, the approximate and exact velocities and the
approximate and exact values of the pressure for the Stokes region, while Figures 29 and
32 display the corresponding figures for the Darcy region. Tables 5 and 6 show that
optimal rate of convergence can be also reached with our method. Figures 26-27 and
30-31 show the first and the second component for the exact and approximate velocities
for the Stokes region and the Darcy region.

We also observe that, in the three examples under consideration, the rate of convergence
provided by Corollary 4.1 is attained by all the unknowns.

To finish, in this example we study the effect of changing u (the viscosity) and « in the
variational formulation of the modified coupled problem (5). We run nine test with the
different cases. The results are presented in Tables 7-9 .

We emphasize that the numerical results confirm the good performance of the mixed
finite element scheme with MINI element for the Stokes-Darcy coupled problem. We end
this paper by mentioning that, the ideas used here for numerical approximation of the
coupled problem, could be successfully applied (with perhaps eventual technical difficul-
ties) not only to another families of elements that are known to be stable for the Stokes
problem if not also on 3D and it will be subject of future work.
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TABLE 7. Rates of convergence for a = 1.
B | ro(vs) | ro(vp) | ro(ps) | ro(pp) | ro(div vp) | ri(vs)
1 1.9974 | 1.2993 | 1.4642 | 1.5660 | 0.9974 1.0013
0.1 1.9386 | 1.0624 | 1.4646 | 1.5740 | 0.9968 1.0015
0.01 | 2.0566 | 0.6926 | 1.5040 | 1.5624 | 0.9984 1.0079
TABLE 8. Rates of convergence for a = 0.1.
| ro(vs) | ro(vp) | ro(ps) | ro(pp) | ro(div vp) | ri(vs)
1 1.9976 | 1.2993 | 1.4638 | 1.5659 | 0.9974 1.0013
0.1 1.9401 | 1.0624 | 1.4641 | 1.5740 | 0.9968 1.0015
0.01 | 2.0642 | 0.6925 | 1.5018 | 1.5624 | 0.9984 1.0081
TABLE 9. Rates of convergence for a = 0.01.
B | ro(vs) | ro(vp) | To(ps) | ro(pp) | ro(div vp) | ri(vs)
1 1.9976 | 1.2993 | 1.4638 | 1.5659 | 0.9974 1.0013
0.1 1.9402 | 1.0624 | 1.4641 | 1.5740 | 0.9968 1.0015
0.01 | 2.0651 | 0.6925 | 1.5015 | 1.5624 | 0.9984 1.0081
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