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MULTI-SCALE NON-STANDARD FOURTH-ORDER PDE IN

IMAGE DENOISING AND ITS FIXED POINT ALGORITHM

ANIS THELJANI

Abstract. We consider a class of nonstandard high-order PDEs models, based on the (p(·), q(·))-
Kirchhoff operator with variable exponents for the image denoising problem. We theoretically
analyse the proposed non-linear model. Then, we use linearization method based on a fixed-point
iterative technique and we also prove the convergence of the iterative process. The model has a

multiscale character which follows from an adaptive selection of the exponents p(·) and q(·). The
latter task helps to capture, highlight and correlate major features in the images and optimize
the smoothing effect. We use Morley finite-elements for the numerical resolution of the proposed
model and we give several numerical examples and comparisons with different methods.
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1. Introduction

Image restoration is a fundamental task in image processing and it arises in
diverse fields such as geophysics, optics, medical imaging[33, 35, 37]. It is a
classical inverse problem which aims at reconstructing an image u : Ω → R from
an observed one f : Ω ⊂ R2 → R that is degraded and contaminated by noise. The
degradation model that we consider is the following:

(1) f = u+ η,

where η is Gaussian noise. Estimating u from the model (1) is an ill posed inverse
problem where a prior image model R(u) is required in order to successfully es-
timate u from the observations f . To incorporate a prior image model R(u) into
(1), variational approach is usually used and it consists in solving a minimization
problem that have the following form:

(2) min
u

{
J (u) := R(u) + λ0

2 ∥u− f∥2L2(Ω)

}
.

The prior R(·) in the energy J (·) have a regularization effect and usually contains
information about the image derivatives to reduce the noise that is considered as
high oscillations. The second part of the energy J (·) is the fitting term, λ0 is
a positive regularization parameter which controls the trade-off between the two
terms.

A main issue in image denoising is how to choose the “best” regularization term
R(·) that can selectively smooth a noisy image without losing significant features
such as edges and thin structures. Various regularizers based on first- or/and
second-order derivatives have been used [14, 7, 10, 40, 25]. In [33], the authors
proposed to use the well-known total variation (TV) regularizer R(u) = TV (u)
where

TV (u) :=

∫
Ω

|Du| = sup

{∫
Ω

udivφdx|φ ∈ C2
c (Ω,R2), |φ| ≤ 1

}
,
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which produces a piecewise constant restored images. However, TV also produces
staircase effects which is undesirable. This shortcoming gave rise to a class of a
combined first- and second-order derivatives as regularizer that in general damp
the noise faster and diminish the staircase effect. There have been many efforts to
improve the robustness and to reduce the staircasing effects of TV using the high-
order TV and total generalized variation (TGV) regularizer [11, 14]. Most of the
high-order models aim to extend the works in [12] (see also, e.g., [31, 38, 39, 43])
which uses straightforward convex combinations of first- and second- derivatives.
They are generally written in following form:

(3)

∫
Ω

G1(∇u) dx+

∫
Ω

G2(∇2u) dx+ λ0

2 ∥u− f∥2L2(Ω),

where G1(·) and G2(·) are given functions. In [41], a high-order total variation
model, called TV − TV 2, was proposed and it consists in minimizing the following
energy:

(4) αTV (u) + βTV 2(u) + λ0

2 ||u− f ||2L2(Ω),

where α and β are non-negative regularization parameters chosen empirically, TV (u)
and TV 2(u) are the total variations of u and ∇u, respectively.

Various variations of high-order models that are based on the above two energies
forms were proposed [44, 48, 26, 28]. Most of these models gave rise to a second-
or high-order non-linear PDEs that only consider nonlinear diffusion to denoise the
image. However, nonlinear diffusion is not always the best choice for homogeneous
regions, i.e. no edges but only some noise. In these regions, using linear diffusion is
more appropriate as it damps noise better than nonlinear diffusion. Ideally, there
should be a compromise between linear diffusion PDEs which are more interesting
and effective in homogeneous regions, and nonlinear diffusion PDEs that are more
powerful in regions containing edges and details.

Another class of approaches, known as nonstandard PDEs with p(·)-growth con-
ditions were also considered in several works (see e.g., [5, 46, 24, 36, 32]). In these
approaches, the regularizer takes the form of

R(u) =

∫
Ω

|∇u|p(x)dx,

where 1 ≤ p ≤ 2. The two extreme values of the exponent p = 1, 2 in the regular-
ization term lead to nonlinear (selective) diffusion and linear (isotropic) diffusion
equations. In fact, the total variation model is obtained for p = 1 and which
leads to a nonlinear diffusion PDEs where the diffusion is guided by the term 1

|∇u| .

Thus the diffusion will be selective and inverse proportional to |∇u|, i.e. for edges
where |∇u| is high, the diffusion will be enabled in order to keep edges, whereas
for the homogeneous regions where |∇u| is small, the diffusion will be strong and
the model behaves similarly to a Laplace smoothness operator. For p = 2, the
model leads to a PDE that uses the Laplace ∆· as diffusion operator. The latter
has an isotropic and linear diffusion property that can’t distinguish between edges
and homogeneous regions.

In these nonstandard regularizations, a compromise between fast/slow diffusion
is made by varying p(·) according to the local scales. The linear diffusion is en-
couraged away from the edges of the image and a nonlinear correction is enforced
near these singularities (see [27, 28, 26, 1, 8, 13]). To incorporate the singularity
information into the p(·), the authors in [8] used a variable exponent p(·) ranging
from 1 to 2 by taking p(|∇u|) where p(·) is a monotone decreasing function such
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that: {
lim
r→0

p(r) = 2,

lim
r→∞

p(r) = 1.

However, by this choice of p(·) is a priori and essentially lacks a practical selection
criterium which necessarily should be linked to a tight location of the singulari-
ties set of the image. Moreover, the values of p(·) only include information about
first-order discontinues of u, however, the second-order discontinuities, i.e. discon-
tinuities of ∇u are also significant and interesting.

In this article, we consider a nonstandard high-order nonlinear diffusion equation.
Our motivation in this choice relies on two main reasons. First, we use high-order
diffusion models which, in general, perform better than second-order ones in image
denoising. Second, the diffusion is driven by a variable exponents p(·), q(·) of the
first and second-order derivative regularizes and which are ranging between 1 and 2.
Most importantly, we provide a practical tool for the selection of p(·), q(·) possessing
three nice aspects: being adaptive, local and linked with a tight location of the
singularities set. More precisely, we consider the following minimization problem:

(5) min
u

{
J (u) =

∫
Ω

1
p(x) |∆u|p(x)dx+

∫
Ω

1
p(x) |∇u|q(x)dx+ λ0

2 ∥u− f∥2L2(Ω)

}
,

where the functions p(·) and q(·) are defined on Ω and satisfies 1 < p(·), q(·) ≤ 2.
Then, we make an adaptive choice of the exponents p(·) and q(·) allowing slow
diffusion near edges, and fast diffusion in the homogeneous regions. The selection is
performed at the discrete level with the help of suitable a posteriori error indicators,
i.e., no guess on the continuous solution u is required but only its finite-element
approximation. The error indicators are computed based on information that
comes from a smoothed structure tensors (SST) of the image and its gradient. The
SST has been extensively used in nonlinear anisotropic PDEs and usually allows
to capture all geometric features in the image at different scales, i.e. flat edges,
corners, smooth regions, thin structures etc, see [47, 49]. Thus, the new model
will have anisotropic nonlinear diffusion property and acts in a multiscale level by
adopting the diffusion dependant on the region. This will help to effectively reduce
noise and keep the important feature sharp.

Compared to the other mentioned high-order models, the new one combines the
effectiveness of both linear and nonlinear diffusion models by varying the exponents
between (1, 2]. Moreover, it is able to use the geometric information extracted from
the SST and its anisotropy in guiding the diffusion and the smoothness process to
sharpen edges and corners. Thus, it is inherently dependent on the structure tensor
estimation, which therefore determines the performance of the method. In addi-
tion, we use a mesh-adaptation technique allowing to get the tight location of the
singularities and permits both the refinement (near the edges) and the coarsening
of the grid (in homogeneous area) in order to best fit the geometry of the image and
to make the method considerably fast. This may be also seen as edge enhancing
via the mesh adaptation in order to get sharp edges as much as possible.

The rest of the paper is organized as follows: In section 2, we fix notations and
present preliminary results. In Section 3, we prove that our model admits a unique
solution. Then, we regularize the proposed model and prove the convergence of the
regularized solutions to a solution of the original problem. In section 4, we construct
a sequence of linearized problems such that the sequence of their solutions converges
in H2-norm to the solution of our model. In Section 5, we detail the discretization
of the equations and the adaptive strategy for the selection of the exponent p(·).
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Finally, we illustrate in Section 6 the efficiency and robustness of the proposed
method by solving a wide range of examples.

2. Preliminaries

We give some definitions and basic properties of the generalized Lebesgue and
Sobolev spaces. Interested readers may refer to [17, 19] for more details. For a
variable exponent p(·) ∈ C(Ω) such that 1 < p− ≤ p(·) ≤ p+ ≤ 2, we define the
variable exponent Lebesgue space Lp(·)(Ω) as follows:

Lp(·)(Ω) =

{
u : Ω → R;u is measurable and

∫
Ω

|u|p(x)dx < ∞
}
,

which is equipped with the following Luxemburg norm:

∥u∥Lp(·) = inf

{
ν > 0 :

∫
Ω

∣∣∣∣u(x)ν

∣∣∣∣p(x) dx ≤ 1

}
.

Similarly, the Sobolev space with variable exponent W k,p(·)(Ω) is defined as:

W k,p(·)(Ω) =
{
u ∈ Lp(·)(Ω) : Dξu ∈ Lp(·)(Ω), |ξ| ≤ k

}
,

where Dξu = ∂|ξ|

∂x
α1
1 ∂x

ξ2
2 ...∂x

ξN
N

u with ξ = (ξ1, . . . , ξN ) ∈ NN is a multi-index and

|ξ| =
∑N

i=1 ξi. The space W k,p(·)(Ω), is equipped with the norm:

∥u∥k,p(·) :=
∑
|ξ|≤k

||Dξu||Lp(·) .

We recall that both (Lp(·)(Ω), || · ||Lp(·)) and (W k,p(·)(Ω), || · ||k,p(·)) are separable,
reflexive and uniformly convex Banach spaces [21]. For more details, we refer the
reader to [19, 20]. The norm ∥u∥2,p(·) and ∥u∥1,q(·) are respectively equivalent to
the following norms

∥u∥p = inf

{
ϱ > 0 :

∫
Ω

∣∣∣∆u(x)

ϱ

∣∣∣p(x)dx+

∫
Ω

∣∣∣∇u(x)

ϱ

∣∣∣p(x)dx+

∫
Ω

∣∣∣u(x)
ϱ

∣∣∣p(x)dx ≤ 1

}
,

∥u∥q = inf

{
ϱ > 0 :

∫
Ω

∣∣∣∇u(x)

ϱ

∣∣∣q(x) dx+

∫
Ω

∣∣∣u(x)
ϱ

∣∣∣q(x) dx ≤ 1

}
,

in the spaces W 2,p(·)(Ω) and W 1,q(·)(Ω) (for more details see [6]). Moreover,
(W 2,p(·)(Ω); ∥·∥p) and (W 1,q(·)(Ω); ∥·∥q) are Banach, separable and reflexive spaces.

In the sequel. we consider the following space

X = {u ∈ W 2,p(·) ∩W 1,q(·)(Ω) |u =
∂u

∂n

∣∣∣∣
∂Ω

= 0},

equipped with the norm

∥u∥X = (∥u∥2p + ∥u∥2q)1/2.
Then, (X; ∥ · ∥X) is Banach, separable and reflexive space.

Lemma 2.1. [22] For all u ∈ X, we have:

min{∥∇u∥q+
Lq(·) , ∥∇u∥q−

Lq(·)}+min{∥∆u∥p+
Lp(·) , ∥∆u∥p−

Lp(·)}

≤
∫
Ω

|∇u|q(x) dx+

∫
Ω

|∆u|p(x) dx

≤max{∥∇u∥q+
Lq(·) , ∥∇u∥qp−

Lq(·)}+max{∥∆u∥p+
Lp(·) , ∥∆u∥p−

Lp(·)}.
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Lemma 2.2 ([18]). (Poincaré’s inequality). If Ω is a Lipschitz domain, then,
there exists a constant C > 0 such that:

∥u∥Lq(·) ≤ C∥∇u∥Lq(·) , ∀u ∈ W
1,q(·)
0 (Ω).

3. Existence of weak solution

In the sequel, we will establish the existence and uniqueness of a solution for our
model in the space X.

Proposition 1. For fixed f ∈ L2(Ω), the minimization problem (5) admits a unique
solution u in X. Moreover, the solution u fulfils

(6)

{
∆
(
|∆u|p(x)−2∆u

)
−∇.(|∇u|q(x)−2 ∇u) + λ0u = λ0f, in Ω,

u = ∂u
∂n = 0, on ∂Ω.

Proof. The energy J (·) is weakly lower semi-continuous in X. Now, let (un)n∈N be
a minimizing sequence in X of J (·), then there exists C > 0 such that

J (un) ≤ C.(7)

Thus, R(un) ≤ C and hence ∥∆un∥Lp(·) and ∥∇un∥Lq(·) are uniformly bounded.
Then, using Proposition 2.1 and Poincare’s inequality, we obtain that (un)n∈N is
uniformly bounded in X which means that there exists a subsequence, still denoted
(un)n∈N, such that un ⇀

n→∞
u weakly in X and the limit u is a minimiser of J (·).

By using the lower semi-continuity of J (·) and Fatou’s Lemma we obtain that u
is a minimizer for J (·). Uniqueness follows from the strict convexity of J (·). In
addition, for X \ {0} we have:

⟨J ′(u), v⟩ = d
dt {J (u+ tv)}t=0

=

∫
Ω

|∆u|p(x)−2
∆u∆v dx+

∫
Ω

|∇u|q(x)−2 ∇u · ∇v dx

+ λ0

∫
Ω

uv dx− λ0

∫
Ω

fv dx = 0, ∀v ∈ X.

Therefore, the functional J (·) is Gâteaux differentiable in X \ {0} and its unique
minimizer is a solution of the weak formulation: Find u in X such that:∫

Ω

|∆u|p(x)−2
∆u∆v dx+

∫
Ω

|∇u|q(x)−2 ∇u · ∇v dx+ λ0

∫
Ω

uv dx

=λ0

∫
Ω

fv dx, ∀v ∈ X,(8)

Moreover, integration the weak formulation (8) by part and using Green formula,
we clearly get the PDEs (6).

�

3.1. Γ-convergence approximation. The proposed model is not defined for the
degenerate cases |∇u| = 0 or/and |∆u| = 0. Such singularities can be avoided by
perturbing the term |∇u|, |∆u| with a small positive constant ϵ, to obtain a new
regularized model. More precisely, we consider the following regularization

|∆u| ≈
√
ϵ+ |∆u|2 and |∇u| ≈

√
ϵ+ |∇u|2.
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Thus we have ∫
Ω

1
p(x) |∆u|p(x)dx ≈

∫
Ω

1
p(x) (ϵ+ |∆u|2)

p(x)
2 dx

and

∫
Ω

1
q(x) |∇u|q(x)dx ≈

∫
Ω

1
q(x) (ϵ+ |∇u|2)

q(x)
2 dx.

Moreover, since we are dealing with non-linear PDEs that needs linearization tech-
niques, we will use a fixed point approach that requires some ellipticity assumptions
in the space H̃2

0 (Ω) = {u ∈ W 2,2(Ω) |u = ∂u
∂n

∣∣
∂Ω

= 0}. Thus, we add the term

ϵ2
∫
Ω
|∆u|2dx to original energy to guarantee the ellipticity. More precisely, we have

used the approximation∫
Ω

1
p(x) (ϵ+ |∆u|2)

p(x)
2 dx ≈

∫
Ω

[
1

p(x) (ϵ+ |∆u|2)
p(x)
2 dx+ ϵ2|∆u|2

]
dx

for small ϵ > 0. Therefore, the minimization problem (5) is approximated by the
following optimization problem
(9)

min
u∈H̃2

0 (Ω)

{
Jϵ(u) =

∫
Ω

1
p(x)Kϵ,p(|∆u|2)dx+

∫
Ω

1
q(x)Kϵ,q(|∇u|2)dx+ λ0

2 ∥u− f∥2L2(Ω)

}
,

where

(10) Kϵ,p(r) = (ϵ+ r)
p(x)
2 + ϵ2r and kϵ,q(r) = (ϵ+ r)

q(x)
2 , ∀ r ≥ 0.

Minimizing the new energy Jϵ(·) in (9) gives rise the following optimality con-
ditions

(11)

{
∆
(
kϵ,p(|∆u|2)∆u

)
−∇.(kϵ,q(|∇u|2)∇u) + λ0u = λ0f, in Ω,

uϵ =
∂uϵ

∂n = 0, on ∂Ω,

where kϵ,p(r) = K ′
ϵ,p(r) and kϵ,q(r) = K ′

ϵ,q(r). The weak formulation of (11) can

be defined as follows: Find uϵ in H̃2
0 (Ω) such that:

A1(u;u, v) +A2(w;u, v) + λ0

∫
Ω

uv dx = ℓ(v), ∀u, v ∈ H̃2
0 (Ω),

where
(12)

A1(w;u, v) =

∫
Ω

kϵ,p(|∆w|2)∆u∆v dx and A2(w;u, v) =

∫
Ω

kϵ,q(|∇w|2)∇u∇v dx.

and

(13) ℓ(v) = λ0

∫
Ω

fv dx.

Remark 1. i) Problem (11) is a reasonable numerical approximation of the non-
linear equation (6). It can be seen as a relaxation of problem (6) in the space

H̃2
0 (Ω) in the same framework of relaxation methods for the total variation energy

in H1(Ω) (see [13]). In addition, this ensures the H̃2
0 (Ω)- uniform ellipticity which

will guarantee the convergence of the linearization iteration that will be discussed
in the next section

ii) The parameter ϵ have also an impact on the computed numerical solution.
In fact, it is related to the edges width and should be small enough in order to get
sharp edges, see [2, 15] for more details. Moreover, since we have added the term
ϵ2
∫
Ω
|∆u|2dx to energy, the solution belongs to the space H2(Ω) and the bi-Laplace
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diffusion term ϵ2∆2u will appear in the PDEs (11). Thus, this term clearly have a
smoothness effect of the solution.

3.1.1. Convergence analysis. In this part, we give using Γ-convergence tools
[9], the explanation why we can study the regularization energy (9) directly.

Theorem 3.1. [9] Let M be a topological space, endowed with a τ -topology, and
let Fϵ, F : X −→ R. If (Fϵ)ϵ>0 is a decreasing sequence converging to F pointwise,
then Fϵ Γ-converges to the lower semicontinuous envelope of F in M.

Let us define on the space X the following energy

(14) J ∗
ϵ (u) =

{
Jϵ(u), u ∈ H̃2

0 (Ω),
+∞ Otherwise.

Proposition 2. Energy J ∗
ϵ (·) admits a unique minimizer uϵ in H̃2

0 (Ω). Moreover,
the sequence (uϵ)ϵ>0 of solutions of the regularized problems (11) converges, in

H̃2
0 (Ω), to the solution u of the problem (6) as ϵ goes to 0.

Proof. Using classical techniques of calculus of variation, we can prove that the
energy J ∗

ϵ (·) admits a unique minimizer uϵ in H̃2
0 (Ω). Moreover, this minimizer uϵ

has PDEs (11) as Euler Lagrange optimality conditions Furthermore, let us define
the energy

(15) J ∗(u) =

{
J (u), u ∈ H̃2

0 (Ω),
+∞ Otherwise.

Then, the energy (J ∗
ϵ )ϵ>0(·) decreases and pointwise converges to J ∗(·) when ϵ goes

to 0. Thus, J ∗
ϵ (·) Γ-converges to the lower semi-continuous envelope of J∗(·) for the

X-topology, which is J (·). Therefore, taking the limit as ϵ goes to 0 and using the
properties of the Γ-convergence, we get that the sequence minimizers (uϵ)ϵ>0 of the
energy (J ∗

ϵ (·))ϵ>0 , that is also solution of (11) converges to the unique minimizer
u of the energy J (·), which is also solution of (6). �

The relaxed problem (11) is nonlinear and it requires the use of a linearization
technique for the numerical computation. The Γ-convergence relaxation ensures the
H̃2

0 (Ω)- uniform ellipticity which will guarantee the convergence of the fixed-point
method that we describe now.

4. Fixed-point iterations

To approximate a solution of the nonlinear problem (11), we propose a fixed-point
linearization method and we prove the convergence of the sequence of solutions of
the linearized problems to the solution of the nonlinear problem (11). We refer the
reader interested in such fixed point method to [29, 34].

To approximate a solution of the nonlinear problem (11), we use a fixed-point
linearization based method which is summarized as follows:

• Choose an initial guess u0.
• For n > 1, find un that solves the linear problem:

(16) A1(un−1;un, v) +A2(un−1;un, v) +

∫
Ω

λ0unv dx = ℓ(v), ∀v ∈ H̃2
0 (Ω),

until a stopping criterion is satisfied.

where Ai(·; ·, ·) (i = 1, 2) and ℓ(·) are given in (12) and (13), respectively. In order
to prove the convergence of the above iterative procedure, we need the following
lemma:
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Lemma 4.1. Let J1(·), J2(·) be the functional on H̃2
0 (Ω) defined by:

J1(v) =
1
2

∫
Ω

∫ |∆v|2

0

kϵ,p(r) drdx, J2(v) =
1
2

∫
Ω

∫ |∇v|2

0

kϵ,q(r) drdx.

Then, for all un−1 and un in X, we have:

1
2

2∑
i=1

Ai(un−1;un, un)− 1
2

2∑
i=1

Ai(un−1;un−1, un−1) ≥
2∑

i=1

Ji(un−1)−
2∑

i=1

Ji(un).

Proof. The function Qp(t) =
∫ t

0
kϵ,p(r)dr is concave. In fact, we have:

Q
′′

p (t) = k′ϵ(t) ≤ 0, ∀t > 0.

From the propriety of concave differentiable functions, we have:

Q′
p(t1).(t2 − t1)−Qp(t2) +Qp(t1) ≥ 0, ∀t1, t2.

Similarly, if we define Qq(t) =
∫ t

0
kϵ,q(r)dr we have:

Q′
q(t1).(t2 − t1)−Qq(t2) +Qq(t1) ≥ 0, ∀t1, t2.

Taking the above two inequalities for t1 = |∆un−1|2 and t2 = |∆un|2, and respec-
tively for t1 = |∇un−1|2 and t2 = |∇un|2 and then taking the sum, we get the
proof. �

The convergence of the above iterative method is summarized in the following
proposition.

Proposition 3. Let (un)n≥0 be the sequence of solutions of the linearized problems
(16), then the sequence of solutions (un)n≥0 of the linearized problems (16) con-

verges to the unique solution u of the nonlinear problem (11) in H̃2
0 (Ω) as n goes

to +∞.

Proof. Let a(w;u, v) = A1(w;u, v) + A2(w;u, v) + λ0

∫
Ω
uv dx and let un be the

solution of the linearized problem (16). From the coercivity of the bilinear form

a(un−1; ·, ·) in H̃2
0 (Ω), there exists α0 > 0 such that:

α0∥un − un−1∥2H̃2
0
≤ a(un−1;un − un−1, un − un−1)

=
2∑

i=1

Ai(un−1;un − un−1, un − un−1) + λ0

∫
Ω

u2
n dx

+ λ0

∫
Ω

u2
n−1 dx− 2λ0

∫
Ω

unun−1 dx

=
2∑

i=1

Ai(un−1;un−1, un−1)− 2
2∑

i=1

Ai(un−1;un, un−1) +
2∑

i=1

Ai(un−1;un, un)+

+ λ0

∫
Ω

u2
n dx+ λ0

∫
Ω

u2
n−1 dx− 2λ0

∫
Ω

unun−1 dx

=

2∑
i=1

Ai(un−1;un−1, un−1)− 2

2∑
i=1

Ai(un−1;un, un−1) + 2

2∑
i=1

Ai(un−1;un, un)

−
2∑

i=1

Ai(un−1;un, un) + λ0

∫
Ω

u2
n dx+ λ0

∫
Ω

u2
n−1 dx− 2λ0

∫
Ω

unun−1 dx.
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From the weak formulation (16), we get:

2
2∑

i=1

Ai(un−1;un, un−1) = 2ℓ(un−1)− 2λ0

∫
Ω

unun−1 dx,

2
2∑

i=1

Ai(un−1;un, un) = 2ℓ(un)− 2λ0

∫
Ω

u2
n dx.

Therefore, we have:

α0∥wn − un−1∥2 ≤

(
2∑

i=1

Ai(un−1;un−1, un−1) + λ0

∫
Ω

u2
n−1 dx− 2ℓ(un−1)

)

−

(
2∑

i=1

Ai(un−1;un, un) + λ0

∫
Ω

u2
n dx− 2ℓ(un)

)

The above inequality, together with Lemma 4.1 give:

0 < α0∥un − un−1∥2 ≤

(
2∑

i=1

Ji(un−1) + λ0

∫
Ω

u2
n−1 dx− 2ℓ(un−1)

)

−

(
2∑

i=1

Ji(un) + λ0

∫
Ω

u2
n dx− 2ℓ(un)

)
=2(Jϵ(un−1)− Jϵ(un)).

Therefore, we have:

(17) 0 < α0∥un − un−1∥2 ≤ 2(Jϵ(un−1)− Jϵ(un)),

where the energy Jϵ(·) is given in (9). Inequality (17) implies that the sequence
(Jϵ(un))n is monotone decreasing. Moreover, the energy Jϵ(·) has unique min-
imizer, which is solution of (11), which means that the sequence (Jϵ(un))n is
bounded below, and then that it converges. From inequality (17), we deduce that
∥un − un−1∥2H̃2

0

converges to 0 as n goes to +∞.

Now, let u be the unique weak solution of the nonlinear problem (16). We
consider the nonlinear operator

B(u) = ∆(kϵ(|∆u|2)∆u) +∇ · (kϵ(|∇u|2)∇u) + λ0u.
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Then, from the coercivity of B(u) in H̃2
0 (Ω), we get:

α0∥un−1 − u∥2
H̃2

0
≤ ⟨Bun−1 −Bu, un−1 − u⟩2

=

2∑
i=1

Ai(un−1;un−1, un−1 − u)−
2∑

i=1

Ai(u;u, un−1 − u)

=

2∑
i=1

Ai(un−1;un−1 − un, un−1 − u)−
2∑

i=1

Ai(u;u, un−1 − u)

+

2∑
i=1

Ai(un−1;un, un−1 − u)

=

2∑
i=1

Ai(un−1;un−1 − un, un−1 − u)− ℓ(un−1 − u) + ℓ(un−1 − u)

=

2∑
i=1

Ai(un−1;un−1 − un, un−1 − u).

Hence, from the continuity of Ai(un−1; ·, ·) we write:

∥un−1 − u∥2
H̃2

0
≤ c∥un−1 − un∥H̃2

0
∥un−1 − u∥H̃2

0
, c > 0,

which implies that (un)n converges to u which is the unique weak solution of the
nonlinear problem (16). �

Remark 2. We note that in practise, the homogeneous Dirichlet boundary con-
dition, u = 0 on ∂Ω is not convenient and not always satisfied. As the image f is
noisy, we consider the condition u = f⋆ on ∂Ω where f⋆ is a smoothed version of
f . The theoretical analysis is still applicable by using lifting techniques using a lift

uf⋆ such that uf⋆ = f⋆ and
∂uf⋆

∂n = 0 on ∂Ω.

5. Morley Finite-element discretization and adaptivity

Let P2 be the space of all polynomials with degree not greater than 2. We assume
that the domain Ω is polygonal and we consider a regular family of triangulations
T h made of element which are triangles with a maximum size h, satisfying the usual
admissibility assumptions, i.e. the intersection of two different elements is either
empty, a vertex, or a whole edge. Then, given a triangle K, its three vertices is
denoted by aj , 1 ≤ j ≤ 3. The edge of K opposite to aj is denoted by Fj , 1 ≤ j ≤ 3.
Denote the measures of K and Fj by |K| and |Fj |, respectively. Morley element
can be described by (K,PK ,ΦK) with

(1) K is a triangle.
(2) PK ∈ P2(K) where P2(K) is the space of all polynomials with degree not

greater than 2 on K.
(3) ΦK is the vector of degrees of freedom whose components are:

v(aj),
1

|Fj |

∫
Fj

∂v

∂ν
ds, 1 ≤ j ≤ 3, ∀v ∈ P2.

Let Vint (resp. Vext) be the set of internal vertices (resp. vertices on the boundary)
of T h. We also denote by E(Ω) (resp. E(∂Ω)) set of all internal edges (resp.
boundary edges) of T h. Then, we define the finite element space corresponding to
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the Morley element defined above as follows

(18)

Xh =

{
v|K ∈ P2 such that v is continuous at Vint and vanishes at Vext,

∀F ∈ E(Ω),
∫
F

[
∂v

∂n

]
F

ds = 0; and ∀F ∈ E(∂Ω),
∫
F

∂v

∂n
ds = 0

}
,

[ϕ]F is the jump of ϕ across the interior edge F .
Given an initial function uh

0 ∈ Xh the discrete problem is written as follows: For
n > 0, find uh

n ∈ Xh, such that:

(19) A1(u
h
n−1;u

h
n, v

h) +A2(u
h
n−1;u

h
n, v

h) +

∫
Ω

uh
nv

h dx = ℓ(vv), ∀vh ∈ Xh,

where A1(·; ·, ·) and A2(·; ·, ·) are defined in (12) and ℓ(·) is defined in (13).

5.1. Adaptive strategy. For the discretization, we will use a discontinuous ap-
proximation of p(·) and q(·). Therefore, we suppose now that the domain Ω is
partitioned into I disjoint sub-domains (Ωi)i such that p and q are given by the
piecewise constant scalar function:

p = pi and q = qi, in Ωi, K = 1, . . . , I,

where pm = min
1≤K≤I

pK > p− = 1 and pM = max
1≤K≤I

pK ≤ p+ = 2 (qm and qM are

defined similarly).
Then, we consider a multiscale spatially adaptive choice for variable exponents

p(·) and q(·) with the help of the maps furnished by a local error indicators. The
approach that we propose automatically balances between L1 and L2-regularization
effects in the spirit of the works proposed in [8, 16, 42, 23]. This choice is in
accordance with anisotropic PDE-based methods which are largely used in order
to overcome over smoothing and staircasing artefacts. It is based on a posteriori
indicator map which is constructed using information that comes from a smoothed
structure tensor (SST). The latter has been extensively used in nonlinear anisotropic
PDEs [47, 49].

Figure 1. The smoothed structure tensor (SST) detector sum-
mary. The error indicator that we use in this work favours better
the effect of anisotropy. In fact, in regions where λ1

+ ≈ λ1
− ≈ 0,

there are very few variation and the region does not contain any
edges or corners, i.e., almost flat. In regions where λ1

+ >> λ1
− ≈ 0,

there are a lot of variations and the current position represents
edges. Elsewhere, we have 0 ≪ λ1

− ≤ λ1
+, and we are located on a

corner structure in the image (see [47, 49]).
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5.1.1. Multiscale choice. Let uh be the discrete solution (image), we define three
tensor K1

σ(u
h), Ky

σ(u
h
x) and Ky

σ(u
h
x), where for a scalar function u, we have

Kσ(u) = Gσ ⋆ (∇u(∇u)T ) =

[
Sσ ⋆ (ux)

2 Sσ ⋆ uxuy

Sσ ⋆ uyux Sσ ⋆ (uy)
2

]
.

The function Sσ(x) = (σ
√
2π)−1 exp(−|x|2/σ2) is a 2D Gaussian kernel and ⋆

denotes the convolution operator which makes the structure tensor exceedingly
robust to noise. This structure tensor was introduced in [47, 49] and is considered so
far very sufficient to identify discontinuities (edges). It has been extensively used in
nonlinear anisotropic PDEs. Most importantly, the matrix Kσ(u) is positive semi-
definite and has two eigenvalues (λ1

+, λ
1
−) which are well adapted to discriminate

different geometric features at different scales i.e. edge, corner, thin structure and
flat regions of the image, see Fig. 1.

To perform the adaptive local choice of p(·) and q(·), we use the tensors K1
σ(u

h),
Ky

σ(u
h
x) and Ky

σ(u
h
x) and their eigenvalues (λ1

+, λ
1
−), (λ

2
+, λ

2
−) and (λ3

+, λ
3
−), respec-

tively. We start by the selection of the exponent q which is linked the term ∇uh.
For its selection, we use the eigenvalues (λ1

+, λ
1
−) of the tensor K1

σ(u
h) as it is able

to detect the variation of ∇uh. However, it is unable do detect the discontinuities
of the first derivatives uh

x and uh
y , i.e. regions where uh continuous but its first

derivatives uh
x and uh

y aren’t. Such regions are certainly of interest in denoising
as they encode some image structures and features. Thus, for the selection of p,
which is the exponent of the high-order term, we use the eigenvalues (λ2

+, λ
2
−) and

(λ3
+, λ

3
−) of the tensor Ky

σ(u
h
x) and Ky

σ(u
h
x) as they can detect discontinuities of uh

x

and uh
y .

The use of the eigenvalues (λi
+, λ

i
−) (i = 1, 2, 3) allows to automatically self-

tune the exponents of the regularization terms according to local image structures.
Furthermore, the new model will have anisotropic nonlinear diffusion property that
comes from these eigenvalues which encode some anisotropy properties. Moreover,
the model acts in a multiscale level by adopting the diffusion dependant on the
region. It will create a diffusion process in three different levels that depend on the
different scales in the image, i. e. homogeneous, edges and discontinuities. We also
use a mesh refinement in order to allow the model to capture most of the image
features even those of small scales, e. g. see [3, 4, 45]

Consequently, the proposed model will have multiscale character that will help
to effectively reduce noise and keep the important feature sharp.

The overall adaptivity steps are summarized in the following algorithm:

Adaptivity steps

(1) Consider p0 = q0 = 2 and compute uh
0 solution of (19) in the initial grid T h

0 .
(2) Adaptive steps: For k > 0:

• Compute uh
k on T h

k with p = pk and q = qk using fixed-point iterations.
• Build an adapted mesh T h

k+1 (in the sense of the finite element method,
i.e., with respect to the parameter h) with a metric error indicator.

• Perform a local choice of p(x) and q(x) on T h
k+1 to obtain new functions

pk+1 and qk+1.
(3) If ||uh

k+1 − uh
k || ≤ tolerance or n ≥ nmax, stop. Otherwise go to Step 2.
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During the adaptation, we use the following formula for each triangle K of the
mesh:

(20) qKk+1 = max

 qKk

1 + τ ∗
((

λ1
−

∥λ1
−∥∞

)
− µ

)+

+ τ ∗
((

λ1
+

∥λ1
+∥∞

)
− µ

)+ , 1

 ,

where τ is a coefficient chosen to control the rate of decrease in q(·) and u+ =
max(u, 0). For the choice of p(·), both Kx

σ(u
h
x) and Ky

σ(u
h
x) quantities will be

involved as they contain information about the image derivatives. Thus, we assume

that we can write p = p2+p3

2 where p2 and p2 will be computed separately from

(λ2
+, λ

2
−) and (λ3

+, λ
3
−), respectively. We start by p20 = p30 = 2 and we update them

following the formula
(21)

pik+1 = max

 pik

1 + τ ∗
((

λi
−

∥λi
−∥∞

)
− µ

)+

+ τ ∗
((

λi
+

∥λi
+∥∞

)
− µ

)+ , 1

 , i = 2, 3.

After that, we set the new exponent pk+1 =
p2
k+1+p3

k+1

2 . The update formula of p(·)
and q(·) are explained as follows:

• Flat/noisy regions in the image: The first level of diffusion is in flat regions
where λ1

+ ≈ λ1
− ≈ 0. In this case, the denominator in the formula (20)

is close to 1 which will keep qKk+1 close to 2. Note also in these regions,

λi
+ ≈ λi

− ≈ 0 (i = 2, 3) and pKk+1 will be close to 2. The model behaves like
biharmonic equation leading to strong smoothness that effectively damps
oscillation.

• Edge and derivatives discontinuities: The second level of diffusion is near
the edges of the image and its derivatives. In these regions, the eigenvalue
λ1
− is very small and therefore the second quantity in the denominator will

be close to 0. However, the variation the second eigenvalue λ1
+ in these

regions is very important as λ1
+ usually detects both edges and corner.

Thus, the quantity
λ1
+

∥λ1
+∥∞

will be very important in the selection of qKk+1.

The analysis is the same for the selection of pKk+1 in the formula (21), i.e.

λi
− is very small and λi

+ is important near the near edges/discontinuities

of the derivatives uh
x and uh

y . In this case, we slow-down diffusion and the

rate of decreasing of q(·) and pi(·) in the formulae (20) and (21) is the same
rate of:

qk

1 + τ ∗
((

λ1
+

∥λ1
+∥∞

)
− µ

)+ and
pik

1 + τ ∗
((

λi
+

∥λi
+∥∞

)
− µ

)+ , i = 2, 3.

• Corners in the image or its derivatives: Near a corner, 0 ≪ λi
− ≤ λi

+

(i = 1, 2, 3) and the two quantities in the denominators in (20) and (21)
are both high. Therefore, the exponents qk+1 and pk+1 will be close to 1
and corner points are not smoothed out. In addition, the exponents qk+1
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and pk+1 will decease near the corners faster than near edges which gives
rise to a third level of diffusion.

To conclude this section, we notice that it may appear “exagerated” to change p(·)
and q(·), hence the model, at the scale of the elements of the mesh. However, in
practice the tight location of the singularities yields a thin zone surrounding the
singular set where p(·) and q(·) are close to 1 and the rest where p(·) = q(·) = 2.

6. Numerical experiments

In this work, all the PDEs are solved with the open source software FreeFem++
[30]. We present several numerical examples, in image restoration problems for
additive noise removal. In all examples, we set λ0 = 105, ϵ = 10−05 and µ = 10−1.
For the fixed point algorithm, we choose an initial condition u0 = 1 for all the
examples.

(a) Original image (b) Noisy image (c) New model, MSE=0.148

(d) The map of λ1
1 + λ1

2 (e) The map of

3∑
i=2

λ
i
1 + λ

i
2

(f) Final mesh

Figure 2. For the map λ1
1 + λ1

2 in Fig 2-(d), it is clear that the
tensor K1

σ(u
h) is unable to detect discontinuities of second kind,

i.e., discontinuities of the gradient. However, the tensors K2
σ(u

h
x)

and K2
σ(u

h
y) give a good description of this discontinuities as they

include some informations about high-order derivatives. This can
bee easy seen from the map of

∑3
i=2 λ

i
1 + λi

2 in Fig 2-(e).

For comparison, we include 4 methods on the comparison ist. We denote by
“New model” our adaptive model, “Biharmonic model” the model (11) for p =
q = 2, “Lp,q-model” the model (11) for a constant p, q ∈ [1, 2) and “TV-model”
the total variation model. All the models are qualitatively compared by giving the
mean square error values (MSE) or/and the Peak signal-to-noise ratio (PSNR),
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where a higher PNSR value implies a better denoising quality. For the adaptation,
we recall that we start the computations with exponents p(x) = q(x) ≡ 2 in all
the image domain Ω. During the adaptation steps, the exponents decrease in high
gradient zones (formally close to 1) encouraging possible jumps in these areas.

Example 1. In Fig. 2, we test the adaptive model for a synthetic image of
resolution 128 × 128 which contains discontinuities of first- and second-order, i.e.,
of u and ∇u. We display the denoised image and the different eigenvalues λi

1 and
λi
2 (i = 1, 2, 3). Because it contains only information about first-order derivatives,

λ1
1 and λ1

2 are unable to detect second-order geometrical features such as points of
gradient discontinuity. Such points correspond to the crease discontinuities, i.e. the
points where u is continuous while ∇u is discontinuous. However, the output image
for λi

1 and λi
2 (i = 2, 3) are given by meaningful boundaries which correspond to

discontinuities set of the image and of its first derivatives. This example clearly
shows the benefits of using a tensor for the derivatives, i.e, Kx

σ(u
h
x) and Ky

σ(u
h
y).

(a) Noisy image. (b) Biharmonic,

MSE=0.31

(c) Lp,q-model for (p, q) =

(1.2, 1.2), MSE=0.198

(d) Lp,q-model for

(p, q) = (1, 1), MSE=0.125

(e)

New model, MSE=0.11

(f) TV- model,

MSE=0.123

(g) The map of p(·) + p(·) (h) Initial mesh (i) Final mesh

Figure 3. Comparison of the different models.
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(a) Denoised image for ϵ = 0.05. (b) Denoised image for ϵ = 0.0005.

Figure 4. Denoised image using New model for ϵ = 0.05 and
ϵ = 0.0005. It is clear from the zoomed regions that smaller ϵ leads
to shaper edges.

(a) Noisy image. (b) Biharmonic,

PSNR=30.11

(c) Lp,q-model for (p, q) =

(1.2, 1.2), PSNR=31.02

(d) Lp,q-model for (p, q) =

(1, 1), PSNR=31.42

(e) New model,

PSNR=32.53

(f) TV-model,

PSNR=32.24

Figure 5. Comparison of the different models for real image de-
noising. The initial image is corrupted with a Gaussian noise hav-
ing zero mean and standard deviation 15.

Example 2. In Fig. 3, we display the denoised image of resolution 128×128 us-
ing the different models, i.e., our model, the “Biharmonic model”, “Lp,q-model”
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for (p, q) ∈ {(1, 1), (1.2, 1.2)} and the “TV-model”. It is clear that the result ob-
tained by the proposed method is visually better than those of the “Biharmonic
model”, “Lp,q-model” which produce a blurred edges. However, the proposed
model and the Lp,q-model” produce sharp edges and clean image. We also display
the map furnished by the p(·) + q(·) in Fig. 1(e) and which shows that it is essen-
tially equivalent to edge detection function. For this example, we also investigate
the choice of the parameter ϵ by testing two different values, i.e. ϵ = 0.05 and
ϵ = 0.005. It is clear from the zoom captions in Fig. 4 that smaller ϵ leads to
sharper edges.

(a) Biharmonic (b) Lp,q-model for

(p, q) = (1.2, 1.2)

(c) Lp,q-model for

(p, q) = (1, 1)

(d) New model (e) TV-model

Figure 6. Zoom captions from the test in Fig. 5.

Example 3. In Fig. 5, we demonstrate the effectiveness of the proposed model
applied to real noisy image of resolution 200 × 300 corrupted with Gaussian noise
having zero mean and standard deviation std = 15. We compare all the compet-
itive models by giving the PSNR values. We display the restored images which
show that the proposed New model performs better than “Biharmonic model”,
“Lp,q-model” for (p, q) ∈ {(1, 1), (1.2, 1.2)} and the “TV-model”. The difference
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(a) (b)

Figure 7. (a): L2-error er = ∥u − ue∥2 between the denoised
image u and the original clean image ue in semi-log scale. (b) the
curve of the relative error ∥un − un−1∥2/∥un−1∥2 in semi-log scale.

between all results can be seen by zooming some parts of the images in Fig. 6
where we easily notice the advantage of the New model. In fact, the latter gives
a satisfactory restoration and it behaves like a linear model in smooth parts and as
a nonlinear one near edges. We also display the adapted mesh obtained at the end
of the adaptive process. The final mesh is refined and fitted to the geometry of the
image.

Table 1. Runtime (in seconds) comparison between all models
in denoising examples 1-4.

Examples
Example 1 Example 2 Example 3 Example 4

Biharmonic model 2.5 2.4 3.62 4.51
L1.2,1.2-model 28.12 28.43 39.15 40.12
L1,1-model 28.45 28.89 39.78 40.26
TV-model 20.14 21.57 24.15 29.47
New model 20.87 21.96 22.17 24.85

For this example, we performed 5 iterations for p(·), q(·) and the mesh adap-
tation, where for each adaptation iteration, 6 inner iteration were performed for
the fixed point algorithm. We give show in Fig. 7- (a) the curve of L2-error
er = ∥u − ue∥2 between the denoised image u and the original clean image ue

as function of the overall all 5 × 6 iterations. The curve monotonically decreases
which proves the convergence of the algorithm. Moreover, in order to show the con-
vergence of the fixed point linearization algorithm, we show the curve of the relative
error ∥un − un−1∥2/∥un−1∥2 as function of the fixed point iteration in the 5 adap-
tation iterations. The curve is cyclic where we clearly see 5 cycles that correspond
to the fixed point iterations in one adaptation iteration. The curve monotonically
decreases for each cycle confirming the convergence of the fixed point algorithm.

Example 4. In Fig. 8, we illustrate the efficiency of the proposed model’s
ability to restore a medical noisy image of resolution 300× 300 which contains thin
structures. The image is corrupted with Gaussian noise having zero mean and
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(a) Noisy image. (b) Biharmonic, PSNR=29.95

(c) L1.2-model, PSNR=30.74 (d) L1-model, PSNR=31.02

(e) New model, PSNR=32.82 (f) TV-model, PSNR=32.34

Figure 8. Medical image denoising: Comparison between the dif-
ferent models.

different standard deviation std = 10. We display the denoised images using the
different approaches and we give their correspondent PSNR values.

Different noise levels. In Fig. 9, we demonstrate the effectiveness of the
proposed model applied to three noisy images corrupted with Gaussian noise having
zero mean and different standard deviations std = 17, 25 and 35. Our model seems
to be stable w.r.t to noise up to std = 35. This is in concordance wit most of PDE
approaches which do not give very satisfactory results for very high noise level.

Runtime. We give a runtine comparison for all tested models in Table 1. The
Biharmonic model is faster than other models as it is linear and does not require
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(a) Noisy image, σ = 17 (b) Noisy image, σ = 25 (c) Noisy image, σ = 35

(d) Restored image, PSNR =

30.02

(e) Our model: Restored image,

PSNR = 28.32

(f) Our model: Restored image,

PSNR = 23.86

Figure 9. Image restoration for different level of Gaussian noise.
First row: Input noisy image obtained by adding Gaussian noise
with zero mean and standard deviation 17, 25 and 35, respectively.
Second column: Restored images.

Figure 10. The set12 dataset.

any linearization iterations, unlike the other models. Moreover, our New model
which is of fourth-order, requires almost the same time as the TV-model even the
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Figure 11. The noisy Starfish and Parrot images.

Figure 12. Comparison of the different models in denosing
Starfish and Parrot images. First and thrid rows, form left to
right: Denoised images using Biharmonic model, Lp,q-model
for (p, q) = (1.2, 1.2), TV-model and New model. Second and
fourth rows: zoom captions from the denosied images. It is visually
clear that New model gives better result.

latter is a second-order PDE. The runtime ofNew model without mesh adaptation
will be the same as L1.2,1.2-model and L1,1-model. This clearly emphasises the
importance of mesh adaptation in speeding up the runtime.
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Set12 dabaset: To test the effectiveness of the proposed approach on 12 im-
ages of resolution 256 × 256 from Set12 dataset, see Fig. 10. All images were
corrupted with Gaussian noise having zero mean and standard deviation std = 15.
We compare with the discussed competitive models (See Fig. 11 and Fig. 12) and
summarize the results in Table 2. It can be seen that PSNR results for all methods
are comparable, with a small advantage for New model.

Table 2. Comparison between all models in denoising the 12
images form Set12 dataset.

C.man House Peppers Starfish Monarch Airplane
Biharmonic model 30.15 29.45 30.63 29.35 29.51 30.68
L1.2,1.2-model 31.26 30.75 31.53 30.45 30.61 31.78
TV-model 32.10 31.09 31.73 30.55 30.74 32.02
New model 32.68 32.23 32.47 32.15 31.81 32.87

Parrot Lena Barbara Boat Man Couple
Biharmonic model 29.36 30.12 30.33 29.69 30.71 30.04
L1.2,1.2-model 30.24 30.18 30.67 30.19 30.94 30.51
TV-model 32.09 31.87 32.22 32.14 31.85 32.01
New model 32.04 32.17 32.29 32.27 31.93 32.12

7. Conclusion

Image denoising is a challenging modelling task with a broad range of applica-
tions, in particular in medical imaging. The work presented in this paper deals
with the image denoising problem. We have considered a multiscale approach for
building a nonstandard high-order and anisotropic model, based on the (p(·), q(·))-
Kirchhoff operator. We discussed a practical and efficient strategy for the choice of
the exponents 1 < p(·), q(·) ≤ 2, locally and adaptively, which allows us to solve in
respect of the fine spatial scales. We analysed the proposed model and the numer-
ical algorithm employed. Numerical realisations have shown the proposed method
out-performs the compared classical approaches.
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