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FINITE VOLUME ELEMENT METHOD FOR PREDICTING

ELECTROSTATICS OF A BIOMOLECULE IMMERSED IN AN

IONIC SOLVENT

HAO WU, JINYONG YING∗, AND QINGSONG ZOU

Abstract. Poisson-Boltzmann equation (PBE) is a classic implicit continuum model to predict
the electrostatic potentials of a solvated biomolecule. In this paper, we present a finite volume
element method specific to the elliptic interface problem with a non-homogeneous flux condition

for solving PBE and provide a follow-up analysis. The new PBE solver is fulfilled through both
Fortran and Python, afterwards the local Poisson test model coupled with an analytical solution
is adopted to well validate the program. Lastly, an application of the new solver to the prediction
of solvation free energies of the proteins is made.
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1. Introduction

The electrostatics referring to a protein immersed in an ionic solvent are impor-
tant to recognize its biological structure and the various relevant functions [22, 26].
At present, one commonly-used mathematical model for predicting electrostatics
is the Poisson-Boltzmann model, which has been employed in various applications
such as protein docking, ion channel modeling, and rational drug design [21]. Up
to now, the mathematical theory of Poisson-Boltzmann equation (PBE) and its
variants have been well analyzed [14, 29] by considering an electrostatic free energy
minimization problem subject to the Poisson dielectric model. Meanwhile, these
models have been efficiently and accurately solved by finite element method (FEM)
[1, 12, 15, 28], finite difference method [27, 38], boundary element method [19],
and some mixed methods [2, 34, 35, 36]. Besides, to simulate the electrodiffusion
in numerous biological processes, Poisson-Nernst-Planck equation (PNP) as well as
its improved models [20, 23] have also been proposed and commonly used as well.

It is well-known that FEM is used to solve the interface problems of both PBE
and PNP thanks to its flexibility of handling the complex interface. As alternatives,
finite volume methods not only can deal with the complex interface very well,
but also preserve the local conservation laws of some physical quantities such as
mass and flux. Additionally, in comparison with FEM, its computational cost is
relatively less while it aims at the explicit evolved equation with time. To authors’
best knowledge, it only has been used so far to solve on Cartesian grids both
PBE [10] and size-modified PBE [24] without explicitly considering the interface,
and to predict the double layer forces between spherical colloidal particles [17],
latter of which considered the Poisson equation without interface. Therefore, finite
volume methods have never been used to solve PBE and its variants yet. The finite
volume element method (FVEM, see e.g. [3, 11, 16, 33, 37]), one type of finite
volume methods, has gained increasing attention recently. Owe to the same mesh
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and basis functions being used in the discretization process as that of FEM, FVEM
possesses almost all the advantages of FEM such as flexibility to handle the complex
interface and domain with arbitrary geometry. Meanwhile, the preservation of
local conservation laws about certain physical quantities makes FVEM especially
important for PNP [20]. As the first step of several potential subsequent works, we
attempt to solve PBE via FVEM in this work.

By virtue of the decomposition scheme intended for isolating the singularities
caused by the Dirac delta distributions, the solution u of PBE is splitted into three
parts: solution G in an analytical expression, solution Ψ subject to a linear interface
problem with a non-homogeneous flux condition on the interface, and solution Φ̃
tied to a nonlinear interface problem. Through literature on finite volume methods,
an elliptic equation with a non-homogenous flux condition on the interface has
never been discussed yet. Our work is the first to propose a new technique to
overcome the difficulties induced by the non-homogenous flux condition. For any
vertices on the interface in an given unstructured mesh, we artificially separate their
control volumes into pairs so that the interface lies on the common boundary of
the two sub-control volumes. As a result, the non-homogeneous flux condition can
be incorporated into the variational form through integration-by-part performed on
those separated sub-control volumes.

Based on the proposed technique, we formulate a new finite volume element
PBE solver and fulfill it in both Python and Fortran. The local Poisson test model
owning an analytical solution in a series form involving Legendre polynomials is used
to validate the new program. The tests show that applying our technique to deal
with the non-homogeneous flux condition gives rise to the second-order convergence
in L2 norm and the first-order convergence inH1 norm, which is exactly the same as
FVEM has achieved [33]. As an application, the new solver is subsequently applied
to predict the solvation free energies of some proteins. Meanwhile, the obtained
energies are compared to the ones derived from the finite element PBE solver [28]
engaging the same unstructured meshes. These numerical tests illustrate that the
predicted solvation free energies are quite close to each other although different
numerical methods are adopted.

The rest of the paper is organized as follows. A short review of PBE solution
decomposition is given in Section 2. Section 3 is devoted to presenting our FVEM
formulation specific to the regularized PBE. At the end of this section, a new
algorithm for solving PBE is presented. We present an analysis of the FVEM for
PBE in Section 4. The validation test on local Poisson test model as well as the
application of the new solver in predicting the solvation free energy is conducted in
Section 5.

2. Solution decomposition of the Poisson-Boltzmann model

Let Ω be a sufficiently large bounded domain of R3 (See Figure 1 for an illustra-
tion) satisfying

Ω = Dp ∪Ds ∪ Γ,

where Dp denotes a solute region hosting a protein molecule with np atoms, Ds

denotes a solvent region, and Γ is the interface between Dp and Ds. Under the
implicit solvent approach, both Dp and Ds are treated as continuum media with
dielectric constants ϵp and ϵs, respectively. Then for a symmetric 1:1 ionic solvent
(e.g., a salt solution with sodium (Na+) and chloride (Cl−) ions), the electrostatic
potential u (in unit kBT/ec) can be predicted by the following boundary value
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Figure 1. An illustration of domain partition for a protein with
PDB ID 2LZX immersed in an ionic solvent. Here the yellow dots
denote the mobile ions in the solvent.

problem

(1)



−ϵp∆u(r) = α

np∑
j=1

zjδrj , r ∈ Dp,

−ϵs∆u(r) + κ2 sinh(u) = 0, r ∈ Ds,

u(s+) = u(s−), ϵs
∂u(s+)

∂n(s)
= ϵp

∂u(s−)

∂n(s)
, s ∈ Γ,

u(s) = g(s), s ∈ ∂Ω,

where rj and zj denote the position and charge number of the jth atom, respectively,
g is a given boundary function, ∂Ω is the boundary of Ω, δrj is the Dirac delta
distribution at point rj , n(s) is the unit outward normal vector of Dp, and α,
κ and M are three physical constants. Under the SI (Le Système International

d
′
Unités) units, for a length measured in angstroms (Å), the constants α and κ2

can be computed by

(2) α =
1010e2c
ϵ0kBT

, κ2 = 2Is
10−17NAe

2
c

ϵ0kBT
,

here ec, ϵ0, kB, T , and NA are the electron charge, the permittivity of vacuum,
the Boltzmann constant, the absolute temperature, and the Avogadro number,
respectively, and Is is the ionic strength in mole/liter. For T = 298.15 and Is = 0.1,
we can get

(3) α = 7042.940010604046, κ2 = 0.8482715968170331,

which will be used in our numerical tests.
To overcome the difficulties brought by Dirac distribution sources δrj , exponen-

tial nonlinear term sinh(·) and the discontinuous permittivity coefficients, variants
of solution decomposition techniques have been proposed, see [4, 21, 28, 34] for
instances. It is worth mentioning that no matter which solution decomposition
method is adopted, the goal is to guarantee accuracy of the numerical solution by
isolating the singularities, although different solution schemes lead to distinct for-
mulations of equations. Here following [28, 34], we split the solution u of (1) into
the form

(4) u = G+Ψ+ Φ̃,
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where G is given by the expression

(5) G(r) =
α

4πϵp

np∑
j=1

zj
|r− rj |

,

Ψ is a solution of the linear interface boundary value problem

(6)


∆Ψ(r) = 0, r ∈ Dp ∪Ds,

Ψ(s+) = Ψ(s−), s ∈ Γ,

ϵs
∂Ψ(s+)

∂n(s)
= ϵp

∂Ψ(s−)

∂n(s)
+ (ϵp − ϵs)

∂G(s)

∂n(s)
, s ∈ Γ,

Ψ(s) = g(s)−G(s), s ∈ ∂Ω,

and Φ̃ is a solution of the nonlinear interface boundary value problem

(7)


∆Φ̃(r) = 0, r ∈ Dp,

−ϵs∆Φ̃(r) + κ2 sinh(G+Ψ+ Φ̃) = 0, r ∈ Ds,

Φ̃(s+) = Φ̃(s−), ϵs
∂Φ̃(s+)

∂n(s)
= ϵp

∂Φ̃(s−)

∂n(s)
, s ∈ Γ,

Φ̃(s) = 0, s ∈ ∂Ω.

Here
∂G(s)

∂n(s)
= ∇G · n with ∇G being given by

(8) ∇G(r) = − α

4πϵp

np∑
j=1

zj
r− rj

|r− rj |3
.

As pointed out in [28], the above solution decomposition is a natural way to
split the electrostatic potential in Physics. The three component functions G, Ψ,
and Φ̃ can be regarded as the electrostatics induced by atomic charges, interface
and boundary conditions, and ionic charges, respectively. Meanwhile, as shown in
[29], because G contains all the singular points of u, both Ψ and Φ̃ become well-
defined continuous functions without any singularity. It is also noted that G is
given explicitly, while Ψ and Φ̃ are implicitly determined by the linear boundary
value problem (6) and nonlinear problem (7), respectively. The main task of the
rest of paper is to provide the appropriate numerical schemes for (6) and (7) such

that the sufficient accurate approximations of Θ = Ψ+ Φ̃ and PBE solution u can
be obtained.

3. The finite volume element methods for solving PBE

Let Th be a conformal triangulation of Ω. In terms of Th, we define a finite
element space

(9) Uh :=
{
v ∈ C(Ω) : v|τ ∈ P1, for allτ ∈ Th

}
where P1 is the set of all polynomials of degree equal or less than 1. It is not difficult
to see that Uh is a subspace of the usual Sobolev function space H1(Ω). Now let
Dh be another partition of Ω. The element V of Dh is called control volume and is
chosen as a polygon as usual (see [33] for the construction of the control volume for
each vertex). Let Vh be a piecewise constant function space in terms of Dh defined
by

Vh :=
{
v ∈ L2(Ω) : v|V = constant for all V ∈ Dh

}
.

We call Uh the trial space, and Vh the test space. It is easy to see that dimUh =
dimVh.
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As we have seen, the Ψ equation (6) has the non-homogeneous flux condition on

the interface Γ (i.e., [ϵ(s)∂Ψ(s)
∂n(s) ] ̸= 0). To handle the non-homogeneous condition, we

propose a control-volume decomposition technique as an extension of finite volume
methods. That is, as shown in Figure 2, for any vertex on the interface Γ determined
by the line segment AB and AC, we actually separate the control volume (i.e.,
the polygon determined by the black real segments) into two small ones, which
are the intersection of the control volume with the polygon EBAC and BACGF ,
respectively. It is clear that the triangulation of the interface Γ is simply the
common boundary of these two small control volumes. As a result, we are able to
proceed as usual to apply the integration-by-part on each decomposed small control
volume so as to incorporate the flux-jump condition in the variational form.

Figure 2. The decomposition of the control volume for the vertex
A on the interface Γ.

Based on the above new technique, we have the following variational form to
obtain a finite volume element approximation of the Ψ equation: Find ψh ∈ Uh

with ψh|∂Ω = Ih(g −G) such that

(10) ah(ψh, v) = −(ϵp − ϵs)

∫
Γ

∂G

∂n
vds ∀v ∈ V 0

h ,

where Ih : H1 → Uh is the classic Lagrange interpolating operator, the finite
volume bilinear form ah(v, vh) for all v ∈ H1(Ω), vh ∈ Vh is defined by

(11) ah(v, vh) := −ϵp
∑
E∈Eh

∫
E∩Dp

∂v

∂n
[vh]ds− ϵs

∑
E∈Eh

∫
E∩Ds

∂v

∂n
[vh]ds

with Eh being the set of all 2-d faces in Dh, n the unit normal direction on the face
E and [vh] the jump of vh on E, and V 0

h is a subspace of Vh defined by

V 0
h = {v ∈ Vh | v = 0 on ∂Ω}.

Once ψh is available, we can compute the finite volume element approximation
of Φ̃ by seeking ϕh in

U0
h = {wh ∈ Uh | wh = 0 on ∂Ω}

such that

(12) ah(ϕh, v) = −
∫
Ds

κ2 sinh(G+ ψh + ϕh)vdx ∀v ∈ V 0
h .
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Since (12) is a nonlinear system, we solve it by the Newton iteration as follows: for
k = 0, 1, 2, . . . , let

(13) ϕ
(k+1)
h = ϕ

(k)
h + pk,

where ϕ
(0)
h is an initial guess, pk ∈ U0

h is computed by solving the linear system:

(14) bh(pk, v) = −ah(ϕ(k)h , v)− κ2
∫
Ds

sinh(G+ ψh + ϕ
(k)
h )vdx, v ∈ V 0

h

with the bilinear form

bh(p, v) = ah(p, v) +

∫
Ω

κ̃2 cosh(G+ ψh + ϕ
(k)
h )pvdx ∀v ∈ V 0

h ,

where κ̃ = κ in Ds and vanishes in Dp. We stop the Newton iterations until the
following termination rule is met

(15)

∥∥∥∥−ah(ϕkh, v)− κ2
∫
Ds

sinh(G+ ψh + ϕkh)vdx

∥∥∥∥ < tol,

where ∥ · ∥ is the Euclidean norm and tol is set to 10−7 by default.

3.1. The finite volume element PBE solver. Based on the above reformu-
lation, we are in position to solve PBE using the proposed finite volume element
method. For clarity, we describe it in Algorithm 1.

Algorithm 1 (The finite volume element PBE solver). Suppose the domain Ω is
sufficiently large. A solution u of PBE is approximated in the following five steps:

1. Construct an interface-matched tetrahedral mesh for a given protein.
2. Calculate G and its gradient ∇G on Ω according to (5) and (8), respectively.
3. Solve the linear variational system (11) for Ψ.

4. Solve the nonlinear problem (12) of Φ̃ by the Newton iterations with the
termination rule (15).

5. Construct u by the solution decomposition u = G+Ψ+ Φ̃.

To construct the interface-matched meshes, we adopt the revised version of the
molecular surface and volumetric mesh generation program package GAMer [32,
34] to be the mesh generator, where the smooth Gaussian surface is set as the
default to define the molecular surface, while two other choices are available: the
solvent-accessible surface and the solvent-excluded surface. We write our own codes
to assemble the stiff matrix and the right-hand side vector so that we can easily
handle the non-homogeneous flux condition occurred on Γ for Ψ equation. For the
assembling process, same as the finite element method, all cells of the mesh are
iterated one by one and on each cell, the local stiffness matrix and vector are
assembled by mapping to the reference one and then added to the global stiffness
matrix and vector correspondingly.

By a simplification technique shown in [33], for only ah(v, vh), the assembled
stiffness matrix of the FVEM is identical to that of the FEM, which implies
that we could fully use the same mesh, data structure and even some mutual
existed library of the FEM to assemble the FVEM stiffness matrix. For this
reason, we fulfilled Algorithm 1 based on the state-of-the-art finite element li-
brary DOLFIN [18] from the FEniCS project. In order to speedup the assemble
process, we programed all the functions needed for assembling in Fortran. Mean-
while, to accelerate the computation, all heavy computations were carried out also
in Fortran subroutines. Using the Fortran-to-Python interface generator f2py
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(http://cens.ioc.ee/projects/f2py2e/), we converted all the Fortran subroutines to
Python modules. With these modules, we could write the main function in Python.

4. Analysis

To analyze the stability and convergence property of our finite volume scheme
for Θ = Ψ+ Φ̃, we first write the two finite volume schemes (10) and (12) into the
following unified one. In fact, by letting θh = ψh + ϕh and summarizing (10) and
(12), we have

(16) ah(θh, v) + (κ̃2 sinh(G+ θh), v) = −(ϵp − ϵs)

∫
Γ

∂G

∂n
vds ∀v ∈ V 0

h .

Since the trial space Uh is different from the test space Vh, the finite volume scheme
(16) is a Petrov-Galerkin scheme which is difficult to be analyzed. Fortunately, this
Petrov-Glerkin scheme can be transformed into a Galerkin scheme by introducing
the following from-trial-to-test space mapping. Let Nh be the set of all vertices of
Th. For each P ∈ Nh, let ϕP the usual nodal basis function satisfying

ϕP ∈ Uh, and ϕP (P
′) = δP,P ′ , ∀P ′ ∈ Nh,

and let ψP be the characteristic function on the control volume of vertex P . Then
Uh = span{ϕP : P ∈ Nh} and Vh = span{ψP : P ∈ Nh}. The linear bijective
mapping Ph : Uh → Vh is defined by letting

Ph(
∑

P∈Nh

cPϕP ) =
∑

P∈Nh

cPψP ,∀cP ∈ R, P ∈ Nh,

and we denote v∗h = Phvh, ∀vh ∈ Uh. With this mapping, (10) can be rewritten as
the Galerkin scheme

(17) ah(θh, v
∗) + (κ̃2 sinh(G+ θh), v

∗) = −(ϵp − ϵs)

∫
Γ

∂G

∂n
v∗ds ∀v ∈ U0

h .

Next we analyze the Algorithm 1 by using the Galerkin scheme (17). It is known
that (see e.g. [33]) that the identity

(18) ah(vh, w
∗
h) = ϵp

∫
Dp

∇vh · ∇whdx+ ϵs

∫
Ds

∇vh · ∇whdx, ∀vh, wh ∈ Uh

holds. As direct consequences, we have the coercivity

ah(vh, v
∗
h) ≥ min{ϵp, ϵs}|vh|21,∀vh ∈ Uh,

where | · |1 is the standard Sobolev H1 seminorm. And we also have the continuity

ah(vh, w
∗
h) ≤ max{ϵp, ϵs}∥vh∥1∥wh∥1, ∀vh, wh ∈ Uh.

On the other hand, the function sinh is monotone increasing in the sense that(
κ̃2(sinh(G+ v1)− sinh(G+ v2)), v1 − v2

)
≥ 0, ∀v1, v2 ∈ H1,

and bounded in the sense that for v1, v2 ∈ L∞(Ω),

∥ sinh v1 − sinh v2∥0 ≤ C∥v1 − v2∥0,
where ∥ · ∥0 is the standard L2-norm.

In the following, we explain that the FVEM solution θh is uniformly bounded
(independent of the mesh size h) in the space L∞(Ω). By observing that the
function G is smooth away from ri, we have the fact that G ∈ C∞(Ds)∩C∞(Γ)∩
C∞(∂Ω). Consequently, both Ψ and Φ̃ (and consequently Θ = Ψ + Φ̃) are in
H2(Dp)∩H2(Ds)∩H1

0 (Ω)∩L∞(Ω) (see e.g. [4]). Furthermore, when the interface
Γ is sufficiently smooth, we also have Θ ∈W 2,∞(Dp)∩W 2,∞(Ds). Then by applying
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the maximum-norm error estimates techniques developed in [5, 7, 8] to the elliptic
interface problem (17), we actually have

∥Θ− θh∥∞ . Ch2(∥Θ∥2,∞,Dp + ∥Θ∥2,∞,Ds),

which implies the uniform boundedness of ∥θh∥∞.
By the above uniform boundedness and the coercivity and continuity,

∥θh − IhΘ∥21 ≤Cah(θh − IhΘ, (θh − IhΘ)∗)

≤C (ah(θh − IhΘ, (θh − IhΘ)∗)

+
(
κ̃2(sinh(G+ θh)− sinh(G+ IhΘ)), θh − IhΘ

))
=C (ah(Θ− IhΘ, (θh − IhΘ)∗)

+
(
κ̃2(sinh(G+Θ)− sinh(G+ IhΘ)), θh − IhΘ

))
≤C∥Θ− IhΘ∥1∥θh − IhΘ∥1.(19)

Note that in the above reasoning, C is a constant independent of the mesh size h,
but its value may vary from line to line. The inequality (19) implies that

∥θh − IhΘ∥1 ≤ C∥Θ− IhΘ∥1
and thus by the triangle inequality, we have

(20) ∥Θ− θh∥1 ≤ C∥Θ− IhΘ∥1.
In other words, we have optimal convergence order (1st order here) for the energy
norm error ∥Θ− θh∥1.

With the uniform boundedness of ∥θh∥∞, we can also obtain the following L2-
norm error estimate by applying the techniques developed in [6, 9],

(21) ∥Θ− θh∥0 ≤ Ch2.

5. Numerical experiments

In this section, we report the numerical experiments using our new Python pro-
gram of Algorithm 1. For simplicity, we set ϵp = 2.0, ϵs = 80.0, T = 298.15,
Is = 0.1, and all the numerical tests were done on one processor of a Macbook Pro
with the 2.7 GHz Intel Core I5 and 8 GB memory. Without explicit statement, the
boundary condition is set to be zero.

5.1. Local Poisson test model. In this subsection, we will use the following
local Poisson test model with available analytical solution reported in [13, 31, 30]
to do the validation tests

(22)



−ϵp∆u(r) = α

np∑
j=1

zjδrj , r ∈ Dp,

−ϵs∆u(r) = 0, r ∈ Ds,

u(s+) = u(s−), ϵs
∂u(s+)

∂n(s)
= ϵp

∂u(s−)

∂n(s)
, s ∈ Γ,

u(r) → 0, r → ∞,

where Dp is a spherical domain centered at origin with the radius a, rj and zj are
the position and charge number of the jth atom of the protein, respectively, ∂Ω
denotes the boundary of Ω, δrj is the Dirac delta distribution at point rj , and n(s)
is the unit outward normal vector of Dp.

By superposition, we have the analytical formula U(r) = α
∑np

j=1 zjuj(r), where

uj(r) denotes the solution of problem (22) with the right-hand function being δrj
in Dp and is given by
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(1) If |rj | = 0:
uj(r) =

1

4πϵp|r|
+

1

4πa
(
1

ϵs
− 1

ϵp
), r ∈ Dp,

uj(r) =
1

4πϵs|r|
, r ∈ Ds.

(2) If |rj | ̸= 0:
uj(r) =

1

4πϵp

1

|r− rj |
+

∞∑
n=0

Aj,n|r|nPn(
rj · r
|rj ||r|

), r ∈ Dp,

uj(r) =
∞∑

n=0

Bj,n|r|−n−1Pn(
rj · r
|rj ||r|

), r ∈ Ds.

Here Pn denotes the Legendre polynomial satisfying the following recursive rela-
tionship

P0(x) = 1, P1(x) = x, (n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x) n ≥ 1,

and the coefficients Aj,n and Bj,n are defined by

Aj,n =
(ϵp − ϵs)(n+ 1)|rj |n

4πϵpa2n+1[nϵp + (n+ 1)ϵs]
, Bj,n =

(2n+ 1)|rj |n

4π[nϵp + (n+ 1)ϵs]
.

For fully verifying our new algorithm, we consider the following artificial con-
structed problem on Ω = [−2, 2]3:

(23)



−ϵp∆u(r) = α

np∑
j=1

zjδrj , r ∈ Dp,

−ϵs∆u(r) + κ2 sinh(u(r)) = κ2 sinh(U(r)), r ∈ Ds,

u(s+) = u(s−), ϵs
∂u(s+)

∂n(s)
= ϵp

∂u(s−)

∂n(s)
, s ∈ Γ,

g(r) = U(r), r ∈ ∂Ω,

which still has the analytical solution U(r). To carry out the numerical tests, we
constructed four nested unstructured meshes (i.e., a nested mesh is obtained by
uniformly refining a given mesh) on the domain Ω with the interface Γ = {r :
∥r∥ = 1.0}. The number of vertices of these four nested meshes are 3779, 30237,
240377, and 1913841, respectively. Using these four nested unstructured meshes, we
calculated the analytical solution of (22) and its numerical solutions to verify our
new program. Here the charge numbers zj and atomic positions rj were obtained
from a PQR file of a protein with PDB ID 4PTI, which has 892 atoms (i.e., np =
892), and each atom coordinate rj (j = 1 to 892) was divided by 28 to rescale it
into the unit spherical region Dp so that the structure of the protein is preserved
within the unit ball. And we truncated the series to the first 20 terms in order to
get the analytical solution.

As before, in order to guarantee the numerical solution’s accuracy, we applied
the solution decomposition so that u = G+Ψ+ Φ̃, where G is given in (5) and Ψ
is determined by (6) with the boundary function being U − G. For the nonlinear

problem Φ̃, due to the additional term, we modified the right hand side term of
the Newton equation by adding the given term κ2

∫
Ds

sinh(U)v for v ∈ V 0
h and

used the constant one as the initial guess for the modified Newton method (since

Φ̃ ≡ 0). It is easy to see that these small changes do not produce any side effect on
our validation. Meanwhile, we know the solution of (23) is proportional to α. To
avoid the overflow problem caused by the hyperbolic functions, we set α = 1.0 in
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this validation test. Furthermore, since G is analytically computed, we only report
the errors for Ψ and Φ̃. All the numerical results are reported in Table 1.

Table 1. Numerical results for the local Poisson test model (22).

Mesh Mesh Relative Error Convergence Newton

index size h ∥Ψh+Φ̃h−Ψ−Φ̃∥0

∥Ψ+Φ̃∥0
order Iteration

1 0.921 2.02× 10−2 – 3
2 0.496 5.09× 10−3 2.23 3
3 0.280 1.28× 10−3 2.41 3
4 0.146 3.24× 10−4 2.11 3

Mesh Mesh Relative Error Convergence

index size h ∥Ψh+Φ̃h−Ψ−Φ̃∥1

∥Ψ+Φ̃∥1
order

1 0.921 4.47× 10−2 –
2 0.496 1.62× 10−2 1.64
3 0.280 6.17× 10−3 1.69
4 0.146 2.84× 10−3 1.19

Mesh Mesh Relative Error Convergence

index size h ∥Ψh+Φ̃h−Ψ−Φ̃∥∞
∥Ψ+Φ̃∥∞

order

1 0.921 4.44× 10−2 –
2 0.496 1.99× 10−2 1.30
3 0.280 5.15× 10−3 2.36
4 0.146 1.83× 10−3 1.59

From Table 1, we can see for solving the the non-homogeneous interface problem
(e.g., (6) of Ψ), the proposed finite volume element method has the convergence
order around 2 under the l2 norm and around 1 under the H1 norm, well matching
the theoretical results and thus validating our program. Here on the 4th mesh, the
number of computed terms in the series was increased to 30 so that the discretization
error would not be the dominated one. Under the l∞ norm, the convergence order is
reduced as expected. Meanwhile, it can be also observed that on these four nested
meshes, Newton method shows the local quadratic convergence property as well,
and surprisingly exact the same Newton iterations are taken.

5.2. Predicting electrostatic solvation free energies of proteins. As pointed
out in various literatures, one important application of implicit continuum models is
to predict the electrostatic solvation free energy of a biomolecule. According to the
solution decomposition (4), the electrostatic solvation energy E can be estimated
by the formula

(24) E =
NA

4184
· kBT

2

np∑
j=1

zj

(
Ψ(rj) + Φ̃(rj)

)
in kilocalorie per mole (kcal/mol).

In calculation, the numerical solutions Ψh and Φ̃h are obtained from solving (6) and
(7). As shown in [34], this quantity has been used to show the numerical stability
of the finite element solver. Here we could fully use this quantity to further verify
our new program by comparing the computed electrostatic solvation energies using
the finite volume element method and finite element method, which are labeled as
EFV EM and FFE , respectively.
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To do this, we use the coarsest finite element mesh sets used in [34] for four
proteins with PDB ID 2LZX, 1SVR, 1CID and 2AQ5, respectively. The PDB files
of these proteins were downloaded from the PDB website and then converted to
PQR files by the tool PDB2PQR [25] with the CHARMM force field. These four proteins
have 488, 1433, 2783, and 6024 atoms, respectively. Here, each molecular surface
(i.e., the interface Γ) was generated by our modified version of GAMer based on
the Gaussian blurring approach [32]. It has been shown in [34] that the generated
Gaussian surface can be close to a molecular structure, and meanwhile its molecular
shape is close to the ones generated using definitions of both the solvent-accessible
surface and solvent-excluded surface. Therefore, here we use the Gaussian surface
definition for simplicity since it generates the smoother molecular surface. The
numerical results are reported in Table 2.

Table 2. Electrostatic solvation free energies obtained using dif-
ferent numerical methods.

PDB ID Number of mesh nodes EFE EFV EM

2LZX 11034 −214.05 −213.47
1SVR 25842 −288.86 −286.03
1CID 32940 −313.78 −310.23
2AQ5 52566 −903.92 −897.48

From Table 2, we see that with more atoms, more unstructured mesh nodes it
has. And the electrostatic solvation free energies predicted by the finite element
solver and the new finite volume element solver are highly close, which also matches
the common sense and further validates our new program. Since the finite element
solver has been shown to be stable, it is for sure that the new finite volume element
PBE solver is also numerical stable. And all the applications that have been done
using the finite element PBE solvers in [28, 34] can be repeated here using the new
program package. For simplicity, it is omitted in this paper.
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