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NUMERICAL SIMULATIONS FOR SHALLOW WATER FLOWS

OVER ERODIBLE BEDS BY CENTRAL DG METHODS

WEIZHI XIAN, AIMIN CHEN∗, YONGPING CHENG, AND HAIYUN DONG

Abstract. In this paper, we investigate the shallow water flows over erodible beds by using a
fully coupled mathematical model in two-dimensional space. This model combines the nonlinear
shallow water equations, the sediment transport equation and the bed evolution equation. The
purpose of this paper is to design a well-balanced and positivity-preserving scheme for this model.

In order to achieve the well-balanced property, the coupled system is first reformulated as a new
form by introducing an auxiliary variable. The central discontinuous Galerkin method is applied
to discretize the model. By choosing the value of the auxiliary variable suitably, the scheme can

exactly balance the flux gradients and source terms in the “still-water” case, and thus the well-
balanced property of the proposed scheme can be proved. Moreover, the non-negativity of the
volumetric sediment concentration in the sediment transport equation is maintained by choosing
a suitable time step and using a positivity-preserving limiter. Numerical tests are presented to

illustrate the validity of the proposed scheme.

Key words. Shallow water equation, sediment transport equation, bed evolution, central dis-
continuous Galerkin method, well-balanced and positivity-preserving scheme.

1. Introduction

The nonlinear shallow water (SW) equations over a fixed bed [17] are widely
adopted to model free-surface flows in rivers, flood plains and coastal regions.
However, the highly energetic flows over erodible beds may induce the sediment
transport and the bed evolution. Therefore, the nonlinear SW equations over a
fixed bed cannot accurately predict the motion of flows over erodible beds.

To overcome this issue, various hydraulics models have been presented to sim-
ulate the fluid flow and the sediment transport in the past decades. In 2002,
Pritchard and Hogg [30] investigated the suspended sediment concentration by us-
ing the erosional and depositional models and reported the exact solution for the
suspended sediment transport under one-dimensional (1D) dam-break flow. Cao et
al. [3] investigated a 1D dam-break flow over mobile bed by considering the induced
sediment transport and morphological evolution. In 2003, Fagherazzi and Sun [11]
proposed a coupled model of the SW equations, the suspended sediment equation
and the Exner equation in 1D case, which was used to simulate the initiation and
evolution of transportational cyclic steps. In 2006, Simpson et al. [32] proposed a
two-dimensional (2D) mathematical model based on the SW equations and empir-
ical functions for bed friction, substrate erosion and deposition. This model is an
extension of the 1D model in [3] and [11], and can be used to simulate the channel
initiation and drainage basin evolution associated with overland flow and morpho-
logical changes induced by extreme events such as tsunami. In 2008, Abderrezzak
et al. [1] proposed a 1D coupled model for dam-break waves over movable beds.
This model is built on the shallow water equations, the Exner equation and a spa-
tial lag equation. Based on the 1D model in [3], Yue et al. [39] developed a coupled
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mathematical model in 2D space, which comprises the shallow water equations and
the empirical relationships for sediment exchange over erodible beds. In 2010, Xia
et al. [35] presented a 2D model for predicting dam-break flows over mobile beds.
In this model, they modified the shallow water equations, and thus the effects of
sediment concentration and bed evolution can be considered during the flood wave
propagation. These equations are combined with the non-equilibrium transport
equations for graded sediments and the equation of bed evolution. Li et al. [24]
proposed a fully coupled system to model the 2D SW equations with sediment
mass conservation and bed topography evolution. In 2012, Hu et al. [13] employed
a complete layer-averaged conservation laws, including the mass and momentum
conservation equations for the watersediment mixture and mass conservation equa-
tions for sediment and bed material respectively. Besides the impact of the friction,
the impacts of morphological change and water entrainment are also considered in
their model. In 2015, Liu et al. [27] built a fully coupled system combining the
2D SW equations with friction terms and the 2D sediment transport equations for
the total load and the morphological evolution equation. Besides the above works,
many related works have also been proposed, see, e.g., [5, 6, 29, 34].

To solve the models related to the shallow water flows over erodible beds, many
popular numerical schemes have been developed in the literature, such as the ex-
plicit finite difference scheme [1], the finite volume methods based on the Godunov-
type scheme, the Roe-MUSCL scheme or the slope limited centred scheme [32, 35,
24, 13, 31], the Godunov-type central-upwind scheme [27] and the discontinuous
Galerkin (DG) method [14, 33]. In [13] and [27], the authors investigated the well-
balanced property of the numerical schemes. In [14], the authors considered the
DG discretization of the evolution equation of the bed due to the transport of sed-
iment, but they did not consider the shallow water equations and the volumetric
sediment concentration. In [33], the authors investigated the DG discretization of
the shallow water equations and the evolution of the bed, but they still did not
consider the volumetric sediment concentration.

In this paper, we will consider the numerical simulation of shallow water flows
over erodible beds, which are governed by a fully coupled 2D system of the shal-
low water equations, the volumetric sediment concentration and the bed evolution
equation presented in [27]. The numerical method is based on the central DG
method which is different from the DG method used in [14, 33]. The proposed
method is still well-balanced and can maintain the non-negativity of the volumetric
sediment concentration. For the purpose of numerics, the coupled system is first
reformulated as a new form by introducing an auxiliary variable, which is easier to
achieve the well-balanced property. The reformulation is similar to the one in [25]
and is called as a “pre-balanced” form. In fact, the “pre-balanced” form in [25] is
a special case when the auxiliary variable is zero in our reformulation.

In this paper, the central DG method, which is a variant of the DG method
[9, 8, 28] and free of Riemann solvers, is applied to discretize the reformulated model.
There are also other schemes which are free of Riemann solvers in the literature,
such as the upwind central scheme [27]. Some numerical schemes with Riemann
solvers use a bound or a approximation value of the maximum eigenvalue [16]. The
central DG method is also one of popular high order numerical methods, which was
originally presented by Liu and his collaborators [26]. A well-balanced central DG
method coupling with the finite element method was employed to solve the 1D fully
nonlinear weakly dispersive Green-Naghdi model over varying topography ([21]). A
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positivity-preserving well-balanced central DG method was developed for solving
the shallow water equations ([22]).

The central DG method doubles the degrees of freedom in comparison to a con-
ventional DG method, but no Riemann solvers are needed, thus the computational
efficiency is a significant topic. A previous work in [10] has compared the efficiency
between the central DG method and the DG method, the authors reported that
the central DG method is more time-consuming in comparison to the DG method,
thus they proposed a reconstructed central DG method to improve the efficiency.
This method can be applied to improve the computing efficiency of the proposed
method in the present work. The reconstructed central DG method is comparable
to the standard DG method and is directly compatible with the procedures to en-
sure well-balancedness and non-negativity of the volumetric sediment concentration
[7]. For more works on the central DG method, see, e.g., [19, 18, 23, 38, 20].

In order to preserve the “still-water” solution, a special value of the auxiliary
variable is chosen, and then we can prove the well-balanced property of the pre-
sented scheme. Since the central DG method uses two overlapping meshes and the
numerical solutions is discontinuous across the edge of cell, the auxiliary variable
cannot be set as zero as in [25]. Moreover, the non-negativity of the volumetric sed-
iment concentration in the sediment transport equations is maintained by choosing
suitable time step and using a positivity-preserving limiter. The non-negativity is
also proved in this paper. The CFL condition in the positivity-preserving scheme is
different from the one in [22, 37] due to a source term appearing in the volumetric
sediment concentration equation. It is a trivial work to combine the positivity-
preserving scheme for the water depth [22] into the proposed scheme, thus it is not
considered in this paper.

The remainder of the paper is organized as follows. In Section 2, we introduce
the mathematical model studied in this paper. Then, we present the numerical
method for the model and discuss the well-balanced property of the scheme and
the non-negativity of the volumetric sediment concentration in Section 3. Section 4
shows a range of numerical tests to illustrate the reliability of the proposed method.
Finally, concluding remarks are given in Section 5.

2. Mathematical model

In this paper, we consider a fully coupled shallow water model which is used to
simulate flows over erodible beds in 2D space [27]

ht + (hu)x + (hv)y = −bt,(1)

(hu)t + (hu2 + 0.5gh2)x + (huv)y = −gh(bx + f1),(2)

(hv)t + (huv)x + (hv2 + 0.5gh2)y = −gh(by + f2),(3)

(hc)t + (huc)x + (hvc)y = E −M,(4)

bt +
µ

1− p
(u(u2 + v2))x +

µ

1− p
(v(u2 + v2))y =

M − E

1− p
.(5)

Herein, the subscripts t, x and y represent the partial derivative with respect to
the time variable and the space variables, respectively. h denotes the water depth,
u and v are the vertically averaged horizontal velocity in the x- and y-directions,
respectively, c represents the volumetric sediment concentration and b is the bed.
p denotes the bed porosity, g represents the gravitational constant and µ is a co-
efficient related to the grain diameter and the kinematic viscosity of the sediment
mixture. f1 and f2 are friction slope terms in the x- and y-directions, respectively,
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which are evaluated by

f1 = n2
bu
√
u2 + v2/h4/3, f2 = n2

bv
√
u2 + v2/h4/3(6)

with nb being the Manning’s roughness coefficient. Throughout of this paper, we
always assume the water depth h ≥ h0 > 0. Therefore, equation (6) is well-defined.

In equations (4)-(5), E denotes the bed sediment entrainment due to turbulence
and M represents the sediment deposition due to gravity, which are two distinct
mechanisms involved in the sediment exchange and bed evolution processes. We
follow [27] to calculate E and M :

M = w0(1− Za)
mZa,(7)

E =

{
ϕ(γ−γc)

√
u2+v2

hd1/5 if γ ≥ γc,
0 otherwise,

(8)

γ = h
√

f2
1 + f2

2 /(sd)(9)

w0 =
√

(13.95ν/d)2 + 1.09sgd− 13.95ν/d,(10)

Za = αc, α = min{2, (1− p)/c}(11)

where ν is the kinematic viscosity of water, d is the average diameter of sediment
particles and s = ρs/ρf − 1 is the submerged specific gravity of sediment with ρs
denoting the density of sediment particles and ρf being the density of clear water,
m is an exponent indicating the effects of hindered settling due to high sediment
concentration, Za is the local near-bed sediment concentration in volume. ϕ is a
positive coefficient to control the erosion force, γ is the dimensionless shear stress,
and γc is the critical Shields parameter for initiation of sediment movement. The
values of the parameters g, µ, p, nb, d, ν, ρs, ρf , γc will be given in numerical tests.

In order to present the numerical scheme more conveniently, we define η =
h + b, q1 = hu, q2 = hv, r = hc and rewrite the equations (1)- (5) in the following
vector form:

(12) Ut + F(U)x +G(U)y = S(U) ,

where

(13) U = (η, q1, q2, r, b)
⊤
,

(14) F(U) =

(
q1,

q21
η − b

+
1

2
g(η − b)2,

q1q2
η − b

,
q1r

η − b
,

µ

1− p

q1
(
q21 + q22

)
(η − b)3

)⊤

,

(15) G(U) =

(
q2,

q1q2
η − b

,
q22

η − b
+

1

2
g(η − b)2,

q2r

η − b
,

µ

1− p

q2
(
q21 + q22

)
(η − b)3

)⊤

,

(16) S(U) =

(
0,−g(η − b) (bx + f1) ,−g(η − b) (by + f2) , E −M,

M − E

1− p

)⊤

.

3. Numerical schemes

In this section, we develop the numerical method for the solution of the fully cou-
pled shallow water model over erodible beds. The proposed method preserves the
“still-water” solution and maintains the non-negativity of the volumetric sediment
concentration.
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3.1. Notations. In this paper, we adopt the notations in [22]. Let {xi− 1
2
}i and

{yj− 1
2
}j denote the partitions of [xmin, xmax] and [ymin, ymax], respectively. Define

xi =
1
2 (xi− 1

2
+ xi+ 1

2
), yj = 1

2 (yj− 1
2
+ yj+ 1

2
), Cij = [xi− 1

2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
] and

Dij = [xi−1, xi]× [yj−1, yj ]. Thus T C
h = {Cij , ∀i, j} and T D

h = {Dij , ∀i, j} are two
overlapping meshes for the computational domain Ω = [xmin, xmax] × [ymin, ymax].
On the two meshes, we can define the following discrete spaces

WC,k
n = {v = (v1, v2, ..., vn)

⊤ : vl|Cij ∈ P k(Cij), l = 1, 2, ..., n, ∀i, j} ,

WD,k
n = {v = (v1, v2, ..., vn)

⊤ : vl|Dij ∈ P k(Dij), l = 1, 2, ..., n,∀i, j} ,

where n is a positive integer. P k(Cij) denotes the space of polynomials in Cij with
degree of at most k.

We denote the Legendre Gauss-Lobatto quadrature points on [xi− 1
2
, xi], [xi, xi+ 1

2
],

[yj− 1
2
, yj ] and [yj , yj+ 1

2
] by L̂1,x

i = {x̂1,β
i , β = 1, 2, . . . , N̂}, L̂2,x

i = {x̂2,β
i , β =

1, 2, . . . , N̂}, L̂1,y
j = {ŷ1,γj , γ = 1, 2, . . . , N̂} and L̂2,y

j = {ŷ2,γj , γ = 1, 2, . . . , N̂},
respectively. We denote the corresponding quadrature weights on the reference ele-

ment [− 1
2 ,

1
2 ] by {ω̂β , β = 1, 2, . . . , N̂}, in which N̂ is chosen such that 2N̂ − 3 ≥ k.

We denote the Gaussian quadrature points on [xi− 1
2
, xi], [xi, xi+ 1

2
], [yj− 1

2
, yj ] and

[yj , yj+ 1
2
] by L1,x

i = {x1,β
i , β = 1, 2, . . . , N}, and L2,x

i = {x2,β
i , β = 1, 2, . . . , N},

L1,y
j = {y1,γj , γ = 1, 2, . . . , N} and L2,y

j = {y2,γj , γ = 1, 2, . . . , N}, respectively. We

denote the corresponding quadrature weights on the interval [−1
2 ,

1
2 ] by {ωβ , β =

1, 2, . . . , N}, in which N is chosen such that the Gaussian quadrature is exact
for the integration of univariate polynomials of degree 2k + 1. Then we define

Ll,m
i,j = (Ll,x

i ⊗Lm,y
j )∪ (Ll,x

i ⊗ L̂m,y
j )∪ (L̂l,x

i ⊗Lm,y
j ) with l,m = 1, 2. The points in

Ll,m
i,j , l,m = 1, 2 are also shown in Figure 1.
The proposed scheme evolves two copies of numerical solutions, which are de-

noted by Un,⋆ = (ηn,⋆, qn,⋆1 , qn,⋆2 , rn,⋆, bn,⋆)⊤ ∈ W⋆, ⋆ = C,D, at tn.

3.2. Standard central DG method. In this subsection, we use the standard
central DG method [26] for space discretization and the forward Euler method for

time discretization to solve (12). That is to find Un+1,C ∈ WC,k
5 and Un+1,D ∈

WD,k
5 such that ∀ VC ∈ WC,k

5 , ∀ VD ∈ WD,k
5 ,∫

Cij

Un+1,C ·VCdxdy =

∫
Cij

(
θUn,D + (1− θ)Un,C

)
·VCdxdy

+ ∆tn

∫
Cij

[
F
(
Un,D

)
·VC

x +G
(
Un,D

)
·VC

y

]
dxdy

− ∆tn

∫ y
j+1

2

y
j− 1

2

[
F
(
Un,D

(
xi+ 1

2
, y
))

·VC
(
x−
i+ 1

2

, y
)

− F
(
Un,D(xi− 1

2
, y)
)
·VC

(
x+
i− 1

2

, y
)]

dy

− ∆tn

∫ x
i+1

2

x
i− 1

2

[
G
(
Un,D

(
x, yj+ 1

2

))
·VC

(
x, y−

j+ 1
2

)
− G

(
Un,D

(
x, yj− 1

2

))
·VC

(
x, y+

j− 1
2

)]
dx

+ ∆tn

∫
Cij

S
(
Un,D

)
·VCdxdy ,(17)
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L
i,j
1,1 L

i,j
1,2

L
i,j
2,1 L

i,j
2,2

Figure 1. The points in Ll,m
i,j , l,m = 1, 2 located in the cell Cij .

∫
Dij

Un+1,D ·VDdxdy =

∫
Dij

(
θUn,C + (1− θ)Un,D

)
·VDdxdy

+ ∆tn

∫
Dij

[
F
(
Un,C

)
·VD

x +G
(
Un,C

)
·VD

y

]
dxdy

− ∆tn

∫ yj

yj−1

[
F
(
Un,C (xi, y)

)
·VD

(
x−
i , y

)
− F

(
Un,C(xi−1, y)

)
·VD

(
x+
i−1, y

)]
dy

− ∆tn

∫ xi

xi−1

[
G
(
Un,C (x, yj)

)
·VD

(
x, y−j

)
− G

(
Un,C (x, yj−1)

)
·VD

(
x, y+j−1

)]
dx

+ ∆tn

∫
Dij

S
(
Un,C

)
·VDdxdy ,(18)

where ∆tn is the time step and θ ∈ [0, 1] is a constant. Notice that the scheme
given by (17)-(18) is not a well-balanced scheme, namely, it does not satisfy the
“still-water” solution exactly

η = h+ b = C0 (Constant), u = v = 0.(19)

Since both variables r = hc and b may be the functions of time while the identities
in (19) hold, they are different from the case of the classical nonlinear SW equations
where b is independent of time. Therefore,it is a challenging work to design a well-
balanced scheme that satisfies (19) exactly when the initial data satisfies (19).
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3.3. Well-balanced central DG method. In this subsection, we present a well-
balanced scheme based on the standard central DG method for the system (12). In
[22], the authors proposed a positivity-preserving well-balanced central DG method
for the nonlinear shallow water equations over fixed beds. The well-balanced prop-
erty of the scheme is achieved by adding modification terms to the discretization
scheme. While in this work, to achieve the well-balanced property, the coupled
model is first reformulated as a new form by introducing an auxiliary variable. By
choosing the value of the auxiliary variable suitably, the central DG scheme can
exactly balance the flux gradients and source terms in the “still-water” case. There
is no modification terms added in the discretization scheme.

We reformulate the system (12) as the following form

(20) Ut + F̃(U, A)x + G̃(U, A)y = S̃(U, A) ,

where
(21)

F̃(U, A) =

(
q1,

q21
η − b

+
1

2
gη2 − g(η −A)b,

q1q2
η − b

,
q1r

η − b
,

µ

1− p

q1
(
q21 + q22

)
(η − b)3

)⊤

,

(22)

G̃(U, A) =

(
q2,

q1q2
η − b

,
q22

η − b
+

1

2
gη2 − g(η −A)b,

q2r

η − b
,

µ

1− p

q2
(
q21 + q22

)
(η − b)3

)⊤

,

(23)

S̃(U, A) =

(
0,−g(η −A)bx − ghf1,−g(η −A)by − ghf2, E −M,

M − E

1− p

)⊤

,

where A is constant or a variable only dependent on time t. Equation (20) is a
“pre-balanced” formulation of the shallow water system (12). This formulation
will greatly simplify the achievement of the well-balanced property of the proposed
scheme.

The standard central DG method can be applied to the new system (20). That

is to find Un+1,C ∈ WC,k
5 such that ∀ V ∈ WC,k

5 ,∫
Cij

Un+1,C ·Vdxdy =

∫
Cij

(
θUn,D + (1− θ)Un,C

)
·Vdxdy

+ ∆tn

∫
Cij

[
F̃
(
Un,D, An,D

)
·Vx + G̃

(
Un,D, An,D

)
·Vy

]
dxdy

− ∆tn

∫ y
j+1

2

y
j− 1

2

[
F̃
(
Un,D

(
xi+ 1

2
, y
)
, An,D

)
·V

(
x−
i+ 1

2
, y
)

− F̃
(
Un,D(xi− 1

2
, y), An,D

)
·V

(
x+

i− 1
2
, y
)]

dy

− ∆tn

∫ x
i+1

2

x
i− 1

2

[
G̃

(
Un,D

(
x, yj+ 1

2

)
, An,D

)
·V

(
x, y−

j+ 1
2

)
− G̃

(
Un,D

(
x, yj− 1

2

)
, An,D

)
·V

(
x, y+

j− 1
2

)]
dx

+ ∆tn

∫
Cij

S̃
(
Un,D, An,D

)
·Vdxdy .(24)

The procedure to update Un+1,D is similar to (18), thus it is omitted. In the well-
balanced scheme, the value of An,D is significant in the case of the “still-water” solution.
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In particular, it should be a constant equal to the same value of the water surface η at
initial time. Therefore, in this work An,D is defined by

An,D =
1

|Ω|

∫
Ω

ηn,Ddxdy .(25)

Theorem 1. The proposed numerical method defined in (24)-(25), and its counterpart
for Un+1,D, to solve the fully coupled shallow water model over erodible beds (12), is a
well-balanced scheme. That is to say, the scheme preserves the “still-water” solution (19).

Proof. : Let

(26) Û = (η, q1, q2)
⊤ ,

(27) F̂(U, A) =

(
q1,

q21
η − b

+
1

2
gη2 − g(η −A)b,

q1q2
η − b

)⊤

,

(28) Ĝ(U, A) =

(
q2,

q1q2
η − b

,
q22

η − b
+

1

2
gη2 − g(η −A)b

)⊤

,

(29) Ŝ(U, A) = (0,−g(η −A)bx − ghf1,−g(η −A)by − ghf2)
⊤ .

We consider the scheme satisfied by Û: find Ûn+1,C ∈ WC,k
3 such that ∀ V̂ ∈ WC,k

3 ,∫
Cij

Ûn+1,C · V̂dxdy =

∫
Cij

(
θÛn,D + (1− θ)Ûn,C

)
· V̂dxdy

+∆tn

∫
Cij

[
F̂
(
Ûn,D, An,D

)
· V̂x + Ĝ

(
Ûn,D, An,D

)
· V̂y

]
dxdy

−∆tn

∫ y
j+1

2

y
j− 1

2

[
F̂
(
Ûn,D

(
xi+ 1

2
, y
)
, An,D

)
· V̂

(
x−
i+ 1

2
, y
)

− F̂
(
Ûn,D(xi− 1

2
, y), An,D

)
· V̂

(
x+

i− 1
2
, y
)]

dy

−∆tn

∫ x
i+1

2

x
i− 1

2

[
Ĝ

(
Ûn,D

(
x, yj+ 1

2

)
, An,D

)
· V̂

(
x, y−

j+ 1
2

)
− Ĝ

(
Ûn,D

(
x, yj− 1

2

)
, An,D

)
· V̂

(
x, y+

j− 1
2

)]
dx

+∆tn

∫
Cij

Ŝ
(
Ûn,D, An,D

)
· V̂dxdy .(30)

The procedure to update Ûn+1,D is similar to (30), thus it is omitted. Now we suppose
the still-water stationary solution η = h + b = C0, u = v = 0 at t = 0, where C0 is a
constant. In the initialization step, it is easy to ensure

(31) Ûn,C = Ûn,D = (C0, 0, 0)
⊤ ,

for n = 0.
By induction, assuming condition (31) is true for n ≥ 0, we want to establish that the

numerical solution computed from (30) and its counterpart for Ûn+1,D satisfy

Ûn+1,C = Ûn+1,D = (C0, 0, 0)
⊤ .

By virtue of (31),

An,D = C0, f1 = f2 = 0,(32)

the first term on the right-hand side of (30) become∫
Cij

(
θÛn,D + (1− θ)Ûn,C

)
· V̂dxdy =

∫
Cij

(C0, 0, 0)
⊤ · V̂dx ,(33)
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the flux terms

F̂(Un,D, An,D) =

(
0,

1

2
gC2

0 , 0

)⊤

,(34)

Ĝ(Un,D, An,D) =

(
0, 0,

1

2
gC2

0

)⊤

,(35)

the source term

(36) Ŝ
(
Un,D, An,D

)
= (0, 0, 0)⊤ ,

With equations (32)-(36) in hand, we have from (30)

∫
Cij

Ûn+1,C · V̂dxdy =

∫
Cij

(
θÛn,D + (1− θ)Ûn,C

)
· V̂dxdy

+∆tn

∫
Cij

[
F̂
(
Un,D, An,D

)
· V̂x + Ĝ

(
Un,D, An,D

)
· V̂y

]
dxdy

−∆tn

∫ y
j+1

2

y
j− 1

2

[
F̂
(
Un,D

(
xi+ 1

2
, y
)
, An,D

)
· V̂

(
x−
i+ 1

2
, y
)

− F̂
(
Un,D(xi− 1

2
, y), An,D

)
· V̂

(
x+

i− 1
2
, y
)]

dy

−∆tn

∫ x
i+1

2

x
i− 1

2

[
Ĝ

(
Un,D

(
x, yj+ 1

2

)
, An,D

)
· V̂

(
x, y−

j+ 1
2

)
− Ĝ

(
Un,D

(
x, yj− 1

2

)
, An,D

)
· V̂

(
x, y+

j− 1
2

)]
dx

+∆tn

∫
Cij

Ŝ
(
Un,D, An,D

)
· V̂dxdy

=

∫
Cij

(C0, 0, 0)
⊤ · V̂dx

+∆tn

∫
Cij

[(
0,

1

2
gC2

0 , 0

)⊤

· V̂x +

(
0, 0,

1

2
gC2

0

)⊤

· V̂y

]
dxdy

−∆tn

∫ y
j+1

2

y
j− 1

2

[(
0,

1

2
gC2

0 , 0

)⊤

· V̂
(
x−
i+ 1

2
, y
)

−
(
0,

1

2
gC2

0 , 0

)⊤

· V̂
(
x+

i− 1
2
, y
)]

dy

−∆tn

∫ x
i+1

2

x
i− 1

2

[(
0, 0,

1

2
gC2

0

)⊤

· V̂
(
x, y−

j+ 1
2

)

−
(
0, 0,

1

2
gC2

0

)⊤

· V̂
(
x, y+

j− 1
2

)]
dx

+∆tn

∫
Cij

(0, 0, 0)⊤ · V̂dxdy

=

∫
Cij

(C0, 0, 0)
⊤ · V̂dx

Equation (??) gives ∫
Cij

(
Ûn+1,C − (C0, 0, 0)

⊤
)
· V̂dxdy = 0
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By further taking V̂ = Ûn+1,C − (C0, 0, 0)
⊤, we obtain

∫
Cij

∣∣∣Ûn+1,C − (C0, 0, 0)
⊤
∣∣∣2 dxdy = 0

and thus Ûn+1,C = (C0, 0, 0)
⊤. Similarly, we can establish Ûn+1,D = (C0, 0, 0)

⊤. This
completes the proof.

�

3.4. Non-negativity of the volumetric sediment concentration. Some shallow wa-
ter flows over erodible beds involve low volumetric sediment concentration which is close
to zero or equal to zero. If no special attention is paid, standard numerical methods may
produce unacceptable negative value of the volumetric sediment concentration. In this
subsection, we discuss the non-negativity of the volumetric sediment concentration.

To do so, we denote r̄n,C
ij (resp. r̄n,D

ij ) as the cell average of the solution function rn,C

(resp. rn,D ) over Cij (resp. Dij ) at time tn. The cell average of the numerical solution

rn+1,C
ij can be obtained by taking the test function V = (0, 0, 0, 1

∆x∆y
, 0)⊤ in (24) or (17):

r̄n+1,C
ij = (1− θ)r̄n,C

ij +
θ

∆x∆y

∫
Cij

rn,Ddxdy

− ∆tn
∆x∆y

∫ y
j+1

2

y
j− 1

2

 qn,D
1

(
xi+ 1

2
, y
)
rn,D

(
xi+ 1

2
, y
)

ηn,D
(
xi+ 1

2
, y
)
− bn,D

(
xi+ 1

2
, y
)

−
qn,D
1

(
xi− 1

2
, y
)
rn,D

(
xi− 1

2
, y
)

ηn,D
(
xi− 1

2
, y
)
− bn,D

(
xi− 1

2
, y
)
 dy

− ∆tn
∆x∆y

∫ x
i+1

2

x
i− 1

2

 qn,D
2

(
x, yj+ 1

2

)
rn,D

(
x, yj+ 1

2

)
ηn,D

(
x, yj+ 1

2

)
− bn,D

(
x, yj+ 1

2

)
−

qn,D
2

(
x, yj− 1

2

)
rn,D

(
x, yj− 1

2

)
ηn,D

(
x, yj− 1

2

)
− bn,D

(
x, yj− 1

2

)
 dx

+
∆tn

∆x∆y

∫
Cij

En,D −Mn,Ddxdy

= (1− θ)r̄n,C
ij +

θ

∆x∆y

∫
Cij

rn,Ddxdy

− ∆tn
∆x∆y

∫ y
j+1

2

y
j− 1

2

[
un,D

(
xi+ 1

2
, y
)
rn,D

(
xi+ 1

2
, y
)

− un,D
(
xi− 1

2
, y
)
rn,D

(
xi− 1

2
, y
)]

dy

− ∆tn
∆x∆y

∫ x
i+1

2

x
i− 1

2

[
vn,D

(
x, yj+ 1

2

)
rn,D

(
x, yj+ 1

2

)
− vn,D

(
x, yj− 1

2

)
rn,D

(
x, yj− 1

2

)]
dx

+ ∆tnE
n,D
Cij

− ∆tn
∆x∆y

∫
Cij

M̂n,Drn,Ddxdy,
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where

un,D =
qn,D
1

ηn,D − bn,D
,(37)

vn,D =
qn,D
2

ηn,D − bn,D
,(38)

E
n,D
Cij

=
1

∆x∆y

∫
Cij

En,Ddxdy.(39)

M̂ =
M

r
=

αw0(1− αr/(η − b))m

η − b
(40)

In the numerical implementation, the definite integrals in the intervals [xi− 1
2
, xi+ 1

2
],

[yj− 1
2
, yj+ 1

2
] and cell Cij are usually evaluated by the Gauss quadrature rule. Notice that

the numerical solutions are discontinuous along x = xi or y = yj , the scheme (37) becomes

r̄n+1,C
ij = (1− θ)r̄n,C

ij +
θ

∆x∆y

∫
Cij

rn,Ddxdy

− ∆tn
2∆x

2∑
s=1

N∑
γ=1

ωγ

[
un,D

(
x̂2,N̂
i , ys,γ

j

)
rn,D

(
x̂2,N̂
i , ys,γ

j

)
− un,D (

x̂1,1
i , ys,γ

j

)
rn,D (

x̂1,1
i , ys,γ

j

)]
− ∆tn

2∆y

2∑
l=1

N∑
β=1

ωβ

[
vn,D

(
xl,β
i , ŷ2,N̂

j

)
rn,D

(
xl,β
i , ŷ2,N̂

j

)
− vn,D

(
xl,β
i , ŷ1,1

j

)
rn,D

(
xl,β
i , ŷ1,1

j

)]
+∆tnE

n,D
Cij

− ∆tn
4

2∑
l,s=1

N∑
β,γ=1

ωβωγM̂
n,D

(
xl,β
i , ys,γ

j

)
rn,D

(
xl,β
i , ys,γ

j

)
,(41)

herein, we used x̂1,1
i = xi− 1

2
, x̂2,N̂

i = xi+ 1
2
, ŷ1,1

j = yj− 1
2
, ŷ2,N̂

j = yj+ 1
2
. The evaluation of

E
n,D
Cij

defined in (39) is also given by Gauss quadrature rule.

Since the numerical solution rn,D is a piecewise polynomial with degree k + 1, the
first integral in cell Cij in (41) is exactly evaluated by using the Gauss quadrature rule
in our numerical implementation. However, in order to discuss the non-negativity of the
volumetric sediment concentration r. We here calculate the integral using a combination
of the Gauss quadrature rule and the Legendre Gauss-Lobatto quadrature rule as follows:

θ

∆x∆y

∫
Cij

rn,Ddxdy =
θ

3∆x∆y

∫
Cij

rn,Ddxdy

+
θ

3∆x∆y

∫
Cij

rn,Ddxdy +
θ

3∆x∆y

∫
Cij

rn,Ddxdy

=
θ

3

2∑
l,s=1

N∑
β,γ=1

ωβωγr
n,D

(
xl,β
i , ys,γ

j

)

+
θ

3

2∑
l,s=1

N∑
β=1

N̂∑
γ=1

ωβω̂γr
n,D

(
xl,β
i , ŷs,γ

j

)

+
θ

3

2∑
l,s=1

N̂∑
β=1

N∑
γ=1

ω̂βωγr
n,D

(
x̂l,β
i , ys,γ

j

)
.(42)
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Plugging (42) into (41), one obtains

r̄n+1,C
ij = (1− θ)r̄n,C

ij +∆tnE
n,D
Cij

+

2∑
s=1

N∑
γ=1

ωγ

[
θ

3
ω̂1 −

∆tn
2∆x

un,D
(
x̂2,N̂
i , ys,γ

j

)]
rn,D

(
x̂2,N̂
i , ys,γ

j

)

+

2∑
s=1

N∑
γ=1

ωγ

[
θ

3
ω̂1 +

∆tn
2∆x

un,D (
x̂1,1
i , ys,γ

j

)]
rn,D (

x̂1,1
i , ys,γ

j

)
+

2∑
l=1

N∑
β=1

ωβ

[
θ

3
ω̂1 −

∆tn
2∆y

vn,D
(
xl,β
i , ŷ2,N̂

j

)]
rn,D

(
xl,β
i , ŷ2,N̂

j

)

+

2∑
l=1

N∑
β=1

ωβ

[
θ

3
ω̂1 +

∆tn
2∆y

vn,D
(
xl,β
i , ŷ1,1

j

)]
rn,D

(
xl,β
i , ŷ1,1

j

)

+

2∑
l,s=1

N∑
β,γ=1

ωβωγ

[
θ

3
− ∆tn

4
M̂n,D

(
xl,β
i , ys,γ

j

)]
rn,D

(
xl,β
i , ys,γ

j

)

+
θ

3

2∑
l,s=1

N̂−1∑
β=2

N∑
γ=1

ω̂βωγr
n,D

(
x̂l,β
i , ys,γ

j

)

+
θ

3

2∑
s=1

N∑
γ=1

ωγ ω̂1

(
rn,D (

x̂2,1
i , ys,γ

j

)
+ rn,D

(
x̂1,N̂
i , ys,γ

j

))

+
θ

3

2∑
l,s=1

N∑
β=1

N̂−1∑
γ=2

ωβω̂γr
n,D

(
xl,β
i , ŷs,γ

j

)

+
θ

3

2∑
l=1

N∑
β=1

ωβω̂1

(
rn,D

(
xl,β
i , ŷ2,1

j

)
+ rn,D

(
xl,β
i , ŷ1,N̂

j

))
.(43)

Here, we used ω̂N̂ = ω̂1. Now, we have the following theorem from (43).

Theorem 2. For any given n ≥ 0, we assume r̄n,C
ij ≥ 0 and r̄n,D

ij ≥ 0, ∀i, j. Consider the

numerical scheme in (41) and its counterpart for r̄n+1,D
ij , if rn,C(x, y) ≥ 0, rn,D(x, y) ≥ 0,

∀(x, y) ∈ Ll,m
i,j , ∀i, j with l,m = 1, 2, then r̄n+1,C

ij ≥ 0 and r̄n+1,D
ij ≥ 0, ∀i, j, provided that

the time step ∆tn satisfies

(44) ∆tn ≤ min

(
2θω̂1∆x

3ax
,
2θω̂1∆y

3ay
,
4θ

3d̂

)
where d̂ = max

(
∥M̂n,C∥∞, ∥M̂n,D∥∞

)
, ax = max

(
∥un,C∥∞, ∥un,D∥∞

)
and

ay = max
(
∥vn,C∥∞, ∥vn,D∥∞

)
.

Since a source term appearing in the sediment transport equation, the CFL condition
is different from the one in [22], in which the positivity-preserving scheme was designed
for the water depth.

Finally, to satisfy the sufficient condition given in Theorem 2, a positivity-preserving
limiter is employed to modify the numerical solutions rn,C and rn,D which is the same
as the one applied to the water depth in [37, 22]. Let K denote an element from the

primal mesh or the dual mesh and L̂K represent the set of relevant quadrature points

in K, namely on the primal mesh K = Cij , L̂K = ∪2
l,m=1L

l,m
i,j and on the dual mesh

K = Dij , L̂K = L1,1
i,j ∪ L1,2

i,j−1 ∪ L2,1
i−1,j ∪ L2,2

i−1,j−1. The positivity-preserving limiter is

given as follows: on each mesh element K, we modify the water depth rn,⋆ (⋆ = C,D)
into r̃n,⋆ = βK(rn,⋆ − r̄n,⋆) + r̄n,⋆ with

βK = min
x∈L̂K

{
1,

∣∣∣∣ r̄n,⋆

r̄n,⋆ − rn,⋆(x)

∣∣∣∣} .
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3.5. High-order time discretization. So far, the scheme is proposed when the first
order forward Euler method is taken as the time discretization. To achieve better accu-
racy in time, a third-order TVD Runge-Kutta scheme is employed for time discretization
[9]. Such discretization can be written as a convex combination of the forward Euler
method, and therefore the resulting scheme is still well-balanced and can maintain the
non-negativity of the volumetric sediment concentration. The time step restriction for
the third order TVD Runge-Kutta scheme is the same as the one for the forward Euler
method.

3.6. Summary of the proposed scheme. Finally, we summarize the complete pro-
cedure of the well-balanced and positivity-preserving central DG method for the fully
coupled shallow water equations over erodible bed:

1. Compute the initial data U0,C and U0,D, set n := 0.
2. Compute the time step ∆tn according to Theorem 2.
3. Apply the positivity-preserving limiter in Section 3.4 to modify the numerical so-

lutions rn,C and rn,D into r̃n,C and r̃n,D, then redefine Un,C = (ηn,C , qn,C
1 , qn,C

2 ,

r̃n,C , bn,C)⊤ and Un,D = (ηn,D, qn,D
1 , qn,D

2 , r̃n,D, bn,D)⊤.
4. Apply the well-balanced central DG method (24) to update the solutions Un+1,C

and Un+1,D

5. Set n := n+ 1, goto 2.

Remark 1. In the final numerical implementation, the third order TVD Runge-Kutta
method is used to advance the time and thus the positivity-preserving limiter is applied to
modify the numerical solutions of r at each inner stage of the Runge-Kutta method.

4. Numerical examples

In this section, numerical experiments are presented to demonstrate the performance of
the proposed method for solving the fully coupled 2D system of the SW equations and the
sediment transport equations. All simulations are performed with P 2 approximations, and
all reported results are from numerical solutions on the primal mesh. In all simulations,
we use a uniform mesh with constant mesh sizes ∆x and ∆y in the x- and y-directions,
respectively. We set θ = 1, the kinematic viscosity of water ν = 1.2×10−6, the Manning’s
roughness coefficient nb = 0.02, the parameters ϕ = 0.015, γc = 0.047 and m = 2. In
this computation, we use the total variation bounded (TVB) minmod slope limiter [9] to
prevent numerical instabilities. It is used prior to application of the positivity-preserving
limiter.

4.1. Well-balanced test. In this test, we validate the well-balanced feature of the pro-
posed method as applied to a quiescent water with uniform sediment deposition. The
initial conditions are

η(x, y, 0) = 1 ,

u(x, y, 0) = v(x, y, 0) = 0 ,

b(x, y, 0) = 0 ,

c(x, y, 0) = 0.7e−5(x−0.9)2−50(y−0.5)2 ,

In this test, we set the gravitational constant g = 9.8, the bed porosity p = 0.28, the
sediment diameter d = 0.01, the density of sediment particles ρs = 2400, the density of
water ρf = 1000, and the coefficient µ = 0 in equation (5).

We choose [−1, 3] × [−0.5, 1.5] as the computational domain, divided into 40 × 20
elements, and use the outgoing boundary conditions for all boundaries. We compute the
solution up to t = 100 by the proposed method.

We implement the computation in both single and double precision. The corresponding
L∞ errors on the water surface η, discharges hu and hv are given in Table 1. It can be
seen from this table that these values have orders of magnitude consistent with machine
precision, thus the proposed scheme preserves the “still-water” solution exactly. Besides,
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Figure 2. Numerical results (free surface h+ b and bottom b) for
the stationary solution at t = 100.

we also plot the water surface and the bed profile at t = 100 in Figure 2. It can be observed
from this figure that there are no oscillations developed at the water surface during the
evolution of a variable bed.

Table 1. L∞ errors on (η, hu, hv) for the stationary solution at
t = 100.

precision η hu hv

single 1.32E-07 3.23E-08 3.72E-08
double 5.65E-14 2.73E-15 3.25E-15

4.2. Positivity-preserving test. In this test, we investigate the non-negativity of the
volumetric sediment concentration c by the proposed method. We consider a dam break
problem over an erodible bed with the initial conditions:

η(x, y, 0) =

{
2 , x ≤ 1 ,
1 , otherwise ,

u(x, y, 0) = v(x, y, 0) = 0 ,

c(x, y, 0) = 0.0 ,

b(x, y, 0) = 0.7e−5(x−0.9)2−50(y−0.5)2 ,

In this test, we set the gravitational constant g = 9.8, the bed porosity p = 0.28, the
sediment diameter d = 0.01, the density of sediment particles ρs = 2400, the density of
water ρf = 1000, and the coefficient µ = 0 in equation (5).

The computational domain [−1, 3]× [−0.5, 1.5], divided into 80× 40 uniform cells, and
the outgoing boundary conditions are used for all boundaries. We compute the solution
at t = 0.2 and 0.5 by the proposed method with or without positivity-preserving limiter
(PPL). For a comparison, we use same CFL number (0.1) for both tests. We show the
numerical water surface h+b obtained by both methods in Figure 3, the results match well
with each other. However, the volumetric sediment concentration c is equal to zero at the
initial time and then gradually increases as the time goes. Without the use of the algorithm
presented in section 3.4, the simulation produces non-physical numerical solution for the
volumetric sediment concentration (See Figure 4). By using the algorithm presented in
section 3.4, the numerical volumetric sediment concentration c is always non-negative.
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Figure 3. Numerical water surface η = h + b for the positivity-
preserving test at t = 0.2 and 0.5.
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Figure 4. Numerical volumetric sediment concentration c for the
positivity-preserving test at t = 0.2 and 0.5.

4.3. Perturbation of a stationary solution. We next consider a perturbation to a
“still-water” state [27]. The initial conditions are given by

η(x, y, 0) =

{
1 + ε , 0.05 ≤ x ≤ 0.15 ,
1 , otherwise ,

u(x, y, 0) = v(x, y, 0) = 0 ,

c(x, y, 0) = 0.05 ,

b(x, y, 0) = 0.8 e−5(x−0.9)2−50(y−0.5)2 .
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Figure 5. Contours of the surface level h+ b for the perturbation
of a stationary solution at t = 0.6, 0.9, 1.2, 1.5 and 1.8. Left:
well-balanced central DG method, right: standard central DG
method.

where ε is a non-zero perturbation parameter. In this test, we set the perturbation ε =
0.01, the gravitational constant g = 1, the bed porosity p = 0.3, the sediment diameter
d = 0.01, the density of sediment particles ρs = 2.4, the density of water ρf = 1, and the
coefficient µ = 0.001 in equation (5), we also choose w0 = 1 instead of (10).

The computational domain is [0, 2] × [0, 1]. The well-balanced central DG method is
used to solve this problem on a 200 × 100 mesh. The left column in Figure 5 displays
the water surface h + b at t = 0.6, 0.9, 1.2, 1.5 and 1.8. Clearly, we can see that the
numerical solution is able to capture complex small features of the flow as reported in
[27]. To demonstrate the importance of the well-balanced property, we also compare with
numerical results by the standard central DG method for the same mesh, as presented
in the right column of Figure 5. The numerical solutions exhibit spurious oscillations of
large amplitude. We also used a smaller perturbation ε = 0.0001 to test the well-balanced
property of the presented method, similar results have been observed, and thus they are
not shown here. Besides, in Figure 6 we also show a comparison between the central
upwind scheme on 20658 triangular cells in [27] and the well-balanced central DG method
on a coarser grid (100 × 50 rectangular cells). It can be seen from this figure that the
results from the well-balanced central DG method are comparable to the results from the
central upwind scheme in [27].
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Figure 6. Comparison between the central upwind scheme (20658
triangular cells) and the well-balanced central DG method (100×50
rectangular cells) for the perturbation of a stationary solution at
t = 0.6, 0.9, 1.2, 1.5 and 1.8. Left: central upwind scheme [27],
right: well-balanced central DG method.

4.4. Dam-break problem in a long channel over erodible bed. In this test, we
study a dam-break flow in a long channel over erodible beds to verify the well-balanced
property of the proposed method. The initial conditions are

η(x, y, 0) =

{
3.1 , x ≤ 20 ,
0.2 , otherwise ,

u(x, y, 0) = v(x, y, 0) = 0 ,

c(x, y, 0) = b(x, y, 0) = 0 .
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Figure 7. Numerical results for dam-break problem in a long
channel over erodible bed at t = 1.

In the simulation, we neglect the sediment entrainment effects so that we set E = D =
0. The parameter values are g = 9.8, p = 0.28 and µ = 0.001. The computational domain
is [0, 40]× [0, 0.5] divided into 400× 5 uniform cells.

In Figure 7, we show the numerical surface level h+b and bed profile b at t = 1. As one
can clearly see, even under a high-energetic flow considered in this example, the proposed
method produces a stable bed erosion process, and the surface level and the bed profile
are physically expectable.

4.5. Dam-break experiment over a movable bed. In this test, we further investi-
gate a dam-break problem over a movable bed which has been studied numerically and
experimentally [24, 4].

The initial conditions are

h(x, y, 0) =

{
0.1 , x ≤ 0 ,
0.0 , otherwise ,

u(x, y, 0) = v(x, y, 0) = 0 ,

c(x, y, 0) = 0 .

b(x, y, 0) = 0 .

In the simulation, the computational domain is [−0.6, 0.6]× [0, 0.2] divided into 120× 20
uniform cells. The parameter values are g = 9.8, p = 0.28 and µ = 0.0. The numerical
water surface and the bed are shown in Figure 8, which are compared with the observed
results in [24, 4]. It can be seen from this figure that the numerical results are agreement
with the observed results qualitatively. However, there are obvious differences between
these results quantitatively, therefore improving the mathematical model will be a future
work.

4.6. Partial dam-break problem over mobile bed. In this numerical test, we sim-
ulate a partial dam-break problem with rapidly varying unsteady flow over a mobile bed,
which has been investigated in [35, 27].

The initial conditions are

η(x, y, 0) =

{
6.8 , x ≤ 95 ,
1 , x ≥ 105 ,

u(x, y, 0) = v(x, y, 0) = 0 ,

c(x, y, 0) = b(x, y, 0) = 0 .

In the simulation, we set g = 9.8, p = 0.28, ρs = 2400, ρf = 1000 and µ = 0.001. The
domain [0, 200] × [0, 200] contains a rectangular dam located in [95, 105] × [0, 200]. The
mesh size is ∆x = ∆y = 1. At initial time t = 0, the dam at [95, 105]× [85, 160] is assumed
to break instantaneously and the water starts flowing through the breach. The outgoing
boundary condition is used at right boundary and the solid wall boundary conditions are
used at all other boundaries.

In Figure 9, we show the numerical surface level h+b, the volumetric sediment concen-
tration c and the bed profile b at t = 8. As one can clearly see, there is no oscillations and
negative values of the volumetric sediment concentration observed. The numerical results
are also similar to the one in [27].
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Figure 9. Numerical results for partial dam-break problem over
mobile bed at t = 8.
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Figure 10. Numerical results for the 1D anti-dune problem.

4.7. Anti-dune evolution. In the last test, we consider an anti-dune evolution in 1D
space. The initial data is given by

b(x, 0) =

{
0.2− 0.05(x− 10)2 , 8 ≤ x ≤ 12 ,
0 , otherwise ,

q(x, 0) = hu(x, 0) = q0 = 1.7 .

The water depth h(x, 0) is the stationary supercritical profile obtained by the Bernoulli’s
law {

q(x, t) = q0 ,
q20

2gh2 + h+ b = H0 ,

with H0 =
q20

2gh2
0
+h0+b(0, 0) and h0 = 0.5. In the test, the computational domain is [0, 24]

with 240 uniform cells, µ
1−p

= 0.001, g = 9.8, E = D = 0. An inflow boundary condition

is used for the water depth h(0, t) = h0 and outflow boundary conditions are used for
other variables. The numerical solutions of water level h + b and bed b at t = 0, 15, 30
are shown in Figure 10, the results are also compared with the results from the central
upwind scheme in [27]. Main features of the anti-dune phenomenon are captured by the
well-balanced central DG method. It demonstrates that the well-balanced central DG
method can simulate the anti-dune phenomenon.

5. Conclusions

In this work, we have developed a robust numerical method for simulating the shallow
water flows over erodible beds. The proposed method is a well-balanced scheme and can
maintain the non-negativity of the volumetric sediment concentration in the sediment
transport equation. Due to a source term appearing in the sediment transport equation,
the constraint to the time step is different to the one in [22], in which the non-negativity of
the water depth was considered under the framework of central DG scheme. Although the
non-negativity of the water depth is not considered in the present work, it is a trivial work
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to combine the positivity-preserving scheme to deal with the wetting and drying in [22]
into the present work. The present work is built on structured meshes, designing central
DG methods with such features on unstructured meshes [20] is envisioned for future work.
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