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A POD-BASED FAST ALGORITHM FOR THE NONLOCAL

UNSTEADY PROBLEMS

SHANGYUAN ZHANG AND YUFENG NIE*

Abstract. A fast algorithm for the nonlocal unsteady problems was proposed, which can be

employed in the numerical simulation of nonlocal diffusion and peridynamic. The surrogate model
constructed by the proper orthogonal decomposition (POD) speeds up the process of solving
equations by reducing the order of linear equations. Then, the accuracy and efficiency of the
proposed algorithm was verified by numerical experiments. The results showed that this approach

ensures accuracy while reduces the computational burden of the nonlocal model.
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1. Introduction

The classical theory of continuum mechanics assumes that all internal forces in
the body are contact forces, which leads to mathematical models described by par-
tial differential equations. However, the partial differential equation model cannot
properly model problems evolving discontinuities, such as damage and fracture.
The reason is that it assumes the displacement field is continuously differentiable.
Peridynamic (PD) model [1, 2, 3, 4] is a reformulation of continuum theory, which
avoids the explicit use of spatial derivatives and the internal force is considered
to be a non-contact force. Consequently, PD models are particularly suitable for
the representation of discontinuities in displacement fields and crack evolution in
materials, its effectiveness in modeling material damages has been shown in numer-
ical simulation of crack nucleation[5], crack propagation and branching[6, 7], phase
transformations in solids [8], impact damage[9, 10], polycrystal fracture and so on.
Various numerical methods for solving PD problems have been proposed and im-
plemented, including finite difference[11], finite element [12, 13, 14, 15], quadrature,
and particle-based[16] methods are successfully applied in numerical simulation of
fracture and damage.

However, just like the fractional partial differential equation model[17, 18, 19],
due to the nonlocal property of the nonlocal operator, the numerical methods for the
PD models yield dense stiffness matrices. Consequently, two main factors restrict
the efficiency of numerical simulation, one is the generation of the stiffness matrices,
and the other is the computational complexity of the dense linear equations solver.
Both two render the numerical simulation of nonlocal models computationally ex-
pensive.
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Seeking an efficient and accurate numerical algorithm has been one of the crucial
issues in the application of nonlocal models. Extensive research has been developed
on the fast algorithm for nonlocal models. A fast finite difference method for the
one-dimensional space-fractional diffusion equation was developed in [20], in which
the stiffness matrix is full, and it needs a Toeplitz-like matrix expansion. A fast
Galerkin finite element method was developed for a one-dimensional PD model in
[21], because of the stiffness matrix can be decomposed as a sum of a tridiago-
nal matrix and a Toeplitz matrix, then the Fast Fourier Transform has been used
to accelerate the matrix-vector product, and it was extended to the discontinuous
Galerkin method in [22]. The Galerkin method needs to compute more than one
layer of integration in the assembly of the stiffness matrix, which constitutes a
very large portion of computation time. Therefore, the fast collocation method was
developed for nonlocal diffusion problems. In one dimensional case, the stiffness ma-
trix can be decomposed as a sum of a Toeplitz matrix [23, 24] and a low-rank matrix,
and the stiffness matrix was proved to be of block-Toeplitz-Toeplitz-block matrices
in two-dimensional case [25]. Recently, a fast collocation method is discretized on
a uniform partition for two-dimensional peridynamic problems [26], in which the
stiffness matrix was also proved to be block-Toeplitz-Toeplitz-block matrices. All
of these fast algorithms developed above speed up the solving by exploring the
structure of the stiffness matrices, which is discretized on a uniform partition. It
can be seen later, the fast algorithm proposed in this paper is independent of the
mesh structure.

In this paper, a fast algorithm for the nonlocal unsteady problem was proposed by
constructing the reduced-order model (ROM) of the original system. The key idea
of ROM is approximating the high-order system with a lower-order system based
on the proper orthogonal decomposition (POD) method [27] and the projection
coefficients of ROM are obtained by implementing Galerkin projection [28]. In [29],
the ROM was firstly used to solve parameterized nonlocal problems. Different from
that, this method is utilized in speed up the equation solving at this time. Actually,
this algorithm only focus on second factor. However, compared with the existing
fast algorithm, our method is independent of the structure of stiffness matrix and it
can be easily embedded into existing numerical methods. In the process of solving,
it plays a significant role in reducing the computational burden of solving dense
linear equations.

The rest of this paper is organized as follows. In section 2, the nonlocal parabolic
equation and nonlocal wave equation are introduced. The weak form of these two
equations and their finite element discretizations are given in sections 3 and 4,
respectively. Section 5 contains POD-based reduced-order models of both two types
of equations. Finally, numerical experiments are carried out to verify the efficiency
of our fast method.
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2. Nonlocal Unsteady Equation

The problems mainly considered here are nonlocal unsteady problems, Eq. (1)
is the nonlocal parabolic equation,

(1)


∂u

∂t
−
∫
Bδ(x)

K(x, y)(u(y, t)− u(x, t))dy = f(x, t), on Ω× (0, T ],

u(x, t) = g(x, t), on Ωc × (0, T ],

u(x, 0) = u0(x), on Ω ∪ Ωc.

and the other is nonlocal wave equation:

(2)



∂2u

∂t2
−
∫
Bδ(x)

K(x, y)(u(y, t)− u(x, t))dy = f(x, t), on Ω× (0, T ],

u(x, t) = g(x, t), on Ωc × (0, T ],

u(x, 0) = u0(x), on Ω ∪ Ωc,

u̇(x, 0) = u1(x), on Ω ∪ Ωc,

where Ω is a bounded open domain and Ωc is constraint domain, Ωc = {y ∈
Rn\Ω | dist(y, x) ≤ δ, x ∈ Ω}, i.e., Ωc is a layer of thickness δ surrounding Ω. The
nonlocal operator

(3) Lu(x, t) :=

∫
Bδ(x)

K(x, y)(u(y, t)− u(x, t))dy, ∀x ∈ Ω,

is corresponding to the classical diffusion operator. For local PDE setting, one must
impose appropriate boundary conditions. But for nonlocal models, because the
nonlocality of interactions, one must impose volume constraints, that is, constraints
acting on the domain, not the boundary of the domain. The Figure 1, 2 show
the domain in 1D and 2D. Many kernels have been proposed in literatures. It’s

Figure 1. One dimensional domain.

worth noticed that the kernel determined the regularity of the solution, which is
meaningful in practice. The kernel is symmetric in most cases, so we can define the
bilinear form as

(4) A(u, v) = −(Lu, v) =
1

2

∫
Ω∪Ωc

∫
Ω∪Ωc

K(x, y)(u(y)− u(x))(v(y)− v(x))dydx

the energy norm |||u||| =
√
A(u, u), the energy space

(5) V (Ω ∪ Ωc) = {u ∈ L2(Ω ∪ Ωc) | |||u||| < ∞}.
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Figure 2. Two dimensional domain.

3. Nonlocal Parabolic Equation

3.1. Weak Formulation. Multiplied by v ∈ V = {v ∈ L2(Ω′) | v(x) = 0 on Ωc}
in the both side of equation, where Ω′ = Ω ∪ Ωc, at any t ∈ (0, T ], and integrate
over Ω, then

(6)

∫
Ω

∂u(x, t)

∂t
v(x)dx

−
∫
Ω

∫
Bδ(x)

K(x, y)(u(y, t)− u(x, t))v(x)dydx =

∫
Ω

f(x, t)v(x)dx,

It can be simplified as,

(7) (ut, v)− (Lu, v) = (f, v).

Next select a function space S(Ω′) ⊂ L2(Ω′), then define the space S0(Ω
′) = {v ∈

S(Ω
′
) | v = 0 on Ωc} and the affine space Sg(Ω

′) = {v ∈ S(Ω
′
) | v = g(x) on Ωc}.

Further, the weak formulation of the problem (1) can be given as follows:

Problem 1. (Weak Formulation of Nonlocal Parabolic Equation) Given f(x, t) ∈
L2(Ω), g(x, t) ∈ L2(Ωc), and u0(x) ∈ L2(Ω), for any t ∈ (0, T ), find u(x, t) ∈
Sg(Ω

′), such that the initial condition and (7) holds for all v ∈ S0(Ω
′).

3.2. Finite Element Discretization. Assumed that there is a finite element
space Sh(Ω′) ⊂ S(Ω′), Sh

0 (Ω
′) ⊂ S0(Ω

′), parametrized by a grid-spacing pa-
rameter h, and define the finite-dimensional affine space Sh

g (Ω
′) = {vh(x, t) ∈

Sh(Ω
′
) | vh(x, t) = gh(x, t) on Ωc}, then the semi-discrete problem can be defined.

For any t ∈ (0, T ], seek uh(x, t) ∈ Sh
g (Ω

′) such that

(8) (uh
t , v

h)− (Luh, vh) = (f, vh), ∀vh ∈ Sh
0 (Ω

′).

with uh(x, 0) = uh
0 (x). Let {ϕi(x)}ni=1 denote the basis function of Sh(Ω), for

example, continuous piecewise linear polynomials with respect to the partition.
Then uh(x, t), fh(x, t) can be expressed as

(9) uh(x, t) =

n∑
j=1

uj(t)ϕj(x), fh(x, t) =

n∑
j=1

fj(t)ϕj(x).
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Therefore, the finite element approximation can be written as follows

(10) (

n∑
j=1

duj

dt
ϕj(x), v

h(x))− (L(

n∑
j=1

uj(t)ϕj(x)), v
h(x)) = (

n∑
j=1

fj(t)ϕj(x), v
h(x)).

Let vh go through test function space, then we can obtain

(11) (

n∑
j=1

duj

dt
ϕj(x), ϕi(x))− (L(

n∑
j=1

uj(t)ϕj(x)), ϕi(x)) = (

n∑
j=1

fj(t)ϕj(x), ϕi(x)).

where i = 1, 2, ..., n. Because the inner product and the operator are linear, then
the formulation above can be written as

(12)

n∑
j=1

(ϕj(x), ϕi(x))
duj

dt
−

n∑
j=1

(L(ϕj(x)), ϕi(x))uj(t) =

n∑
j=1

(ϕj(x), ϕi(x))fj(t).

where i = 1, 2, ..., n. Now some notation can be introduced for simplicity, set

Mass matrix: M = [(ϕj(x), ϕi(x))]
n
i,j=1.

Stifness matrix: A(t) = [(Lϕj(x), ϕi(x))]
n
i,j=1.

Load vector: F(t) = [fj(t)]
n
j=1.

Unknow vector: X(t) = [uj(t)]
n
j=1.

Then the system can be written as an ordinary differential system.

M
dX

dt
−AX(t) = MF(t).

Assumed that we have a uniform partition of [0, T ] with mesh size ∆t. Then the
corresponding θ-scheme is

M
Xn+1 −Xn

∆t
− θAXn+1 − (1− θ)AXn = θMFn+1 + (1− θ)MFn.

which can be simplified as

ÃXn+1 = b̃

where,

Ã =
M

∆t
− θA,

b̃ = θMFn+1 + (1− θ)MFn +
M

∆t
Xn + (1− θ)AXn,

then, if θ = 0, which is well-known as the forward or explicit Euler method. On
the other hand, if choosing θ = 1, which corresponds to the backward or implicit
Euler method. Both of these methods are first-order accurate methods. The third
case would be to choose θ = 1

2 , which is known as the Crank-Nicolson method and
has the advantage that it is second-order accurate.
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4. Nonlocal Wave Equation

In order to discretize a second time derivative, we first introduce an additional
variable v = ∂u

∂t and transform the system (2) into a first order system. Then
reformulating the original wave equation as follows:

∂u

∂t
− v = 0 in Ω× [0, T ],(13)

∂v

∂t
− Lu = f in Ω× [0, T ],(14)

u(x, t) = g on Ωc × [0, T ],(15)

u(x, 0) = u0(x) in Ω,(16)

u̇(x, 0) = u1(x) in Ω.(17)

Note that we do not have boundary conditions for v at first. So, we enforce v = ∂g
∂t

on the boundary.

4.1. Weak Formulation. Multiplied by w ∈ V = {v ∈ L2(Ω) | v(x) = 0 on Ωc}
in the both side of equation, at any t ∈ (0, T ], and integrate over Ω, then

(18)


∫
Ω

∂u(x, t)

∂t
w(x)dx−

∫
Ω

v(x, t)w(x)dx = 0,∫
Ω

∂v(x, t)

∂t
w(x)dx−

∫
Ω

Lu(x, t)w(x)dx =

∫
Ω

f(x, t)w(x)dx.

It can be simplified as,

(19)

{
(ut, w)− (v, w) = 0,

(vt, w)− (Lu,w) = (f, w).

Next select a function space S(Ω′) ∈ L2(Ω′) and then define the space S0(Ω
′) = {v ∈

S(Ω
′
) | v = 0 on Ωc} and the affine space Sg(Ω

′) = {v ∈ S(Ω
′
) | v = g(x) on Ωc}.

Then, the weak formulation of the problem (2) can be given as follows:

Problem 2. (Weak Formulation of Nonlocal Wave Equation) Given f(x, t) ∈
L2(Ω), g(x, t) ∈ L2(Ωc), and u0(x) ∈ L2(Ω), for any t ∈ (0, T ), find u(x, t) ∈
Sg(Ω

′), such that the initial condition and (19) holds for all v ∈ S0(Ω
′).

4.2. Finite Element Discretization. Assumed that there is a finite element
space Sh(Ω′) ⊂ S(Ω′), Sh

0 (Ω
′) ⊂ S0(Ω

′), parametrized by a grid-spacing pa-
rameter h, and define the finite-dimensional affine space Sh

g (Ω
′) = {vh(x, t) ∈

Sh(Ω
′
) | vh(x, t) = gh(x, t) on Ωc}, then the semi-discrete problem can be defined.

For any t ∈ (0, T ], seek uh(x, t) ∈ Sh
g (Ω

′) such that

(20)

{
(uh

t , w
h)− (vh, wh) = 0,

(vht , w
h)− (Luh, wh) = (f, wh).

with uh(x, 0) = uh
0 (x). Let {ϕi(x)}ni=1 denote the basis function of Sh(Ω), for

example, continuous piecewise linear polynomials with respect to the partition.



864 S. ZHANG AND Y. NIE

Then uh(x, t), fh(x, t) can be expressed as

(21) uh(x, t) =
n∑

j=1

uj(t)ϕj(x), vh(x, t) =
n∑

j=1

vj(t)ϕj(x), fh(x, t) =
n∑

j=1

fj(t)ϕj(x).

Therefore, the finite element approximation can be written as follows

(22)


(

n∑
j=1

duj

dt
ϕj(x), w

h)− (

n∑
j=1

vj(t)ϕj(x), w
h) = 0,

(
n∑

j=1

dvj
dt

ϕj(x), w
h)− (L(

n∑
j=1

uj(t)ϕj(x)), w
h) = (

n∑
j=1

fj(t)ϕj(x), w
h).

Let wh go through test function space, then we can obtain

(23)


(

n∑
j=1

duj

dt
ϕj(x), ϕi(x))− (

n∑
j=1

vj(t)ϕj(x), ϕi(x)) = 0,

(

n∑
j=1

dvj
dt

ϕj(x), ϕi(x))− (L(

n∑
j=1

uj(t)ϕj(x)), ϕi(x)) = (

n∑
j=1

fj(t)ϕj(x), ϕi(x)).

where i = 1, 2, ..., n. Because the inner product and the operator are linear, then
the formulation above can be written as

(24)



n∑
j=1

(ϕj(x), ϕi(x))
duj

dt
−

n∑
j=1

(ϕj(x), ϕi(x))vj(t) = 0,

n∑
j=1

(ϕj(x), ϕi(x))
dvj
dt

−
n∑

j=1

(L(ϕj(x)), ϕi(x))uj(t) =

n∑
j=1

(ϕj(x), ϕi(x))fj(t).

where i = 1, 2, ..., n. Once again, some notation can be introduced for simplicity,
set

Mass matrix: M = [(ϕj(x), ϕi(x))]
n
i,j=1.

Stifness matrix: A(t) = [(Lϕj(x), ϕi(x))]
n
i,j=1.

Load vector: F(t) = [fj(t)]
n
j=1.

Unknow vector: X(t) = [uj(t)]
n
j=1.

Unknow vector: Y(t) = [vj(t)]
n
j=1.

Then the system can be written as an ordinary differential system.

(25)


M

dX

dt
−MY = 0.

M
dY

dt
−AX(t) = MF(t).

Assumed that we have a uniform partition of [0, T ] with mesh size ∆t. Then the
corresponding θ-scheme is

(26)


M

Xn+1 −Xn

∆t
− θMYn+1 − (1− θ)MYn = 0,

M
Yn+1 −Yn

∆t
− θAXn+1 − (1− θ)AXn = θMFn+1 + (1− θ)MFn.
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The equations above can be simplified a bit by eliminating Yn+1 from the first
equation and rearranging terms. We then get

(27)


(M− θ2∆2tA)Xn+1 = MXn +∆tMYn + θ(1− θ)∆2tAXn

+ θ∆2t[θMFn+1 + (1− θ)MFn],

MYn+1 = MYn +∆t[θAXn+1 + (1− θ)AXn]

+ ∆t[θMFn+1 + (1− θ)MFn].

which can be simplified as

(28)

{
Ã1Xn+1 = b̃1

Ã2Yn+1 = b̃2

where,

(29)

Ã1 = (M− θ2∆2tA),

Ã2 = M,

b̃1 = MXn +∆tMYn + θ(1− θ)∆2tAXn + θ∆2t[θMFn+1 + (1− θ)MFn],

b̃2 = MYn +∆t[θAXn+1 + (1− θ)AXn] + ∆t[θMFn+1 + (1− θ)MFn],

then, the same as above section, we can take different θ to get different scheme.

5. Reduce Order Model

5.1. Nonlocal parabolic equation. This section presents a projection-based
ROM for the original high-order system. We apply the POD-Galerkin method to
project the original system onto a low-dimensional subspace to accerlerate the time
process. The general principle of POD method is to construct a m-dimensional ba-
sis Ψ = [ψ1,ψ2, ...,ψm] ∈ Rn×m(m ≪ n) such that the solution can be optimally
represented by the basis function[29]

(30) u(t) ≈ Ψa(t) + ups(t)

where a(t) = [a1(t), a2(t), ..., am(t)]T ∈ Rm is a time-dependent vector, ups(t)
denotes a particular solution at the time t. In this paper, we take following choice
for the particular solution.

(31) ups(t) =

{
gh(x, t), x ∈ Ωc,

0, x ∈ Ω.

In essential, the problem above is a low-rank approximation problem and in the
finite dimensional setting can be solved by the singular value decomposition(SVD)
of the snapshots matrix Bn×k = [u1,u2, ...,uk],

(32) Bn×k = Un×nΣn×kV
T
k×k.

In above equation, U and VT are real orthonormal matrices. The POD basis Ψ
is given by the first m column of U, which corresponds to the m largest singular
values of Σ. Substituting (30) into the system, that is, X(t) = Ψa(t) +ups(t), and
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applying the Galerkin projection, then the ROM for nonlocal parabolic equation is
obtained.

(33) ΨTM
d(Ψa(t) + ups(t))

dt
−ΨTA(Ψa(t) + ups(t)) = ΨTMF(t).

In this system, the dimension of the ROM is far less than that of the original
systems.

(34)

ΨTM
d(Ψa(t) + ups(t))

dt
−ΨTA(Ψa(t) + ups(t)) = ΨTMF(t),

a(0) = ΨT (X(0)− ups(0)).

Discrete the above equation in the time direction, the following low-order ordinary
differential equation system is obtained.

(35)

{
ΨT Ã(Ψan+1 + ups

n+1) = ΨT b̃,

a0 = ΨT (X0 − ups
0 ).

The standard ROM algorithm listed in algorithm 1.

Algorithm 1 ROM of nonlocal parabolic equation

1: Snapshot the data and get snapshots matrix Bn×k = [u1,u2, ...,uk] in [0, t1].
2: Get the POD basis by singular value decomposition Bn×k = Un×nΣn×kV

T
k×k.

3: Using θ-scheme to solve the ROM of nonlocal parabolic equation in [0, T ].

5.2. Nonlocal wave equation. The same as above, we get the snapshots matrix
Bn×k = [u1,u2, ...,uk], Cn×k = [v1,v2, ...,vk],

(36)
Bn×k = U1n×nΣ1n×kV1T

k×k,

Cn×k = U2n×nΣ2n×kV2T
k×k.

Substituting (30) into the system, that is, X(t) = Ψa(t) + ups(t), Y(t) = Φc(t) +
vps(t), and applying the Galerkin projection, then the ROM for nonlocal parabolic
equation is obtained.

(37)


ΨTM

d(Ψa(t) + ups(t))

dt
−ΨTM(Φc(t) + vps(t)) = 0.

ΦTM
d(Φc(t) + vps(t))

dt
−ΦTA(Ψa(t) + ups(t))(t) = ΦTMF(t).

In this system, the dimension of the ROM is far less than that of the original
systems.

(38)



ΨTM
d(Ψa(t) + ups(t))

dt
−ΨTM(Φc(t) + vps(t)) = 0.

ΦTM
d(Φc(t) + vps(t))

dt
−ΦTA(Ψa(t) + ups(t))(t) = ΦTMF(t),

a(0) = ΨT (X(0)− ups(0)),

c(0) = ΦT (Y(0)− vps(0)),
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Discrete the above equation in the time direction, the following low-order ordinary
differential equation system is obtained.

(39)



ΨT Ã1(Ψan+1 + ups
n+1) = ΨT b̃1,

ΦT Ã2(Φcn+1 + vps
n+1) = ΦT b̃2,

a0 = ΨT (X0 − ups
0 ),

c0 = ΦT (Y0 − vps
0 )

The stardard ROM algorithm listed in algorithm 2.

Algorithm 2 ROM of nonlocal wave equation

1: Snapshot the data and get snapshots matrix Bn×k = [u1,u2, ...,uk] and
Cn×k = [v1,v2, ...,vk] in [0, t1].

2: Get the POD basis by singular value decomposition Bn×k = U1n×nΣ1n×k

V1T
k×k, Cn×k = U2n×nΣ2n×kV2T

k×k.
3: Using θ-scheme to solve the ROM of nonlocal wave equation in [0, T ].

6. Numerical Examples

In this section, we consider the examples of 1D nonlocal parabolic problems and
nonlocal wave equation. For all the results reported in this section, 1000 snapshots
were used to generate the 4 POD basis. Since this fast algorithm only accelerates
the solution of the ordinary differential equation system, we only recorded the
time of the time iteration part, and excluded the generation time of the stiffness
matrix and the time of sampling. Nevertheless, as can be seen from the numerical
experiments below, the efficiency of the fast algorithm is still impressive. All the
numerical experiments are performed on a desktop with Intel(R) Core(TM) i7-6700
CPU @ 3.40GHz and Matlab software, tic and toc functions are used for timing.
The following error estimate was proved in [30]: for the piecewise linear finite
element method and u ∈ Hs(Ω), s > 0, then

(40) ||u− uh||L2(Ω) ≤ Chk−ϵδ−1+ϵ||u||Hs(Ω).

where k = min{2, s}, 0 < ϵ ≪ 1, C is independent of h and δ. Numerical exper-
iments show that the ROM method doesn’t affect the convergence rate and keep
pace with the finite element method.

6.1. Nonlocal unsteady diffusion equation. Consider the following problem:

(41)


∂u

∂t
−

∫
Bδ(x)

2

δ2|x− y| (u(y)− u(x))dy = f(x, t), on (0, 1)× (0, T ],

u(x, t) = (x2 − x4)sin(t), on [−δ, 0] ∪ [1, 1 + δ]× (0, T ],

u(x, 0) = 0, on [−δ, 1 + δ].

this kernel is mostly used in peridynamic model, right hand side f(x, t) = (δ2 +
12x2−2)sin(t)+(x2(1−x2))cos(t), that has exact solution u(x, t) = (x2−x4)sin(t),
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Table 1. Numerical result of nonlocal parabolic equation: δ = 0.02.

h L2(FEM) L2(ROM) Time(FEM)/s Time(ROM)/s

1/64 1.1999e− 03 1.1999e− 03 1.92 0.27
1/128 3.0142e− 04 3.0142e− 04 3.07 0.39
1/256 7.5549e− 05 7.5549e− 05 8.58 0.67
1/512 1.8906e− 05 1.8906e− 05 56.49 1.22
1/1024 4.7349e− 06 4.7349e− 06 279.22 1.96
1/2048 1.1871e− 06 1.1871e− 06 2576.92 4.14

Table 2. Numerical result of nonlocal parabolic equation: δ = 0.2.

h L2(FEM) L2(ROM) Time(FEM)/s Time(ROM)/s

1/64 1.3359e− 04 1.2363e− 04 3.01 0.68
1/128 2.6645e− 05 2.3443e− 05 6.60 0.80
1/256 5.9914e− 06 5.0781e− 06 17.40 1.46
1/512 1.5066e− 06 1.2776e− 06 117.92 2.53
1/1024 3.8334e− 07 3.2589e− 07 923.33 4.60

Table 3. Numerical result of nonlocal parabolic equation: δ = 2.

h L2(FEM) L2(ROM) Time(FEM)/s Time(ROM)/s

1/64 1.0416e− 03 1.0416e− 03 20.37 2.02
1/128 2.6040e− 04 2.6039e− 04 110.11 3.97
1/256 6.5100e− 05 6.5097e− 05 741.59 7.22
1/512 1.6275e− 05 1.6274e− 05 3697.99 15.17
1/1024 4.0689e− 06 4.0682e− 06 17796.68 28.88

for x ∈ [−δ, 1 + δ] and t ∈ [0, T ]. We compare the FEM solution and the ROM
solution at t = T , T = 10 , and ∆t = 0.001, θ = 0.5 for different δ = 0.02, 0.2, 2.0.

In this numerical example, we use the piecewise linear finite element method to
simulate the model problem. we observe the numerical performance of the scheme
for various δ, where δ denote the horizon parameter in the nonlocal model. In
Table 1, 2, 3, we present the L2 errors and the CPU time of the finite element
method and the reduced order model developed in section 5 for δ = 0.02, 0.2, 2.0,
respectively. The error indicates the reliability of our fast algorithm and keeps the
optimal convergence rate. we observe that the fast algorithm has greatly improved
computational efficiency. Besides, with increasing the δ, the stiffness matrix is
denser than before, and the performance of ROM is enhanced and consumes much
less CPU time.
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Table 4. Numerical result of nonlocal wave equation: δ = 0.02.

h L2(FEM) L2(ROM) Time(FEM)/s Time(ROM)/s

1/64 2.2085e− 03 2.2112e− 03 1.92 0.54
1/128 4.7529e− 04 4.7727e− 04 4.88 0.62
1/256 1.1242e− 04 1.1305e− 04 13.31 0.95
1/512 2.7516e− 05 2.7686e− 05 117.32 1.70
1/1024 6.8125e− 06 6.8558e− 06 550.38 2.92
1/2048 1.6951e− 06 1.7060e− 06 3772.69 6.28

Table 5. Numerical result of nonlocal wave equation: δ = 0.2.

h L2(FEM) L2(ROM) Time(FEM)/s Time(ROM)/s

1/64 1.3403e− 04 1.3397e− 04 4.43 1.10
1/128 2.6843e− 05 2.6491e− 05 11.53 1.57
1/256 6.0566e− 06 5.9521e− 06 32.68 2.45
1/512 1.5240e− 06 1.4963e− 06 249.122 5.03
1/1024 3.8742e− 07 3.8005e− 07 1423.22 8.05

Table 6. Numerical result of nonlocal wave equation: δ = 2.

h L2(FEM) L2(ROM) Time(FEM)/s Time(ROM)/s

1/64 1.0417e− 03 1.0417e− 03 37.38 4.21
1/128 2.6042e− 04 2.6043e− 04 227.98 8.26
1/256 6.5105e− 05 6.5108e− 05 1227.66 16.23
1/512 1.6276e− 05 1.6306e− 05 5988.93 33.28
1/1024 4.0687e− 06 4.1888e− 06 26470.54 76.77

6.2. Nonlocal wave equation. Consider the following problem:

(42)



∂2u

∂t2
−

∫
Bδ(x)

2

δ2|x− y| (u(y)− u(x))dy = f(x, t), on(0, 1)× (0, T ],

u(x, t) = (x2 − x4)sin(t), on[−δ, 0] ∪ [1, 1 + δ]× [0, T ],

u(x, 0) = 0, on[−δ, 1 + δ],

u̇(x, 0) = x2 − x4, on[−δ, 1 + δ].

this kernel is mostly used in peridynamic model, where δ = 0.125, right hand
side f(x, t) = (δ2 + 12x2 − 2)sin(t) + (x2(1 − x2))cos(t), that has exact solution
u(x, t) = (x2 − x4)sin(t), for x ∈ [−δ, 1 + δ] and t ∈ [0, T ]. We compare the FEM
solution and the ROM solution at t = T , T = 10 , and ∆t = 0.001, θ = 0.5 for
different δ = 0.02, 0.2, 2.

we now turn to a more interesting problem for which it is a nonlocal wave
equation, is mostly used in peridynamic. The volume constraints are given by the
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exact solution. For these choices, we solve both the full finite element method
and the ROM method, and the numerical result as described in the table. Results
analogous to those in Table 4, 5, 6 for different δ, this further confirms our assertion
that when the stiffness matrices that are much denser compared with those for the
small δ the ROM method is performed well.

7. Conclusions

In this paper, we applied reduce order model for nonlocal unsteady problems. In
particular, we have developed the ROM of a finite element scheme, which is suited
for numerical simulation a nonlocal model. The fast method has significantly re-
duced computational complexity. However, although this ROM method we used
with the finite element method, it can see this method is independent of the nu-
merical scheme and can be easily used in other numerical schemes to improve the
computational efficiency. Numerical experiments confirm the results, the methods’
accuracy has been shown numerically. Motivate by these results, the reduced-order
model will be widely used in numerical simulation of the peridynamic model.
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