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A CLASS OF BUBBLE ENRICHED QUADRATIC FINITE
VOLUME ELEMENT SCHEMES ON TRIANGULAR MESHES

YANHUI ZHOU

Abstract. In this work, we propose and analyze a class of bubble enriched quadratic finite volume
element schemes for anisotropic diffusion problems on triangular meshes. The trial function space
is defined as quadratic finite element space by adding a space which consists of element-wise bubble
functions, and the test function space is the piecewise constant space. For the class of schemes,
under the coercivity result, we proved that |u — up|1 = O(h?) and ||u — up|lo = O(h3), where u
is the exact solution and wuy, is the bubble enriched quadratic finite volume element solution. The
theoretical findings are validated by some numerical examples.
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1. Introduction

Due to the local conservation law and other advantages, the finite volume method
(FVM) is one of the most important numerical methods for solving partial differen-
tial equations, see e.g. [2, 21, 30, 31, 34]. The finite volume element (FVE) method
(FVEM) is a special type of FVM, and attracted many researchers attention (e.g.
[22, 25, 43]).

The coercivity result is a basis for the error estimate of FVEM. For the linear
FVEM over triangular meshes, its element stiffness matrix can be regarded as
a small perturbation of linear finite element method for variable coefficient, the
coercivity result then follows (c.f. [1, 4, 16, 17, 38]). However, the coercivity analysis
for the quadratic scheme is not easy. For instance, assume that the maximum angle
of each triangular element is not greater than 90°, and the ratio of the lengths of
the two sides of the maximum angle belong to [\/2/3,/3/2], then Tian and Chen
[33] presented a coercivity result for the first proposed quadratic scheme in 1991.
In 1996, Liebau [24] proposed another quadratic scheme, and required that the
geometry of the triangulation triangles is not too extreme. In 2009, Xu and Zou
[38] introduced a general framework to construct quadratic schemes, and improved
some coercivity results for the schemes presented in [15, 24, 33] . In 2012, Chen,
Wu and Xu [11] presented a general framework for construction and analysis of
higher-order FVMs, under their framework, the minimum angle conditions of the
schemes in [15, 24, 33] are same as the results in [38]. In 2017, Zou [48] presented an
unconditionally stable quadratic scheme. In 2020, Zhou and Wu [45, 46] improved
some coercivity results, e.g., the minimum angle condition for the quadratic scheme
presented in [36] is improved to 1.42°. Therefore, most existing coercivity results
of quadratic schemes required a certain minimum angle condition. Some studies
about other types of hybrid FVMs and Hermite FVMs were presented in [6, 11, 12]
and so on, and some coercivity results on quadrilateral meshes can be found in
[7,18, 22, 23, 29, 32, 41, 44, 47] and the references cited therein. Once the coercivity
result is proved, the error estimate in H! norm is then routine.
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However, the L? error estimate is much more difficult compared with H! error
analysis. For example, for the linear FVEM over triangular meshes, by assuming
that the exact solution u € W3?(Q), p > 1, in 1994 Chen [9] given a proof of
optimal convergence order of L? error estimate. In 1998, Huang and Xi [19] present
a counterexample to show that the optimal second order accuracy of L? error norm
cannot be achieved by only assuming that (u, f) € H? x L2, where f is the right
hand side function. In 2002, Chen, Li and Zhou [10] discussed the optimal L2
error estimate of linear FVEM, they proved that the L? error can be bounded by
R In k|2 || f|l11 and A2||fllip, p > 1. In 2002, Ewing, Lin and Lin [16] proved
that the L? error can be bounded by h%||ul|2 + h'*?||f||5 for 0 < B < 1. Recently,
by introducing two orthogonal conditions on triangular meshes, in 2016 Wang and
Li [36] constructed k-order FVE schemes such that the L? error can be bounded
by h**1|ul|r4o. Some L? error estimates on quadrilateral meshes can be found in
[26, 27, 28, 29, 42] for an incomplete references.

Therefore, one can observe that the theoretical analysis of quadratic FVEM on
triangular meshes has not been developed satisfactorily. On the one hand, under
a certain minimum angle condition 1.42° for the isotropic diffusion problems, the
quadratic scheme in [36] can ensure the optimal L? error order. On the other hand,
the unconditionally stable quadratic scheme presented in [48] does not guarantee
the optimal convergence order in L? norm, at least it seems so numerically. Name-
ly, in the exiting literature the quadratic scheme in [36] is the unique scheme such
that the optimal L? error estimate holds, while the scheme in [48] is the unique
unconditionally stable scheme. At this stage, in order to satisfy the wide appli-
cations of quadratic FVEM (e.g. [8, 14, 20, 35, 37, 39, 40]), it requires us make
efforts to construct an unconditionally stable quadratic FVE scheme with the op-
timal L? error estimate. However, by the existing analysis techniques, it is difficult
to find a quadratic FVE scheme such that the local coercivity result (independent
of the minimum angle of underlying mesh) and optimal L? error estimate holds
simultaneously.

Unlike the existing quadratic FVE schemes, in this work we propose a class of
bubble enriched quadratic FVE schemes such that the H! (resp. L?) error order
is 2 (resp. 3). Precisely, by adding a space which consists of element-wise bubble
functions to the standard quadratic finite element space, we obtain a class of FVE
schemes with three scheme parameters «, 1 and f2, where o € (0,1/2) on the
element boundary and 0 < 8; < 2/3 < 82 < 1 in the interior of element. For some
special schemes, by element analysis, we numerically show that the local coercivity
result is valid on a class of isosceles triangles. When a = (3 —1/3)/6, 5 and
B2 satisfy (15) (or equivalently (18)), under the coercivity result, we proved that
|u — up|1 = O(h?). Moreover, by the Aubin-Nitsche technique and assuming that
u € H3(Q), f € H*(Q), we proved that ||u — up|lo = O(h3) for these schemes.
Finally, the theoretical results are verified by several numerical examples.

For the class of schemes presented in this paper, we may find a scheme such that
the local coercivity result holds in future. Moreover, the existence of a class of FVE
schemes can be used to attack many complicated problems. For example, we may
search this class for a scheme which satisfied some additional properties, such as
the positivity-preserving.

The rest part of this paper is organized as follows. In Section 2 we present a class
of bubble enriched quadratic FVE schemes on triangular meshes. The coercivity
result and H' error estimates of these schemes are discussed in Section 3. In
Section 4, we proved that the L? error order is 3 of these schemes when the scheme
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parameters a = (3 —/3)/6, 31 and B, satisfy (15). In Section 5 some numerical
examples are presented to validate the theoretical findings, and in Section 6 we
make conclusive remarks. Throughout the paper, we will follow the usual notations
“n 4> and “~” to avoid the repetition.

2. A class of bubble enriched quadratic FVE schemes

We consider the following elliptic equation
(1) -V -(AVu)=f inQ,
(2) u=0 on 09,

where ) C R? is a convex bounded polygonal domain, u is the function to be found,
f € L?(Q2) and the coefficient A = (\;;(z,y)) is a 2 X 2 symmetric and uniformly
positive definite matrix, i.e., there exist two positive constants A and A such that
for all (z,y) € Q

(3) Av]|? < vl Av < AMv|?, Vv eR?

where || - || is the Euclidean norm.

Suppose that the domain €2 is divided into a primal mesh Ty consisting of a finite
number of non-overlapped triangles, where h is the largest diameter of all triangles.
For each triangular element K € T, we denote by N the set of all three vertices,
three edge midpoints and the barycenter of K; £ the set of three edges of K. Let

No= U Ne, Np=M\0Q, &= ] éx.
KeTy, KeTn
The mesh 7T}, is called shape regular if for each triangle K € 7Ty, there exists a
positive constant Cy, independent of h and K, such that hx /px < Cs,., where hg
is the largest diameter of K and pg is the maximum diameter of circles contained
in K. In this work, we require the discontinuity of diffusion coefficient A does not
appear in the interior of each K.

Next, we present the dual mesh of €2. To this end, we introduce some notations.
For each K = AP P,P; € Ty, see Figure 1, let @ be the barycenter of K and
M; (i = 1,2,3) be the midpoint of the line segment P;P;;1, here and hereafter
1 denotes, without special mention, a periodic index with period 3. For any o €
(0,1/2), P4 and P72, ; are the two points on the line segment P; P11, subjected

to
(4) |P73Pi(,xi+1| _ |Pﬁk1,ipi+1| _
| P; P11 | P; P11

For any given 0 < 81 < 2/3 < 33 < 1, let the points Pfilﬂ and PffH on the line
segment P; M, 1, satisfying

5 PPl _ o PPl

| P Mt T |PiMiqa|

Using these notations, we reach a partition of K, consisting of three quadrilaterals
and four pentagons, see Figure 1. For each node P € N}, the dual cell associated
with P is a polygonal domain surrounding P and denoted as Vp. If P = P; is
a vertex of K, then the contribution of K to Vp is the quadrilateral Vg p, :=

PiPiC,YiHR%HPﬁsz see Figure 2(a). If P = M, is an edge midpoint of K, then the
pP2 B1

contribution of K to Vp is the pentagon Vi s, 1= Pi?i+1131ﬁ1,iﬁfﬁl’i+2 2.l i
see Figure 2(b). If P = (@ is a barycenter of K, then the contribution of K to Vp
is the pentagon Vi.q := Pl PY? PL P2 PPl P22 | see Figure 2(c). Then, the whole

2.
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FIGURE 1. Partition of the triangular element K.

(a) vertex (b) midpoint (c) barycenter

FIGURE 2. Dual cells associated with an interior vertex (left), an
edge midpoint (middle) and a barycenter (right).

dual cell surrounding the point P is given by
Ve = J Vkr.
K>P

The dual mesh T, consists of all dual cells, that is
T, ={Vp: PeNy},

see Figure 3 for an example of 7.

Based on the meshes 7;, and 7/, we define the corresponding trial function space
and test function space, respectively. Firstly, with respect to the primal mesh 7j,
we denote the standard Lagrange finite element space as

(6) U;’f = {uh S C(ﬁ) . uh|K EPk, VK € 771; uh|aQ :0},

where Py, is the set of all polynomials of degree equal to or less than k. For any
B2 € (2/3,1), we define the space of bubble functions

By, = {bh S C(ﬁ) : bth S Span{(ﬁg — 2/3))\1)\2>\3}, VK € 771},
where \; (i = 1,2, 3) are the three linear nodal basis functions of K, in other words,
e Yy i=g
Xi(Pj) =65 = { 0, it i,j=1,2,3.

)

The trial function space Uy, is given by

(7) Uy, = U @ By,.
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FIGURE 3. The primary mesh 7, and its associated dual mesh 7}

Then, the u;, € Uy, can be represented as

unlg = Zuh P, + Zuh
3
(8) + 3 A2 <9uh(Q) + Z un(P) —4) Uh(Mi)> :

where
9) dp, = Ni(2Ni — 1), dar, = ANidigr.

Since the bubble function A;AsA3 is vanish on the boundary of K, we have uy is
continuous on {2 and thus U, € H}(Q).

Secondly, the test function space V}, contains all the piecewise constant functions
with respect to 7, defined as

(10) Vi, = Span{yp : P € Ny},
where 1 p is the characteristic function on Vp. Then from (7) and (10), we have
(11) dimUj, = dimVj, = #N};,

where dim S and #5S are the dimension and cardinality of the set S. We remark
that the points Pl%, Pzﬁg2 and Pff coincide with the barycenter Q when 8y = 2/3,
see Figure 1. The corresponding dual partition of K can be seen in Figure 4 and
the trial function space Uj degenerate into the standard quadratic finite element
space U2, i.e., the uj, € U, can be represented as

uh|K—Zuh qbp +Zuh

In this case, the equality (11) also holds by lettlng the set NP exclude all the
barycenters.

The bubble enriched quadratic finite volume element solution of Egs. (1) and (2)
is a function uy € U, which satisfies the following local conservation law

—/ (AVup) -nds = / fdady
8VP VP
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FIGURE 4. Partition of the triangular element K, where 82 = 2/3.

on each dual cell Vp, P € Ny, where n is the unit outward normal on the boundary
dVp. For any v, € Vp, we have vy, = EPGN;: vpYp, where the coefficients vp =
vp(P). Then the above bubble enriched quadratic finite volume element schemes
for solving (1) and (2) can be rewritten as: Find u, € U such that

(12) ap(un,vn) = (f,on), Yop € Vp,

where the finite volume element bilinear form

(13) an(u,vp) Z vp (AVu) -nds, ue€ Hy(Q), v, €V
PeN ove

and (f,vy,) denotes the standard L? inner product of f and vy,.

From the construction of the dual mesh, one can see that it depends on three
parameters a € (0,1/2), 81 € (0,2/3) and B2 € (2/3,1). Hence, (12) actually leads
to a class of quadratic finite volume element schemes. In this paper, we consider a
special class of schemes, i.e.,

(14) =3 76\/3,

the 81 and [o satisfy
(15)
1

4+9 (1 — ﬁ) (-4 - % + 3/31) B1+2 <_1 - gﬂl + 3&) (2-381) (362 —2) = 0.

In the following discussion, we shall to prove that if a satisfies (14), 81 and 9
satisfy (15), then the finite volume element solution u;, converges to exact solution
u with convergence order 3 under L? error norm.

To this end, we first explore the Eq. (15). Discard the unreasonable solutions,
there are infinitely many pairs 0 < 81 < 2/3 < B2 < 1 which satisfy (15). In fact,
(15) is equivalent to

(16) cofis 4 c1Ba +co =0,
where
(17)
0 149 (1= &) (~4- Z+38) b
c2 =9, 612—5(2+51)7 co =2+30 + 2(2 —38;) ’
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FIGURE 5. The relationship of 81 and s which satisfy (15) (or
equivalently (18)).

Suppose that

E = —c1 £ /2 — deacy
F=

202

are the two roots of (16). Then, we have 3, < B3 and

_ _ c 15} 4
28y < B, +5;:_?;:1+?1<§’

which implies that 85 < 2/3. Consequently, the reasonable solution of (16) is

—c1 + \/c% — 4o
b

262

(18) Bo= Py =
where cg, ¢; and ¢y are defined in (17), and

C[o+vB-va+ov3 29+4\/§\/265+76\/§>
9 ’ 39 '

1

The relationship of (18) is graphically depicted in Figure 5. Moreover, from (18),
we can derive some special pairs of (81, 82) by a direct calculation, for example

6+V3—-21+6V3 2
B 9

B1 ~ 0.2366, [ = 3
1 135 4+ /5265 — 2400v/3

61 4a ﬁ2 240 O 70 )
1 7+25—-8V3

B = 3’ B2 = — 7 F 0.8615.

We mention that for the first pair of parameters (81, f2) in (19), see also the
‘W in Figure 5, since Sy = 2/3, then it is identical to the quadratic scheme in [36].
The rest part of this paper is devoted to the H' and L? error estimates of these
schemes.
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3. Coercivity and H! error estimates

In this section, for the o satisfies (14), 51 € (0,2/3) and B2 € (2/3,1) satisfy
(15), we numerically discuss the coercivity result by element analysis. Based on
the coercivity result, we prove that the finite volume element solution converges to
exact solution with convergence order 2 under H! error norm.

3.1. Preliminaries. For a given w # 0, suppose that the mapping II maps a
up, € Uy, to uf := Iluy, € V4, satisfying for each vertex F;,

’LLZ(PZ):’LL]—L(P,L)7 i:1,2,37
and for each midpoint M;,

1l—w

(20) uy (M;) = (un(Py) + up(Pig1)) + wup(M;), i=1,2,3,

and for each barycenter @,
up,(Q) = un(Q).-
We remark that if w = 1 (resp. w = 2/+/3), then (20) reduces to the mapping in

[22, 33] (resp. [45, 48]). Obviously, the mapping II is a bijection.
To prove the global coercivity result

(21) an(un,up) 2 lunli, Vun € Up,
it suffices to prove
(22) ap (un,up) 2 unli g, Yun € Un, VK € Th,

where

ap (up,uj) =— > u;;(P)/ (AVuyp) - nds.

PEN;, IVpNK

From (8), we have

3 3
up|r = Zuh(Pi)QoPi + Zuh(Mi)@Mi + un(@)¢q;
i=1 i=1

where
pp, = ¢P7; + 3A1 23, YMm; = ¢M7 — 12A1 23, pYQ = 2TA1 A3, 1=1,2,3.
For any w # 0, by (9), it is trivial to verify

3 3 3 3

(23) Z(ppi+z<pMi+<pQ:ZL‘O*Pi—FZ(‘O}KVIi—F@*Q:l'
i=1 i=1 i=1 i=1

For any uy, € Uy, in each K, we define the vector

(24) w= (up(Pr), -, un(Ps),un(Pr))",

where P; i3 := M;, i =1,2,3 and P; := . Hence, there holds

7 7
(25) a (un,uj) = a | Y un(P)er, Y un(P)eh, | =u"Axu,
j=1 i=1

where Ag = (a;5)7x7 with

(26) aij = ap (9P, ©p,).
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Lemma 3.1. Assume that Ty, is shape regular, then for each K € Ty,

(27) lun|1,ix ~ [|Gull, Vup € Uy,
where
1 0 0 0 -1 0 0
0 1 0 0 0 -1 0
O 0 1 -1 0 0 O
(28) G= 0 0 O 1 -1 o o0 [’
0 0 0O 0 1 -1 0
1 1 1 -4 -4 -4 9

u is defined in (24).
Proof. Since Ty, is shape regular, then by a scaling argument, we have

lunli,x ~ unly 7, VK € Th,

where K is the reference triangular element consists of three vertices (0,0), (1,0)
and (0,1). Note that |up|, g = 0 is equivalent to uj, being a constant function,

which holds if and only if

3 3
up(Py) =+ =un(Ps), un(Q)+ > un(P) =4 up(M;) =0,
=1 =1

and if and only if
(29) un(Pr) = -+ = un(Py) = un(Q).

On the other hand, we also have ||Gu| = 0 if and only if (29) holds. That is, |uy|,
and ||Gu|| are all positive semi-definite quadratic forms of uy(P;), i =1,---,7, and

have the same null-subspaces, thus the desired result (27) is proved.

Lemma 3.2. Let
55 -8 -8 =21 21 -1

-8 55 -8 =21 —-42 -1
1 -8 -8 55 42 21 -1
(30) T=— -8 -8 -8 42 21 -1

Bl s 8 -8 -1 2 -1
-8 -8 -8 =21 —-42 -1
—-15 —-15 —=15 0 0 6
and define
1
By = ETT (A +A%) T,
where Ak 1is given by (26). Then we have

(31) G"BxG = % (Ax +A%).

Proof. Firstly, we claim that

7 7
(32) dai=> a =0, i,j=1,---,T.
k=1 k=1
Actually, it follows from (26) and (23) that
7 7

k=1 1 k=1

S i = Yl (s ) — af (z% sﬁ’h) L) =0, i,

O
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and

7 7
Zakj :a;lf <<PPj, Z(p*Pk> :aff((ppj,l):O7 j=1,---,T1,

k=1 k=1
where we have used the fact that AVp, is continuous across the dual edges inside
K.
Secondly, by (28) and (30), we find that

1
(33) TG=I- -1,

where I is the identity matrix and 1 is a 7 x 7 matrix with all entries equal to 1.
Finally, we deduce from (33) and (32) that

1
7
which leads to (31). O

(Ak +AL) TG = Ak + AL — —(Ax +AR)L = Ag + AL,

3.2. The coercivity result. In order to present the coercivity result, we intro-
duce the following assumption.

(A1) For the « satisfies (14), f1 € (0,2/3) and Sy € (2/3,1) satisfy (15) (or
equivalently (18)), Bk is a uniformly positive definite matrix.

Theorem 3.1. Assume that Ty, is shape regular, then under the assumption (A1),
the coercivity result (21) holds.

Proof. Under the assumption (A1), for any K € Ty, it follows from (25), (31) and
(27) that, for any uy, € Uy,

1
aff (un,uj) = " Areu = ST (Ax + A%) u = (Gu)" Bre(Gu) 2 [|Gul* ~ [un } x.
which validates (22) and then (21). O

In the rest part of this subsection, for the scheme derived from (15), we numer-
ically discuss the positive definiteness of Bx on isosceles triangular element. For
simplicity, we assume that A is an identity matrix on K.

Firstly, we set

wimwp 4B LG 1) 1<i<N,+]1,
N,
where N, = 200, wy, and wg are two parameters.

Secondly, for each w;, the mapping II can be uniquely determined by (20), then
we compute its corresponding minimum angle condition 67, on a class of isosce-
les triangular elements K; = AP{ P, P3. Specifically, we assume the coordinates
P}(1/2,h;), P»(0,0) and Ps(1,0), where h; = (v/3§)/(2N;), 5 = 1,---,N; and
N; = 200. For the w;, its corresponding smallest angle and 6 x 6 symmetric matrix
of K; are denoted by arctan(2h;) and IB%%J_ respectively. Then, we let
(34)

[ 1§r3{l)i£Nt {arctan (2hj,) : IB%%J is a positive definite matrix for all jo < j < Nt} .

The numerical results of two special schemes are presented in Figure 6, where
the horizontal coordinate is the w, while the vertical coordinate is its corresponding
minimum angle condition computed by (34). In Figure 6(a), we choose wy, = 0.3
and wg = 2. In Figure 6(b), we choose wy, = 0.22 and wr = 0.8.
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02 04 06 08 1 12 14 16 18 2

(a) B1 = 1/4, Ba = (135 + V5265 — 2400+/3) /240

02 03 04 05 06 07 08

(b) B1=1/3, B2 = (% + /25 — 8v/3)/12

FIGURE 6. The effect of w to the minimum angle condition on
isosceles triangle.

The numerical results of the schemes (15) are presented in Figure 7(a), where
the horizontal coordinate is the 8;. In Figure 7(a), we choose wy, = 0.2 and wr = 2,
and O, is computed by

emin = min efnina
1<i<N,,
where 0° . is defined by (34). Moreover, the numerical results of the schemes a

satisfies (14), f1 € (0,2/3) and B2 € (2/3,1) are presented in Figure 7(b). From
Figures 6 and 7, we can see that for the « satisfies (14), 81 € (0,2/3) and B2 €
(2/3,1) satisfy (15), the assumption (A1) is valid under a certain minimum angle
condition.

3.3. H! error estimates. By a routine work, we have the following H! error
estimates.

Theorem 3.2. Assume that Ty, is shape reqular and the ezact solution u € Hg(2)N
H3(Q). Then, under the assumption (A1), we have

(35) | —uply S B?|luls.
Proof. 1t follows from the Green’s formula that

ap(u,vy) = (f,vn), Yop €V,
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ok L L L L L L L L
024 026 028 03 032 034 036 038 04

3

1

(a) the schemes (15) (b) the schemes 31 € (0,2/3), 52 € (2/3,1)

FIGURE 7. The minimum angle conditions of some special schemes
on isosceles triangle.

which leads to
ap(u —up,vp) =0, Vo, € V.
Therefore, by (21) and the continuity of ay,(-,-) (c.f. [38]), we deduce that

|lup, — UI|% S an (up —ur, (up —ur)*) = ap (u — ug, (up —ur)”)

1
2
< (Z (|U—u1%,K+h§<|u—U1|§,K)> lun — urls,

KeTy

where u; € U? is the piecewise quadratic interpolation of u such that for each
triangular element K

ur(P;) = u(P;), ur(M;) =u(M;), i=1,2,3.
Consequently, by the standard interpolation error estimate [3, 13], we find that
lup —urh S B?|lulls,
which yields to (35). O
4. L? error estimates

In this section, for a class of schemes « satisfies (14), 51 € (0,2/3) and B €
(2/3,1) satisfy (15), we use the Aubin-Nitsche technique to obtain the L? error
estimates.

4.1. Preliminaries.

Lemma 4.1. If « satisfies (14), then for each edge e € &, we have

(36) /v(w—w*)dSZO, Vv eUZ, weUL,

€

where U} and U? are defined by (6).

Proof. For each edge e € &, let P; and P, be the two endpoints, and M; be the
midpoint, c.f. Figure 1. Note that on the edge e, each v € U,f and w € U;} can be
represented as

v=uv(P)\ +v(Pa)\2 + (W(Ml) — ’l)(Pl)-;’U(Pg)) 4X1 Ao
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and
w = w(Pl))\l + 'UJ(PQ))\Q
respectively. To prove (36), it suffices to validate (36) for v = A; and w = Ay,
v=MX and w = Ay, v = A\ Ay and w = Aq.
Firstly, we consider the case v = A\; and w = A;. A direct calculation yields that

1
/vwds:/)\%dS: §|e|.

On the other hand, the facts
w* =1, on edge P P},
1
w* = Z» on edge PS5 Ps),
w* =0, on edge P35} P>
yield that

1
/vw*dSZ/)\lX{dS:/ >\1d3+§/
e e P Pg, P& P,

Secondly, we consider the case v = Ay and w = A;. By a straightforward
calculation, we deduce that

1
/vwds= //\1/\2d8 = 6|e\
1
/Uw*ds:/)\g)\fds:/ )\QdS—‘r*/
e e P, Py 2 Py, Py

Finally, we consider the case v = A\; A2 and w = \;. Still by a direct calculation,

we have )
/evwds = /e)\f)\gds = E|e|

1 1
/vw* ds = /()\1)\2))\1K ds = / )\1)\2 ds + */ )\1)\2 ds = —|e|
e e Py PRy 2 Py P3y 12

By the same arguments, (36) holds for v = A and w = Ay, v = A\ and w = Ay,
v = A1z and w = Ay. This completes the proof. O

1
Ards = §|e\.

and )
Ao ds = 6|e\.

and

Lemma 4.2. For any a defined by (4), 1 € (0,2/3) and B2 € (2/3,1) defined by
(5), we have

(37) / (w—w*)dedy =0, YweUt, KeT,.
K
Moreover, if o satisfies (14), B1 € (0,2/3) and B2 € (2/3,1) satisfy (15), then
(38) / v(w—w*)dedy =0, YveUt, welUl, KeT,.
K

Proof. Note that
U;% = Span{)\l, )\2, )\3}
in K, to prove (37), it suffices to verify (37) for w = A;. A straightforward calcu-

lation yields that
1
/ wdxdy = / Ardedy = | K.
K K 3
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By the definition of the mapping II, we find that
w* =1, in polygon Vg p,,

1
w* = =, in polygons Vg p, and Vi s,

2
w* = 3’ in polygon Vg q,
w* =0, in polygons Vi p,, Vi M, and Vi p,.

Suppose that the areas of AP, P&Pfg and AP{% Pff@ are S7 and Ss, respectively.

Then )
[ Xidedy = gx)
. 3

where we have used the fact that
1
|VK7M1‘ = ‘VK,M;;' = §|K| — 2S1 — 252

That is, (37) holds for w = A;. Similarly, (37) is valid for w = Ay and As.
We next prove (38). Firstly, for the special functions v = A and w = Ay, we

have )
/ vwdzdy = / AMAgdedy = —|K]|.

(1 - % + ﬂl) Sla
ﬂlsla

On the other hand,

/ Ao dxdy =
AP PP
/ Ao dody =
AP Pl P,
1
39 / Ao dady = / Aodaedy = =
39) APJZPLIQ APSIPI2Q 3
1
/ Ao dxdy = / Ao dxdy = =
AP PRQ APZPIQ 3
1
3

/ s )\gdxdy:/ s Ao daxdy =
APZSZ 19121 A13311 P232Q

It follows from (39) that

5 1 2 1 3
Joraxiasdy = Ziml+ g (<a- s ) sie o (<= 2avam ) s
K 54 2

D= O~

12 V3 18
Note that
1 1
= - - — K
Sl 4 (1 \/g) /31| |7
1
Sy == (2-351) (382 — 2)|K].

T2
Therefore, if 51 and fa satisfy the relation (15), we deduce that

1
“dady = —|K]|.
| v dady = 511
In other words, (38) holds for v = Ag and w = A;. By the same arguments, we have

1
(40) / Aidj dzdy = / AiNjdedy = —|K|, 4,7 =1,2,3 and i # j.
K K 12
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It follows form (37) and (40) that

/A%dxdy:/ Al(l—Ag—)\g)dxdy:/ (A;—AQX{—A?,A;)dxdyz/ A1} dedy,
K K K K

where we have used the fact that Ay + Ay + A3 = 1 in the first and last equalities.
Similarly, we get

/ A dady = / A\ dedy, i=1,2,3.
K K
Thus, (38) is verified and the proof is complete. O

Remark 4.1. From the process of proof in Lemma 4.1 and Lemma 4.2, we see that
the Egs. (36), (37) and (38) are valid independent the choice of w, and moreover
the Eqs. (36) and (37) are valid independent the choice of parameters 1 and (5.

4.2. Application of the Aubin-Nitsche technique. We introduce an auxiliary
problem: let w € HE(£2) be the weak solution of

-V - (AVw) =u—up inQ,
w=70 on 012,

where v is the exact solution of (1) and (2), uy is the bubble enriched quadratic
finite volume element solution of (12). Then we have

(41) a(w,v) = (u—up,v), Yoec H(Q),
where a(-,) is the finite element bilinear form defined by
(42) a(w,v) = /(AVU}) - Vo dzdy.
Q
Thus, by the regularity (c.f. [3, 13]), there exists a unique solution w € H}(Q) N
H?() such that
(43) [wll2 S flu—wuallo-
Let v = u — uy, in (41),
(44) lu —unlld = (u— up,u —up) = alw — wp,u — up) + alwpy, w — up),

where wy, = Iw € U, ,IL is the piecewise linear interpolation such that for each vertex
P;, i =1,2,3 of the triangular element K

By the standard approximation theory (c.f. [3, 13]), we obtain
(45) lw —wallr < hllwlla-

It follows from the Cauchy-Schwarz inequality, (3), (45) and (35)
(46) la(w — wn, u—un)| < B w2]uls.

For the second term a(wp, u—up) of (44), we note that wuy, is the finite volume ele-
ment solution of (12), then we do not have the Galerkin orthogonality. Fortunately,
by the definition of u and wuy, we find that for the wy € U,% C Uy,

ah(ua w}t) = (fv U);;)
and

an(un, wy) = (f, wy).
It follows by subtraction that
(47) ap(u — up,wy) = 0.
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Then by (47) and the equality a(u,wp) = (f,wp), we get
(48) a(wp,u —up) = a(u — up, wp) = a(u — up, wp) — ap(u — up, wy) = Ey + Es,
where
Ey = (f,wn —wp)
and
Es = ap(up,wy) — a(up, wp).

We next estimate E; and E5 respectively.
4.3. The estimate of Eq = (f,w, — w}).

Lemma 4.3. Assume that Ty, is shape regqular and f € H?(Q), « satisfies (14),
B1 € (0,2/3) and B2 € (2/3,1) satisfy (15), then for all wy, € U},

(49) |(f,wn = wh)| S B3| fllzlwnls,

where the hidden constant independent of the mesh size h.

Proof. Since wy, € U}, then by (38) and Cauchy-Schwarz inequality

|(f, wn—wi)l = |(f = Inf,wn —wi)| < |Lf = Infllollwn —whllo < B2l fllllwn —wplo-

For each K € T}, suppose that
3

wp = Z wh(Pl))\l

i=1
and denote
wo1 = wp(Pe) — wp(P1), w31 = wp(P3) —wp(Pr).

Then

wp, — Wy, = W21 A2 + W31 A3, in polygon Vi py,

Wh — Wj, = —5 W21 + WAz + w3t s, in polygon Vi iy,

1 .
wy, — wj = —g(wgl + wa1) + w21 A2 + w31 A3, in polygon Vi q.

It follows that

lwp, — wy, |(2),VK1P1 < / (wa1 o + w1 A3)? dady S hie (w3 + w3,y),
K

and
||wh7w;||(2),\)}()pi Sh%((wglergl)v i = 1?"' 77'
Consequently,
l|wn — w}t”aK < hic (w3 + w3 ).
Note that 7 is shape regular, then by the scaling argument,
lwhl1, Kk ~ [wnl; %

On the other hand, by a direct calculation,

1
‘whﬁf( =5 (w3, +w3y) .

Therefore, we obtain

(50) lwn —whllo,x S hrclwn|ix
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and
l|wn — wh”o = Z l|wn — wh”o K S Z hi |wh|1 K~ < h? |wh‘17
KeTh KeTh
and the desired result (49) is proved. O

4.4. The estimate of Ey = ap(up, w}) — a(un, wp)-

Lemma 4.4. Assume that Ty, is shape regular, A € W3>(Q), u € H3(Q). Then,
under the assumption (A1), for all wy, € U}, we have

(51) lan (un, wh) = alun, wn)| S 1PJlullslwnl1.

Proof. Firstly, let us discuss the relationship between the finite volume element
bilinear form ap(un,w}) and finite element bilinear form a(up,ws). Note that
wi(P) =0,V P eN,NoR, then it follows from (13) and the Green’s formula that

an(up, wy) = Z / (AVup) - nwy, ds
KETy, PEN,, VOVPNK
Z/ (AVuy,) - nw;, ds — Z / V - (AVup)wy, dzdy,
KeT KeTy,

and from (42)

a(up, wp) Z/ (AVuy) - nwp ds — Z / V - (AVup)wp, dzdy.

KeTn KeTy
Combining the above two equalities,
Ey = ap(un, wy,) — a(up, wy) = Ea1 + Eao,
where

Es = Z / V - (AVup)(wp, — wy) dedy
KeTh
and

Eyy = Z / (AVuy) - n(w;, — wy) ds.

Next, we estimate Fa; and E22 respectively. For Fsi, by (38) and (50), we
deduce that

|Eo1| = Z /( - (AVup) — In(V - (AVuy))) (wp, — wy,) dedy

KeT;, 'K

< DIV (AVuR) = In(V - (AVun)) o, wn —
KeTh

S |V - (AVu) |2k [wnl1 x
KeTy,

S Y hkllunlls klwali i,
KeTn

where in the last inequality we have used the facts that A € W3°°(Q) and |up|4,x =
0. On the other hand, by the triangle inequality and inverse inequality

llunlls, e < llun —urll3 x + |lurlls,x
S hilllun = urllx + llu— urlls x + [Julls

S hilllu = unllyx + lulls, k-
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Consequently, we get
Ear| S ) (hicllu—unllyx + Bic|lulls i) [wnl1x
KeTh
< hllw = unlltfwnly + B2 |lulls|wn |
< 12|l lwnl 1,
where we have used the fact (35) in the last inequality.

To estimate FEso, let Aps be the piecewise constant interpolation on each edge of
triangular element K, satisfying

AM(.’L',y):A(MZ), V(x,y) EPiPi+1, 1 =1,2,3.

Note that (AyVuy) - n is a quadratic polynomial on 0K and Vu is continuous
across 0K, then by (36) and w}|sn = wplao = 0, we have

Z /éaK(AMVUh) -n(wy —wp)ds =0

KeTh
and
/ (A= Ap)Vu) - n(wy, —wp)ds = 0.
KeT;, 79K
Using the fact A € W3°°(€2), we obtain

Bal = 3 [ (A= M)V un — ) mwy, — wn) ds

K€7—h oK

< > [ I8 20V - )l - unlds
KeTy oK

S Y bV = un)loox lwn — willo.ox
KeTy,

< <Z hK|V<uuh>||3,aK) (Z thhwmaaK)

KeTh KeTh

By the trace theorem (c.f. [3]), we get

(Z hK”V(U—Uh”g,aK) S (Z (|U—Uh|%,K+h%<|U—Uh|§,K)>

KeT, KeTn
< h?lulls

and

[N

3
< > hxcllwn — wZII%,w) N ( > (llwn —willg x + hiliﬂhlix))

KeTn KeTh
Sh|wh|17

where we have used the fact that
lu —uplo,x < |u—urle,x + |ur —uple,x
S hucllulls, e + P lur — unllyx

< hillulls, i + it llu — w1 k-
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Consequently,
| Ena| S h2[[ull3whls-
Therefore, we have
| Ea| = |ap (un, w) — aup, wp)| < |Ear| + [ Eaz| S h%|lullslwn s

and (51) is proved. O

Remark 4.2. From the process of proof in Lemma 4.4, we see that if the coefficient
A is piecewise constant with respect to Ty, then Eo1 = Eog = 0, thus Es = 0.

4.5. Convergence rate of L? error estimates.

Theorem 4.1. Let u be the exact solution of (1) and (2), up be the finite volume
element solution of (12). Assume that Tj, is shape regular, A € W3>°(Q), u €
H3(Q), f € H?(Q). Then, under the assumption (A1), we have

(52) lu = unllo < B> (Jlulls + 1 £12)-
Proof. Combining (44), (46), (48), (49), (51) and the fact
w1 < w — w1 +[wli S flwll2
yield that
lu = unll§ < B2 (lulls + [ Fll2)llwll2 < B (lulls + [1£1]2) 1w = unllo,

where we have used (43) in the last inequality. The proof is complete. O

Remark 4.3. From the process of proof in Theorem 4.1, we see that once the H'
error estimate (35) is obtained, the L? error estimate (52) is valid independent the
choice of w. However, w is crucial in the coercivity analysis, e.g., [45, 46, 48].

Remark 4.4. If « satisfies (14), then the orthogonal condition (36) holds. If 51 €
(0,2/3) and B2 € (2/3,1) satisfy (15), then the orthogonal condition (38) holds.
The two orthogonal conditions play an important role in our L? error estimates.

5. Numerical examples

In this section, we present several numerical examples to validate the theoretical
findings of this paper. The numerical experiments are implemented on a personal
computer with 2.16 GHz CPU and 4 Gb RAM and Matlab R2016a is used as the
testing platform.

Examples 5.1, 5.2 and 5.3 are designed for constant, variable and discontinuous
coefficients, respectively, while Example 5.4 is a highly anisotropic diffusion prob-
lem. In these examples, we choose 2 = [0,1]? and employ four types of triangular
meshes. The first kind of mesh (Mesh I) is a uniform triangular one, see Figure
8(a), and the coordinates of the vertices are given by

iy =(i—1Dh, gy =G —Dh, 1<4, j<n+1,

where h = 1/n is the mesh size. The third mesh (Mesh III) is a random triangular
one, see Figure 8(c), which is obtained by randomly disturbing the interior vertices
of Mesh I and keeping the connections unchanged. Specifically, the coordinates of
the interior vertices in Mesh III are

xij = Ty +wrgh, ¥y =y wryh, 2<4, j<n,

where w € [0,0.5] is the disturbance coefficient, while r; and r, are two random
numbers that belong to (—1,1). The second mesh (Mesh II) is also a random one
where the interior vertices are only allowed to be disturbed along y direction, see
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(a) Mesh I (b) Mesh II (¢) Mesh IIT

FI1GURE 8. Three mesh types used in the numerical examples.

(a) first level (b) second level (c) third level

FIGURE 9. Mesh IV.

Figure 8(b). The last mesh (Mesh IV, see Figure 9) is constructed by the uniform
mesh such that when j is an even number,

Yij ::yi7j_1+h27 i:1737"'an+]—7
Yij ‘= yi;j+1_h27 222747 , .
In these examples, we choose w = 0.25 for Mesh II and Mesh III. Let

(53) Omin = ]I(Iél%l Ok,
where Ak is the minimum interior angle of K. The 6,,;, of these meshes are pre-
sented in Table 1, one can see that for the Mesh IV, 6,;, — 0° provided h — 0.
Here we investigate the numerical performance of the following seven finite volume
element schemes:
e Bubble 1/4: a = (3—+/3)/6, B1 = 1/4, B2 = (135+ /5265 — 24001/3)/240.
This is the scheme presented in this paper.
e Bubble 1/3: a = (3—+/3)/6, f1 = 1/3, B2 = (7 + /25 — 8/3)/12. This is
the scheme presented in this paper.
e TianChen91: a = 1/3, 81 = 1/3, B2 = 2/3. This scheme was presented in
[33] by Tian and Chen in 1991.
e Emonot92: a = 1/6, 81 = 1/4, B2 = 2/3. This scheme was presented in
[15] by Emonot in 1992.
e Liebau96: oo =1/4, f1 = 1/3, B2 = 2/3. This scheme was presented in [24]
by Liebau in 1996.
o WangLil6: a = (3—+/3)/6, B1 = (64++v/3—1/21 +6v/3)/9, B2 = 2/3. This

scheme was presented in [36] by Wang and Li in 2016.



892 Y. ZHOU

TABLE 1. The minimum angle 6,,;, for the four types of triangular meshes.

h Mesh I | Mesh II | Mesh III | Mesh IV
1/2 | 45.00° | 33.89° 32.90° 11.31°
1/4 | 45.00° | 26.51° 22.19° 3.95°
1/8 | 45.00° | 24.25° 17.42° 1.67°
1/16 | 45.00° | 22.42° 12.94° 0.77°
1/32 | 45.00° | 21.02° 9.91° 0.37°
1/64 | 45.00° | 20.54° 12.01° 0.18°

e Zoul7: a = (3 —+/3)/6, 1 = (1 — 1/v/3)/2, Bo = 2/3. This scheme was
presented in [48] by Zou in 2017.

Example 5.1. We consider the problem (1) and (2), choose the constant diffusion
coefficient and right hand side function

Az, y) = ( 1 ; > . f(z,y) = 3n?sin(nz) sin(ry) — 272 cos(mx) cos(my),

which allows the exact solution
u(z,y) = sin(mwx) sin(my).

The numerical results of the seven schemes on Mesh I are graphically depicted
in Figure 10 as log-log plots of the discrete errors versus the characteristic mesh
size h. One can observe that for the three schemes: Bubble 1/4, Bubble 1/3 and
WangLil6, the convergence order in H! and L? error norm are all of 2 and 3
respectively, which validate the theoretical results in Theorem 3.2 and Theorem
4.1. For the four schemes: TianChen91, Emonot92, Liebau96 and Zoul7, we can
see that the convergence order in H! error norm are all of 2. However, the errors
in L? norm are all approximately one order lower than the optimal order 3 even
though Mesh I is uniform.

The relation between the error orders and bubble enriched schemes (15) is de-
picted in Figure 11, where the convergence orders are computed from the errors on
the finest two levels of Mesh I. From Figure 11, one can see that the convergence
order in H'! and L? error norm are all of 2 and 3 respectively provided o satisfies
(14), 51 € (0,2/3) and B € (2/3,1) satisfy (15), namely the theoretical results in
Theorem 3.2 and Theorem 4.1 are verified again.

The numerical errors on Mesh II, IIT and IV are graphically depicted in Figures
12, 13 and 14 respectively. One can observe that the numerical results are similar
to Mesh I. Moreover, we observe that the existence and uniqueness of the finite
volume element solution and corresponding convergence order are all independent
of the minimal angle 6,,;, of the meshes, even though 6,;,, — 0° for the Mesh IV.

Example 5.2. We solve the problem (1) and (2), where the variable diffusion
coefficient and right hand side function are given by

l+z  L(x—vy)
A(l’,y) = ( 1 2 ’ f(xay) = 72(2 +x)ez+y‘
z(z—y) L+y
This problem has the analytic solution
u(z,y) = ",

The numerical errors on Mesh IV are similar to Example 5.1, see Figure 15. For
these schemes, the H! errors are of order 2, while the L? error order are 3 for the
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F1GURE 10. Numerical errors for Example 5.1 on Mesh 1.
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F1GURE 12. Numerical errors for Example 5.1 on Mesh II.
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FI1GURE 13. Numerical errors for Example 5.1 on Mesh III.
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FIGURE 14. Numerical errors for Example 5.1 on Mesh IV.
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three schemes Bubble 1/4, Bubble 1/3 and WangLil6, and approximately 2 for the
rest four schemes. For the other three meshes, there also have similar results.
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F1GURE 15. Numerical errors for Example 5.2 on Mesh IV.
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FIGURE 16. Numerical errors for Example 5.3 on Mesh IV.

Example 5.3. We still solve the problem (1) and (2), where the discontinuous
anisotropic diffusion coefficient is

The exact solution and corresponding right hand side function are given by

(z.5) 4xe®ty, x < 0.5, ) —8(z + 1)e* Y, x < 0.5,
u(z,y) = T,y) =
Y (z +1.5)e" Y, 2> 0.5, Y (72 + 15.5)e* Y, 2> 0.5,

Since in this example the diffusion tensor is discontinuous across the line x = 0.5,
then we use the Mesh I, Mesh IT and Mesh IV. On Mesh IV, the numerical errors
are presented in Figure 16, where we see that the convergence orders of H' and L?
errors of the seven schemes are similar to the previous examples. For the Mesh I
and Mesh II, there also have similar results.

Example 5.4. We solve a highly anisotropic diffusion problem which was presented
in [5], where

A, y) = cosf)  sinf 10 cosf) —sinf
Y=\ _sing cosd 0 & sin 0 cos 0
and

arctan (0.5 — (z — 0.5)% — (y — 0.5)%)
arctan 0.5 ’

u(‘rvy) =
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FIGURE 17. Numerical errors for Example 5.4 on Mesh IV.

TABLE 2. The running time (minute) of numerical errors for Ex-
ample 5.4 on Mesh IV.

Bubble 1/4 | Bubble 1/3 | TianChen91 | Emonot92 | Liebau96 | WangLil6 | Zoul7
471 m 4.69 m 2.99 m 3.06 m 3.05 m 3.0l m 3.17m

The right hand side function is given by

flz,y) = N ((Hl) (1+ @ +y—a—y?)’)
(1 +(z+y—a?-— y2)2> arctan 0.5
+8(k —1)(z — 0.5)(y — 0.5) (z + y — 2> — y*) sinf cos §

+4(z+y—2®—y?) ((x —0.5) (ksin® @ + cos® 0)

+ (y — 0.5)? (sin® 0 + r cos® 0) ))

In this example, we choose

T
=10* 0=-=.
K s 6

The numerical errors on Mesh IV are similar to the previous examples, see Figure
17. For the other three meshes, there also have similar results. On Mesh IV, the
running time (minute) of these schemes are presented in Table 2. We observe that
the running time of bubble enriched quadratic schemes are greater than the classic
quadratic schemes, since the new schemes have one more degree of freedom on each
triangular element. Note that the exact solution u(x,y) > 0, V (z,y) € Q, here we
test the positivity preserving property of these schemes. The results are given in
Table 3, where

Umin = Pnéli\Ifl,f Up (P)7

and N} includes the barycenters, we observe that these schemes all produce non-
negative solutions at each P € Ny.
6. Conclusions

This paper presents a class of bubble enriched quadratic FVE schemes over
triangular meshes for solving anisotropic diffusion problems. The trial function
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TABLE 3. The values of u,,;, for Example 5.4 on Mesh IV.

h 172 1/4 1/8 1/16 1/32 1/64
Bubble 1/4 | 0.456073 | 0.207996 | 0.097254 | 0.046800 | 0.022935 | 0.011350
Bubble 1/3 | 0.455906 | 0.207945 | 0.097252 | 0.046800 | 0.022935 | 0.011350
TianChen91 | 0.454781 | 0.208081 | 0.097266 | 0.046801 | 0.022935 | 0.011350
Emonot92 | 0.455069 | 0.207958 | 0.097253 | 0.046800 | 0.022935 | 0.011350
Liebau96 | 0.454921 | 0.208006 | 0.097258 | 0.046801 | 0.022935 | 0.011350
WangLil6 | 0.454967 | 0.207982 | 0.097256 | 0.046801 | 0.022935 | 0.011350

Zoul7 | 0.454968 | 0.207981 | 0.097256 | 0.046801 | 0.022935 | 0.011350

space consists of a quadratic finite element and an element-wise bubble functions.
Under the assumption (A1), we proved that |u — up|y = O(h?) and ||u — upllo =
O(h3). We mention that the assumption (A1) is derived from element analysis
approach and it is just a sufficient condition to ensure (21). Moreover, from Figures
6 and 7, we see that the assumption (A1) is valid under a certain minimum angle
condition. On the other hand, for the Mesh IV used in Section 5, we have 0,,;, — 0°
(the Oin defined by (53)) provided h — 0, and the numerical results indicate that
there exists one unique FVE solution even though 6, is very small. Therefore,
more studies about the coercivity analysis should be developed further, and we
expect that all the FVE schemes are unconditionally stable.
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