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CONNECTION BETWEEN GRAD-DIV STABILIZED STOKES

FINITE ELEMENTS AND DIVERGENCE-FREE STOKES FINITE

ELEMENTS

MICHAEL NEILAN AND AHMED ZYTOON

Abstract. In this paper, we use recently developed theories of divergence–free finite element
schemes to analyze methods for the Stokes problem with grad-div stabilization. For example, we

show that, if the polynomial degree is sufficiently large, the solutions of the Taylor–Hood finite
element scheme converges to an optimal convergence exactly divergence–free solution as the grad-
div parameter tends to infinity. In addition, we introduce and analyze a stable first-order scheme
that does not exhibit locking phenomenon for large grad-div parameters.
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1. Introduction

Grad-div stabilization is a well-known and simple stabilization technique in nu-
merical discretizations to improve mass conservation in simulations of incompress-
ible flow. In its simplest form, the methodology adds the consistent term (written
in strong form)

−γ∇(∇ · u)

to the momentum equations of the (Navier-)Stokes equations. Here, γ > 0 is a
user-defined constant, which is referred to as the grad-div parameter. In addition
to improving conservation of mass of the scheme, this stabilization technique may
also improve the coupling errors of the velocity and pressure solutions. This can be
advantageous for situations with large pressure gradients, e.g., in natural convection
problems.

While enjoying many benefits, the use of grad-div stabilization comes with sev-
eral practical disadvantages. These include a deterioration of the condition number
and reduced sparsity of the algebraic system. Another disadvantage is the pos-
sible emergence of ‘locking’ for large grad-div parameters. Indeed, simply energy
arguments show the discrete velocity solution satisfies ∥∇ · uh∥ = O(γ−1), and
therefore, in the limiting case, the discrete solution is divergence–free. If the dis-
crete divergence–free subspace does not have rich enough approximation properties,
then grad-div stabilization, while improving mass conservation, may lead to poor
approximations.

The stability and convergence analysis for grad-div stabilization for incompress-
ible flow have been explored in, e.g., [23, 9, 10, 27, 1]. These estimates, together
with numerical simulations, provide a guide to choose optimal γ-values. For ex-
ample, references [24, 21, 23, 4] suggests γ = O(1) as the optimal value. On the
other hand, numerical experiments in [12] and the analysis in [27, 1] suggest that
the optimal choice may be much larger and depend on the finite element spaces,
the mesh, and/or the viscosity of the model.
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In another direction, and the path taken in this paper, is to identify and charac-
terize the limiting solution as the grad-div parameter tends to infinity. For exam-
ple, in [7, 19], it is shown that the Taylor–Hood finite element scheme on special
(Clough-Tocher) triangulations, no locking occurs in the limiting case γ → ∞, and
the Taylor–Hood grad-div solution converges to the analogous (divergence–free)
Scott–Vogelius solution.

The purpose of this paper is to extend and generalize the results in [7] by incor-
porating the recent theories of divergence–free finite element Stokes pairs. In this
regard, we make two main contributions. First we show the absence of locking for
the two-dimensional Taylor–Hood pair for a general class of meshes. In particular,
we show that high–order Taylor–Hood pairs are generally locking-free. In addition,
we show that the limiting (Taylor-Hood) solutions converge to the solution of the
divergence–free Scott-Vogelius scheme, defined on general triangulations. The sec-
ond contribution of the paper is the introduction and analysis of a new low–order
and stable finite element pair that is locking–free. The velocity space is simply the
linear Lagrange finite element space, and the pressure space consists of piecewise
constants with respect to an auxiliary coarsened mesh.

The paper is organized as follows. In the next section, we introduce the notation
and a framework for the grad-div finite element method for the Stokes problem. We
show that the discrete solutions converge to a solution of a divergence–free method
with rate O(γ−1). In Section 3, we apply this framework to the two-dimensional
Taylor–Hood elements. The general theme of the results is that additional mesh
constraints are imposed for lower degree polynomial spaces. In Section 4, we define
a stable first-order scheme for the Stokes problem, and show that the solutions
converge to a divergence–free method as γ → ∞. Finally, in Section 5 we provide
some numerical experiments.

2. Notation and Framework

The Stokes equations defined on a polytope domain Ω ⊂ Rd (d = 2, 3) with
Lipschitz continuous boundary ∂Ω is given by the system of equations

−µ∆u+∇p = f in Ω,(1a)

∇ · u = 0 in Ω,(1b)

u = 0 on ∂Ω,(1c)

where the u is the velocity, p the pressure, and ∇, ∆ denote the gradient operator
and vector Laplacian operators, respectively. In (1a), µ is the viscosity.

We define the following function spaces on Ω:

L2(Ω) := {w : Ω 7→ R : ∥w∥L2(Ω) := (

∫
Ω

|w|2 dx)1/2 <∞},

Hm(Ω) := {w : Ω 7→ R : ∥w∥Hm(Ω) := (
∑

|β|≤m

∥Dβw∥2L2(Ω))
1/2 <∞},

and set (·, ·) denote the inner product on L2(Ω) and set ∥ · ∥ = ∥ · ∥L2(Ω). The
analogous spaces with boundary conditions are given by

L2
0(Ω) := {w ∈ L2(Ω) :

∫
Ω

w dx = 0},

Hm
0 (Ω) := {w ∈ Hm(Ω) : Dβw|∂Ω = 0, ∀β : |β| ≤ m− 1}.

We denote the analogous vector-valued function spaces in boldface; for example
H1(Ω) = H1(Ω)d and L2(Ω) = L2(Ω)d. We also define the space of H1

0 (Ω)
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divergence–free vector fields

V := {v ∈ H1
0 (Ω) : ∇ · v ≡ 0}.

The weak formulation for (1) reads: Find (u, p) ∈ H1
0 (Ω) × L2

0(Ω) such that
∀(v, q) ∈ H1

0 (Ω)× L2
0(Ω) we have

µ(∇u,∇v)− (∇ · v, p) = (f ,v),(2a)

(∇ · u, q) = 0.(2b)

It is well known that the problem (2) has a unique solution [13].
Let Xh × Yh ⊂ H1

0 (Ω)×L2
0(Ω) be a conforming finite element pair with respect

to mesh parameter h > 0. For each such a pair, we define the space of discretely
divergence–free vector fields as follows

Vh := {v ∈ Xh : (∇ · v, qh) = 0, ∀qh ∈ Yh}.

We note, for many finite element pairs, there holds the non–inclusion Vh ̸⊂ V .
The discrete Stokes problem corresponding to the pair Xh × Yh reads: Find

(uh, ph) ∈ Xh × Yh such that ∀(v, q) ∈ Xh × Yh we have

µ(∇uh,∇v)− (∇ · v, ph) = (f ,v),(3a)

(∇ · uh, q) = 0.(3b)

Problem (3) has a unique solution provided that the pair Xh × Yh satisfies the
inf-sup condition, that is, there exists a constant β > 0 independent of the mesh
parameter h such that

(4) sup
v∈Xh\{0}

(∇ · v, q)
∥∇v∥

≥ β∥q∥ ∀q ∈ Yh.

We introduce the corresponding grad-div stabilized problem, which reads: For
given γ ∈ R with γ > 0, find (uγ

h, p
γ
h) ∈ Xh × Yh such that ∀(v, q) ∈ Xh × Yh we

have

µ(∇uγ
h,∇v) + γ(∇ · uγ

h,∇ · v)− (∇ · v, pγh) = (f ,v),(5a)

(∇ · uγ
h, q) = 0.(5b)

Again, standard arguments show that (5) is well-posed provided the inf-sup condi-
tion (4) is satisfied. Adding the term γ(∇ · uγ

h,∇ · vh) improves mass conservation
and can reduce the effect of the pressure error on the velocity approximation. The
limiting case γ → ∞ is studied in the following two theorems.

Theorem 2.1. Let Xh × Yh be a conforming finite element pair defined satisfying
the inf-sup condition. Let {γi}∞i=1 ⊂ R with γi → ∞, and let (ui, pi) ∈ Xh × Yh be
the solution for (5) corresponding to γi. Then the sequence {ui}∞i=1 ⊂ Xh converges
to some wh ∈ Xh ∩ V . Moreover,

(6) ∥∇(u−wh)∥ = inf
v∈Xh∩V

∥∇(u− v)∥.

Proof. We follow the ideas in [7, Theorem 3.1] and begin with an a priori bound
which is obtained by taking v = ui and q = pi in (5):

(7) µ∥∇ui∥2 + γi∥∇ · ui∥2 = |(f ,ui)|.

Thus, we have the following inequality

µ∥∇ui∥ ≤ ∥f∥∗,h ∀i ∈ N,
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where ∥f∥∗,h = supv∈Xh\{0}
|(f ,v)|
∥∇v∥ . The above inequality shows that the sequence

{ui}∞i=1 is a uniformly bounded sequence in the finite dimensional spaceXh. Hence,
{ui}∞i=1 has a convergent subsequence {uij}j that converges to some wh ∈ Xh.

To show wh ∈ V , i.e., ∇·wh = 0, we use (7) and the Cauchy-Schwarz inequality
to obtain

(8) ∥∇ · uij∥ ≤ 1√
2µγij

∥f∥∗,h ∀j ∈ N.

Because ∥∇ · v∥ ≤
√
2∥∇v∥ for all v ∈ H1

0 (Ω) and uij → wh, it follows that

∥∇ ·wh∥ = ∥∇ · (wh − uij + uij )∥
≤ ∥∇ · (wh − uij )∥+ ∥∇ · uij∥

≤
√
2∥∇(wh − uij )∥+

1√
2µγij

∥f∥∗,h → 0 as j → ∞.

Hence, we conclude that ∥∇ ·wh∥ = 0, and so wh ∈ V .
To show the estimate (6) and the uniqueness of wh, we observe that for v ∈

Xh ∩ V we have

µ(∇wh,∇v)− (f ,v) = lim
j→∞

µ(∇uij ,∇v) + lim
j→∞

γij (∇ · uij ,∇ · v)− (f ,v)

= lim
j→∞

(µ(∇uij ,∇v) + γij (∇ · uij ,∇ · v)− (f ,v))

= 0.

Hence, wh satisfies

(9) µ(∇wh,∇v) = (f ,v) ∀v ∈ Xh ∩ V ,

and (6) immediately follows by Cea’s lemma.
By the Lax-Milgram theorem, problem (9) has a unique solution. If {uik}k is

another convergent subsequence of {ui}∞i=1 that converges to some zh ∈ Xh, then
zh is a solution to the problem (9). Since the problem (9) has a unique solution,
we conclude that wh = zh, which means any convergent subsequence of {ui}∞i=1

converges to the same element in Xh. Hence the entire sequence {ui}∞i=1 converges
to wh. �

Theorem 2.2. Suppose that the conditions of Theorem 2.1 are satisfied. Set

Qh := ∇ ·Xh = {∇ · v : v ∈ Xh},

and suppose that Yh ⊂ Qh and Xh ×Qh is an inf-sup stable pair, i.e.,

sup
v∈Xh\{0}

(∇ · v, q)
∥∇v∥

≥ βQ∥q∥ ∀q ∈ Qh, ∃βQ > 0.(10)

Then the sequence {(ui, pi − γi∇ · ui)}∞i=1 ⊂ Xh × Qh converges to (wh, ph) ∈
(Xh ∩ V )×Qh satisfying

µ(∇wh,∇v)− (∇ · v, ph) = (f ,v) ∀v ∈ Xh,(11a)

(∇ ·wh, q) = 0 ∀q ∈ Qh.(11b)

There also holds

β2
Qµ

−1∥ph − (pi − γi∇ · ui)∥ ≤ βQ∥∇(wh − ui)∥
(12)

≤ ∥∇ · ui∥ ≤ min{2β−1
Q γ−1

i , (2µγi)
−1/2}∥f∥∗,h.
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Proof. The convergence ui → wh for some wh ∈ Xh∩V is established in Theorem
2.1. Since wh is divergence–free, it clearly satisfies (11b).

To show the convergence of the modified pressure sequence, we first use with the
inf-sup condition for the pair Xh ×Qh (10) and the inclusion Yh ⊂ Qh to obtain

βQ∥pi − γi∇ · ui∥ ≤ sup
v∈Xh\{0}

−(∇ · v, pi) + γi(∇ · ui,∇ · v)
∥∇v∥

=
(f ,v)− µ(∇ui,∇v)

∥∇v∥
≤ ∥f∥∗,h + µ∥∇ui∥.

Thus, {pi − γi∇ · ui}∞i=1 ⊂ Qh is a bounded sequence, and thus has a convergent
subsequence: pij − γij∇ · uij → ph for some ph ∈ Qh. We then find that, for any
v ∈ Xh,

(∇wh,∇v)− (∇ · v, ph) = lim
j→∞

(
(∇uij ,∇v)− (pij ,∇ · v) + γij (∇ · uij ,∇ · v)

)
= (f ,v).

We conclude that (wh, ph) ∈ Xh ×Qh satisfies (11). The convergence of the entire
sequence {(ui, pi − γi∇ · ui)}∞i=1 follows directly from the arguments in Theorem
2.1.

Next we establish the rate of convergence given in (12). As a first step, we first
note that ∥∇wh∥ ≤ µ−1∥f∥∗,h. Consequently, by the inf–sup condition (10),

βQ∥ph∥ ≤ sup
v∈Xh\{0}

(∇ · v, ph)
∥∇v∥

= sup
v∈Xh\{0}

(f ,v)− µ(∇wh,∇v)

∥∇v∥
≤ 2∥f∥∗,h.(13)

Write ei = wh − ui ∈ Vh and note that

µ(∇ei,∇v)− (ph − pi,∇ · v) + γi(∇ · ei,∇ · v) = 0 ∀v ∈ Xh.(14)

Consequently, by setting v = ei and using ∇ ·wh = 0, we find

µ∥∇ei∥2 + γi∥∇ · ui∥2 = (∇ · ei, ph − pi) = (∇ · ei, ph) ≤ ∥∇ · ui∥∥ph∥.
Therefore by (13),

∥∇ · ui∥ ≤ 2

γiβQ
∥f∥∗,h.

Combined with (8), this establishes the last inequality in (12).
To derive a convergence rate for ∥∇ei∥ with respect to γi, we introduce the space

Rh = (Xh ∩ V )⊥ = {v ∈ Xh : (∇v,∇w) = 0 ∀w ∈ Xh ∩ V }.
Because Xh ∩V = {v ∈ Xh : (∇ · v, q) = 0 ∀q ∈ Qh}, and Xh × Yh is assumed to
be inf-sup stable, there holds [20]

(15) ∥∇v∥ ≤ β−1
Q ∥∇ · v∥ ∀v ∈ Rh.

Write ei = e0i + eRi with e0i ∈ Xh ∩ V and eRi ∈ Rh. Because ∥∇ei∥2 =
∥∇e0i ∥2 + ∥∇eR∥2 and ∇ · e0i = 0, there holds by (15)

∥∇eRi ∥ ≤ β−1
Q ∥∇ · eRi ∥ = β−1

Q ∥∇ · ei∥ = β−1
Q ∥∇ · ui∥.

On the other hand, by taking v = e0i ∈ Xh ∩ V in (14), we get

0 = µ(∇ei,∇e0i )− (ph − pi,∇ · e0i ) + γi(∇ · ei,∇ · e0i )
= µ(∇eRi ,∇e0i ) + µ∥∇e0i ∥2 = µ∥∇e0i ∥2.

Thus e0i ≡ 0, and therefore

∥∇ei∥ = ∥∇eRi ∥ ≤ β−1
Q ∥∇ · ui∥.
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Finally, we use the inf-sup condition on Xh ×Qh to derive the convergence rate
of the modified pressure equation as follows:

βQ∥ph − (pi − γi∇ · ui)∥ ≤ sup
v∈Xh\{0}

(∇ · v, ph)− (∇ · v, pi) + γi(∇ · ui,∇ · v)
∥∇v∥

= sup
v∈Xh\{0}

−µ(∇ei,∇v)

∥∇v∥
≤ µ∥∇ei∥.

�

Remark 2.3. Since wh ∈ Xh ∩ V , the error ∥∇(u − ui)∥ can be decomposed as
follows

∥∇(u− ui)∥ = ∥∇(u−wh +wh − ui)∥
≤ ∥∇(u−wh)∥+ ∥∇ei∥

≤ inf
v∈V ∩Xh

∥∇(u− v)∥+ 2

β2
Qγi

∥f∥∗,h.

Since the pair Xh × Qh is inf-sup stable, we have by [6, Theorem 12.5.17] to get
the estimate

∥∇(u− ui)∥ ≤
(
1 +

C

βQ

)
inf

v∈Xh

∥∇(u− v)∥+ 2

β2
Qγi

∥f∥∗,h,(16)

where C > 0 is a constant independent of h, βQ and γi.
For comparison, the following estimate for grad-div stabilized finite element

methods for the Stokes problem was derived in [27]:

∥∇(u− ui)∥2 ≤ inf
v∈Vh

(
4∥∇(u− v)∥2 + 2

γi
µ
∥∇ · v∥2

)
+

2

µγi
inf

qh∈Yh

∥ph − qh∥2,

(17)

Note that

inf
v∈Vh

(
4∥∇(u− v)∥2 + 2

γi
µ
∥∇ · v∥2

)
≤ inf

v∈Xh∩V

(
4∥∇(u− v)∥2 + 2

γi
µ
∥∇ · v∥2

)
≤

(
1 +

C

βQ

)
inf

v∈Xh

∥∇(u− v)∥

for a generally different constant C > 0. Thus, we see that the first term in the
right-hand side of (17) is sharper than the analogous term in (16). On the other
hand, unlike estimate (17), the bound (16) does not depend on µ. Thus, we conclude
that the estimate (16) can be sharper than the estimate (17) for small values of µ.

3. Application I: Taylor–Hood Pairs

In this section, we apply Theorem 2.2 to the two–dimensional Taylor–Hood pair
and show, under assumptions of the mesh and the polynomial degree, the Taylor–
Hood finite element method with grad-div stabilization does not experience locking
in the limit γ → ∞. To proceed, we require some additional notation.

Denote by Th a conforming, shape–regular, simplicial triangulation of Ω ⊂ R2.
For T ∈ Th, we denote by hT = diam(T ) and set h = maxT∈Th

hT . Let VI
h and

VB
h denote the sets of interior and boundary vertices of Th, respectively, and set

Vh = VI
h ∪ VB

h .
Let Pk(S) denote the space of polynomials of degree ≤ k with domain S; the

analogous vector-valued space is denoted by Pk(S) := [Pk(S)]
2. We define the
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piecewise polynomials with respect to the mesh Th as

Pk(Th) :=
∏

T∈Th

Pk(T ).

For an integer k ≥ 2, the Taylor–Hood pair is given as

XTH
h = Pk(Th) ∩H1

0 (Ω),

Y TH
h = Pk−1(Th) ∩H1(Ω) ∩ L2

0(Ω).

We also define the image of the divergence acting on the Taylor–Hood velocity
space:

QTH
h := ∇ ·XTH

h = {∇ · v : v ∈ XTH
h }.(18)

It is well known that the pair XTH × Y TH
h is inf–sup stable provided that each

T ∈ Th has at most one boundary edge [5]. We assume this mild condition is
satisfied throughout this section.

To apply Theorem 2.2 to the Taylor–Hood pair, we split the results into three
cases, depending on the polynomial degree: k ≥ 4, k = 3, and k = 2. The general
theme is that additional mesh conditions are introduced for lower degree polynomial
spaces.

3.1. High order pairs: k ≥ 4. To apply Theorem 2.2 on the Taylor–Hood pair
for k ≥ 4, we need to establish the inf–sup stability of the pair XTH

h ×QTH
h . To do

so, following the notation introduced in [16], we introduce the concept of a singular
vertex and the vertex singularity of a mesh.

For z ∈ Vh, let Tz ⊂ Th denote the set of triangles that have z as a vertex. We
assume that Tz = {T1, . . . , TN}, enumerating such that Tj and Tj+1 share an edge
for j = 1, . . . , N − 1, and if z is an interior vertex, then T1 and TN share an edge.
Letting θj denote the angle between the angle between the edges of Tj originating
from z, we define

Θz :=

{
max{| sin(θ1 + θ2)|, . . . | sin(θN−1 + θN )|, | sin(θ1 + θN )|} if z ∈ VI

h,
max{| sin(θ1 + θ2)|, . . . | sin(θN−1 + θN )|} if z ∈ VB

h .

Definition 3.1.

(i) We say that a vertex z is singular if Θz = 0; otherwise we say that z is
non–singular.

(ii) The measure of vertex singularity of the mesh is given by the positive num-
ber

Θ∗ := min
z∈Vh

Θz ̸=0

Θz > 0.

Remark 3.2. An interior vertex is singular if and only if exactly two straight lines
emanating from the vertex (and hence N = 4 in this case). A non–corner boundary
vertex z is singular if exactly two triangles have z as a vertex. Finally, a corner
(boundary) vertex z is singular if only one triangle in Th has z as a vertex. Note
that, because we assumed that each T ∈ Th has at most one boundary edge, there
exists no corner singular vertices.

The quantity Θz gives an indication on “how close” a non–singular vertex z is
from being singular. Essentially, if Θ∗ is small, then there exists a vertex in Th
that is a small perturbation of a singular vertex. Note that if the cardinality of
Tz is greater than 4 for all z ∈ VI

h, and greater than 2 for all z ∈ VB
h , then Θ∗ is

uniformly bounded from below.
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Let

Sh = {z ∈ Vh : Θz = 0}
denote the set of singular vertices in the mesh Th. A characterization of the di-
vergence operator acting on the Taylor–Hood velocity space is given in the next
lemma for high–order pairs. Its proof is found in [16, 26].

Lemma 3.3. Suppose that k ≥ 4. Then there holds

Y TH
h ⊂ QTH

h := ∇·XTH
h = {q ∈ Pk−1(Th)∩L2

0(Ω) :
N∑
ℓ=1

(−1)ℓq|Tℓ
(z) = 0 ∀z ∈ Sh}.

Moreover, XTH
h ×QTH

h represents an inf-sup stable pair with inf-sup constant βQ in-
dependent of size of the triangles in Th. Rather, βQ = CΘ∗ for some h-independent
constant C > 0.

Combining Lemma 3.3 with Theorem 2.2 then yields the convergence of the
(high–order) grad-div stabilized Taylor–Hood pair.

Theorem 3.4. Let {γi}∞i=1 ⊂ R with γi → ∞ and (ui, pi) ∈ XTH
h × Y TH

h be the
solution of the grad-div stabilized Stokes problem (5) corresponding to γi using the
Taylor–Hood pair with k ≥ 4. Then ui → wh and pi − γi∇ ·ui → ph as i→ ∞ for
some wh ∈ XTH

h ∩V and ph ∈ QTH
h with (wh, ph) being the solution for (11) with

×Qh = XTH
h ×QTH

h . In particular,

Θ∗µ
−1∥ph − (pi − γi∇ · ui)∥ ≤ ∥∇(wh − ui)∥ ≤ CΘ−1

∗ min{Θ−1
∗ γ−1

i , (µγi)
−1/2},

(19)

where C > 0 is independent of h, µ, and Θ∗.
If u ∈ Hs(Ω) for some s ≥ 1, then the divergence–free function wh satisfies

(20) ∥∇(u−wh)∥ ≤ Chℓ−1∥u∥Hℓ(Ω),

where ℓ = min{k + 1, s} and C > 0 is independent of h, γ, µ and Θ∗.

Remark 3.5. For fixed µ, Theorem 3.4 implies that the convergence for the sequence
{(ui, pi − γi∇ · ui)}∞i=1 to (wh, ph) is O(γ−1

i ) provided γi & Θ−2
∗ µ. Otherwise, for

smaller grad-div parameters the theorem predicts O(γ
−1/2
i ) convergence.

Remark 3.6. Theorem 3.4 states that {ui}∞i=1 converges to an exactly divergence–
free solution with optimal order properties as i → ∞; this is true on meshes with
singular vertices or “nearly singular” vertices.

Proof. The convergence and convergence rates for the sequence {(ui, pi − γi∇ ·
ui)}∞i=1 directly follow from Lemma 3.3 with Theorem 2.2.

To prove (20), we first use the estimate (6):

∥∇(u−wh)∥ ≤ inf
v∈V ∩Xh

∥∇(u− v)∥.

Following [11], we introduce the modified H2-conforming Argyris (TUBA) finite
element space [2]

Σh = {s ∈ H2
0 (Ω) ∩ Pk+1(Th) : s is C2 at all non-corner vertices of Th}.

We then have [11]

∇× Σh := {∇ × s : s ∈ Σh} ⊂ V ∩Xh,
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Figure 1. Type–I triangulation on (0, 1)2.

where∇×s = (∂s/∂x2,−∂s/∂x1)ᵀ is the two–dimensional curl operator. Therefore,
by writing u in terms of its stream function u = ∇ × ψ for some ψ ∈ H2

0 (Ω) ∩
Hs+1(Ω), we have

inf
v∈V ∩Xh

∥∇(u− v)∥ ≤ inf
v∈∇×Σh

∥∇(u− v)∥

= inf
s∈Σh

∥D2(ψ − s)∥ ≤ Chℓ−1∥ψ∥Hℓ−1(Ω) ≤ Chℓ−1∥u∥Hℓ(Ω).

�

3.2. The cubic–quadratic Taylor–Hood pair. To apply Theorem 2.2 to the
cubic-quadratic Taylor–Hood pair, we incorporate the recent stability results of the
cubic-quadratic Scott–Vogelius pair in [17]. In particular, a characterization of the
space QTH

h (cf. (18)) was explicitly given and inf–sup stability results were shown.
To explain these results further, we introduce the concept of a interpolating vertex.

Recall that for a vertex z ∈ Vh, Tz = {T1, . . . , TN} denotes the set of triangles
that have z as vertex. Set

Wz := {a ∈ RN : if z ∈ Sh, then
N∑
j=1

(−1)jaj = 0}.

Set

Ωz = int
(
∪T∈Tz T̄

)
,

and define

Xz

={v ∈ XTH
h : suppv ⊂ Ωz :

∫
T

∇ · v dx = 0 ∀T ∈ Th, (∇ · v)(σ) = 0 ∀σ ∈ Vh\{z}}.

Definition 3.7. We say that z ∈ Vh is an interpolating vertex if, for all a ∈ Wz,
there exists v ∈ Xz such that (∇·v)|Tj (z) = aj for all j ∈ {1, 2, . . . , N}. We denote
the set of all interpolating vertices in Vh by Lh.

Remark 3.8. examples are given in [17], where the local interpolating vertex prop-
erty in Definition 3.7 is satisfied by all interior vertices. Examples include

(1) Criss-crossed mesh
(2) Every mesh Th such that |Tz| = N is odd for all z ∈ VI

h.

It is also shown in [17] that not every interior vertex in a type–I triangulation
(cf. Figure 1) is an interpolating vertex.
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Now, we state the following lemma which gives a stability result of the cubic
Scott-Vogelius pair. We refer to [17] for a detailed proof.

Lemma 3.9. Suppose that k = 3 and VI
h ⊂ Lh. Then there holds

Y TH
h ⊂ QTH

h := ∇·XTH
h = {q ∈ Pk−1(Th)∩L2

0(Ω) :
M∑
ℓ=1

(−1)ℓq|Tℓ
(z) = 0 ∀z ∈ Sh}.

Moreover, XTH
h × QTH

h represents an inf-sup stable pair with βQ independent of
size of the triangles in Th. Rather, βQ = CΘ∗ for some h-independent constant
C > 0.

Combining Lemma 3.9 with Theorem 2.2 then yields the convergence of the
grad-div stabilized Taylor–Hood pair.

Theorem 3.10. Let {γi}∞i=1 ⊂ R with γi → ∞ and (ui, pi) ∈ XTH
h × Y TH

h be the
solution of the grad-div stabilized Stokes problem (5) corresponding to γi using the
Taylor–Hood pair with k = 3. Assume VI

h ⊂ Lh, i.e., all interior vertices in Th
are interpolating vertices. Then ui → wh and pi − γi∇ · ui → ph as i → ∞ for
some wh ∈ XTH

h ∩V and ph ∈ QTH
h with (wh, ph) being the solution for (11) with

Xh ×Qh = XTH
h ×QTH

h . The convergence of (ui, pi − γi∇ · ui) satisfies (19).

3.3. The Quadratic-Linear Taylor–Hood pair on Clough-Tocher splits.
The case quadratic–linear Taylor–Hood pair on Clough-Tocher splits was discussed
and studied in detail in [7]; here, we state these results for completeness.

A Clough–Tocher split (or refinement) of a shape–regular triangulation Th is
obtained connecting the vertices of each triangle T ∈ Th to its barycenter. Thus,
each triangle is split into three sub-triangles. Denote by T CT

h the Clough-Tocher
split of Th, and, with an abuse of notation, define the quadratic–linear Taylor–Hood
pair on T CT

h :

XTH
h = P2(T CT

h ) ∩H1
0 (Ω),(21a)

Y TH
h = P1(T CT

h ) ∩H1(Ω) ∩ L2
0(Ω).(21b)

The following lemma gives a characterization of the divergence acting on XTH
h

and states that the quadratic-linear Scott–Vogelius pair is stable on Clough–Tocher
splits. Its proof can be found in [3, 14].

Lemma 3.11. Let XTH
h × Y TH

h be defined by (21). Then there holds

Y TH
h ⊂ QTH

h := ∇ ·XTH
h = P1(T CT

h ) ∩ L2
0(Ω).

Moreover, XTH
h ×QTH

h represents an inf-sup stable pair with inf-sup constant βQ
independent of size of the triangles in Th.

Combining Lemma 3.11 with Theorem 2.2 then yields the convergence of the
(low–order) grad-div stabilized Taylor–Hood pair.

Theorem 3.12. Let XTH
h × Y TH

h be defined by (21), and let {γi}∞i=1 ⊂ R with
γi → ∞. Let (ui, pi) ∈ XTH

h ×Y TH
h be the solution of the grad-div stabilized Stokes

problem (5) corresponding to γi. Then ui → wh and pi − γi∇ · ui → ph as i→ ∞
with rate O(γ−1

i ) for some wh ∈ XTH
h ∩ V and ph ∈ QTH

h with (wh, ph) being the
solution to (11). If u ∈ Hs(Ω) for some s ≥ 1, then the divergence–free function
wh satisfies

(22) ∥∇(u−wh)∥ ≤ Chℓ−1∥u∥Hℓ(Ω),

where ℓ = min{3, s} and C > 0 is independent of h, γ, µ and βQ.



CONNECTION BETWEEN STOKES FINITE ELEMENTS 849

..z1

.

z2

.

z3

.

z4

.

z5

.

z6

.

z0

. T1. T2.
T3

.

T4

.

T5

.

T6

Figure 2. A Powell-Sabin local split of a triangle. Note that the
vertices z4, z5, and z6 are singular vertices in global mesh.

Proof. The convergence and convergence rates for the sequence {(ui, pi − γi∇ ·
ui)}∞i=1 directly follow from Lemma 3.3 with Theorem 2.2 (see also [7]).

To prove (22), and to show that the constant C > 0 is independent of βQ, we
first use the estimate (6):

∥∇(u−wh)∥ ≤ inf
v∈V ∩Xh

∥∇(u− v)∥.

Following the ideas in Theorem 3.4, we introduce the modified H2-conforming
Hsieh–Clough–Tocher finite element space [18]

ΣCT
h = H2

0 (Ω) ∩ P3(T CT
h ).

We then have [18]

∇× ΣCT
h := {∇ × s : s ∈ ΣCT

h } ⊂ V ∩Xh.

Writing u = ∇× ψ for some ψ ∈ H2
0 (Ω) ∩Hs+1(Ω), we have

inf
v∈V ∩Xh

∥∇(u− v)∥ ≤ inf
v∈∇×ΣCT

h

∥∇(u− v)∥

= inf
s∈ΣCT

h

∥D2(ψ − s)∥ ≤ Chℓ−1∥ψ∥Hℓ−1(Ω) ≤ Chℓ−1∥u∥Hℓ(Ω).

�

4. Application II: The P1 × P0 pair on Powell-Sabin Splits

In the previous section, we considered the Taylor–Hood pair with grad-div sta-
bilization for various polynomial degrees. The general theme in the arguments is to
use the stability of the Scott–Vogelius pair to prove convergence and the absence
of locking in the limiting case γ → ∞. In this section, we show that the grad-div
connection discussed in the previous sections can be generalized to the low–order
P1 × P0 pair defined on a Powell-Sabin split mesh by incorporating the recently
developed divergence–free methods in [15, 8].

As before, we start with a shape–regular simplicial triangulation Th of Ω. We
then construct the Powell–Sabin split of Th as follows [25, 22]. Let T ∈ Th be
a triangle with vertices z1, z2 and z3 labelled counterclockwise, and let z0 be the
incenter of T . Denote the edges of T by {ei}3i=1, labelled such that zi is not a vertex
of ei. Let z3+i be the interior point of the edge of ei that is the intersection of the
line segment connecting the incenters of the triangles T and its neighboring triangle
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Figure 3. A triangulation Th of the unit square (left), its Powell–
Sabin refinement T PS

h (middle), and the mesh KPS
h (right).

that has ei as an edge. We then construct the triangulation TPS = {T1, ..., T6} by
connecting each zi to z0 for 1 ≤ i ≤ 6; see Figures 2 and 3.

Let T PS
h =

∪
T∈Th

∪
τ∈TPS

τ be the global triangulation of Ω, and VPS
h be the

set of vertices of T PS
h . Let SPS

h ⊂ VPS
h be the set of all singular vertices in

T PS
h . Let SI

h = {z ∈ SPS
h : z ̸∈ ∂Ω} be the set of interior singular vertices, and

SB
h = {z ∈ SPS

h : z ∈ ∂Ω} be the set of boundary singular vertices. Observe that
each z ∈ SI

h is attached to exactly four triangles, and each z ∈ SB
h is attached

to exactly two triangles. By construction, the cardinality of SPS
h is exactly the

number of edges in Th.

Definition 4.1. Let p ∈ P0(T PS
h ) = {q ∈ L2(Ω) : q|T ∈ P0(T ),∀T ∈ T PS

h }. We

say that p satisfies the weak continuity property on T PS
h if for any z ∈ SI

h and
{T1, ..., T4} = Tz ⊂ T PS

h we have that

p|T1
− p|T2

+ p|T3
− p|T4

= 0,

and for any z ∈ SB
h and {T1, T2} = Tz ⊂ T PS

h we have that

p|T1
= p|T2

.

We introduce the finite element pair XPS
h × QPS

h defined on the Powell-Sabin
triangulation T PS

h proposed in [15]:

XPS
h = P1(T PS

h ) ∩H1
0 (Ω),(23a)

QPS
h = {q ∈ P0(T PS

h ) ∩ L2
0(Ω) : q satisfies the weak continuity property}.(23b)

Now, we state the following lemma concerning the image of the divergence op-
erator acting on XPS

h and the inf-sup stability of XPS
h ×QPS

h . We refer to [15] for
a detailed proof.

Lemma 4.2. There holds
∇ ·XPS

h = QPS
h

with bounded right-inverse. Therefore, XPS
h × QPS

h is inf-sup stable, with inf-sup
constant βQ independent of h.

We note that, while XPS
h × QPS

h is an inf-sup stable and divergence–free pair,
the construction of a basis for the pressure space and its implementation are non–
trivial. Here, we propose a smaller and simpler pressure space that conforms to the
framework in the previous sections. To this end, we let

KPS
h = {

∪
T∈Tz

T : z ∈ SPS
h }
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Figure 4. Numerical results on Powell-Sabin splits using theP1×
P0 pairs for fixed h = 1/32 and viscosity µ = 1. Here, pr =
pi − γi∇ · ui. The plot shows O(γ−1

i ) convergence for all three
quantities.

be the mesh obtained by connecting the triangles associated with each singular
vertex. Thus, KPS

h is a set consisting of quadrilaterals (in the case that z is an
interior singular vertex) and triangles (in the case that z is a boundary singular
vertex); see Figure 3.

We define the auxiliary pressure space

(24) Y PS
h = {q ∈ L2

0(Ω) : q|K ∈ P0(K), ∀K ∈ KPS
h }.

Remark 4.3. It was shown that the pair XPS
h ×QPS

h is inf-sup stable when defined
on the mesh T PS

h . Since Y PS
h ⊂ QPS

h , the pair XPS
h × Y PS

h is stable. Hence, we
can incorporate Theorem 2.1 to conclude the following theorem.

Theorem 4.4. Let {γi}∞i=1 ⊂ R with γi → ∞ and (ui, pi) ∈ XPS
h × Y PS

h be the
solution of the grad-div stabilized Stokes problem (5) correspondes to γi using the
pair XPS

h × Y PS
h . Then ui → wh and pi − γi∇ · ui → ph as i → ∞ with rate

O(γ−1
i ) for some wh ∈ XPS

h ∩ V and ph ∈ QPS
h with (wh, ph) being the solution

for (11) with Xh ×Qh = XPS
h ×QPS

h .

5. Numerical Examples

In this section, we perform some simple numerical experiments and compare the
results with the theoretical ones given in the previous sections. In all tests, we take
the domain to be the unit square Ω = (0, 1)2, and choose the source function such
that the exact velocity and pressure solutions are given respectively as

u =

(
π sin2(πx) sin(2πy)
−π sin2(πy) sin(2πx)

)
, p = cos(πx) cos(πy).(25)

5.1. The P1 ×P0 pair on Powell–Sabin Splits. In this section, we report and
discuss the numerical results for the P1 × P0 pair on Powell–Sabin splits.

Let Th be a quasi–uniform Delaunay triangulation of Ω with h = 1/32, and
let T PS

h be the corresponding Powell-Sabin global triangulation (cf. Section 4). We
compute problem (11) with Xh×Qh = XPS

h ×QPS
h defined by (23), and denote the

solution pair by (wh, ph). We also compute problem (5) withXh×Yh = XPS
h ×Y PS

h

(cf. (24)), and denote the solution pair corresponding to γi by (ui, pi). The grad-div
parameters are taken to be γi = 10i for i = 1, . . . , 6.
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Figure 5. Numerical experiments using the P1 × P0 pairs on
Powell–Sabin splits with fixed h = 1/32 and varying viscosity µ.
Here, pr = pi − γi∇ · ui. The plot shows O(γ−1

i ) convergence for
all three quantities. The increase in the first and third plots for
large values of γi is due to round–off error.

5.1.1. The P1×P0 pair on Powell-Sabin Splits with fixed viscosity µ = 1.
In Figure 4, we plot the quantities ∥∇(wh−ui)∥,∥∇·ui∥ and ∥ph− (pi−γi∇·ui)∥
versus γi for fixed h = 1/32 and fixed viscosity µ = 1. The plot clearly shows
linear convergence with respect to γ−1

i for all three quantities, which is in exact
agreement with Theorem 4.4.

5.1.2. The P1 × P0 pair on Powell-Sabin Splits with varying viscosity.
In these series of tests, we compute the same problem as the previous section, but
for different viscosity values: µ = 10−j for j = 1, 2, 3, 4. We report the differences
∥∇(wh −ui)∥,∥∇ ·ui∥ and ∥ph − (pi − γi∇ ·ui)∥ versus the grad-div parameter in
Figure 5.

Again, we observe that all three quantities converge with rate O(γ−1
i ) for each

value of µ, at least for moderately sized values of γi. On the other hand, we see that,
for small values of µ, the differences ∥ph−(pi−g∇·ui)∥L2(Ω) and ∥∇(wh−ui)∥L2(Ω)

increase (with rate = O(γi)) as γi → ∞. This behavior is due to round-off error as
we now explain.

Observe that (14) reads

µ(∇ei,∇v)− (ph − pi,∇ · v) + γi(∇ · ei,∇ · v) = 0 ∀v ∈ Xh,

where ei = wh − ui. Consequently, by setting v = ei and using ∇ ·wh = 0, and
dividing by µ and rearrange terms, we find

∥∇(wh − ui)∥2L2(Ω) = ∥∇ei∥2 =
1

µ
(ph − (pi − γi∇ · ui),∇ · ui).
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Figure 6. A criss–cross mesh of the unit square with h = 1/10
(left), and its perturbations with α = 0 (middle) and α = 1 (right).

We computed the term 1
µ (ph − (pi − γi∇ · ui),∇ · ui), and we observed that as

soon as this term is less than machine epsilon, both quantities ∥∇(wh − ui)∥ and
∥ph − (pi − γi∇ · ui)∥ grow as γi → ∞.

5.2. Taylor–Hood Finite Elements. In this section we report and discuss the
numerical results for Taylor–Hood finite element with polynomial degrees k =
4, 3, 2, and compare the results with the theoretical ones established in Section 3.
We compute problem (11) withXh×Qh = XTH

h ×QTH
h , and we denote the solution

pair by (wh, ph). Also, we consider the problem (5) with Xh × Yh = XTH
h × Y TH

h

and we denote the solution pair by (ui, pi) that corresponding to γi.

5.2.1. Grad-div Taylor–Hood methods on perturbed criss–cross meshes
with fixed viscosity. Recall from Lemmas 3.3 and 3.9 that the stability of Scott–
Vogelius pair depends on the vertex singularity of the mesh Θ∗ given in Definition
3.1. This in turn affects the convergence behavior of the grad-div solution (ui, pi)
to the divergence–free solution (wh, ph); see Theorems 3.4 and 3.10. The purpose
of the tests presented in this section is to gauge the affect of the vertex singularity
of the mesh, and to compare the numerical results with the theoretical ones derived
in Section 3.

To this end, we start by constructing criss–cross triangulation of Ω with h =
1/20 which has O(h−2) singular vertices. Then for each singular vertex of the
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Figure 7. Results of the grad-div stabilized Pk × Pk−1 Taylor–
Hood pair on O(hα+1) perturbed criss-cross meshes with h = 1/20
and µ = 1. Left: k = 4. Right: k = 3.

triangulation, we add its coordinates by (r1, r2)h
α+1, where ri ∈ {−2,−1, 1, 2} is

chosen randomly, and with exponent α ∈ {0, 1, 2, 3}; see Figure 6. The resulting
perturbed mesh has no singular vertices, but simple trigonometric arguments show
the vertex singularity of the mesh is Θ∗ ≈ hα.

We report the quantities quantities ∥∇·ui∥, ∥∇(wh−ui)∥, and ∥ph− (pi−γi∇·
ui)∥ using the Pk×Pk−1 (k = 3, 4) Taylor–Hood and Scott–Vogelius elements with
µ = 1 in Figure 7. For comparison, the convergence estimate for the Taylor–Hood
element stated in Theorems 3.4 and 3.10 read

hα∥ph − (pi − γi∇ · ui)∥ ≤ ∥∇(wh − ui)∥ ≤ Ch−α min{h−αγ−1
i , γ

−1/2
i },

which suggests a deterioration of the “errors” for large perturbation exponents

α. Indeed, Figure 7 shows pre-asymptotic O(γ
−1/2
i ) convergence rates for α = 0

before achieving O(γ−1
i ) rates for large values of γi. On the other hand, for larger α-

values (e.g., α = 2, 3), we see pre-asymptotic convergence (k = 4) or no convergence
(k = 3). The deterioration of the errors for large α-values is most evident for the
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Figure 8. Pk × Pk−1 grad-div sequences errors for O(h) per-
turbed mesh with different viscosities. Left: k = 4. Right: k = 3.

modified pressure, where Figure 7 shows no convergence with respect to γi for
α ∈ {2, 3}. Therefore we conclude from these results that the quantity Θ∗ stated
in Theorem 3.4 does influence the convergence of the grad-div solution.

On the other hand, Figure 7 shows ∥∇ · ui∥ = O(γ−1
i ) for any value α. Conse-

quently, the convergence estimate of this quantity stated in Theorem 3.4 may not
be sharp for this quantity.

5.2.2. Grad-div Taylor–Hood methods with varying viscosity. In this se-
ries of tests we compute the grad-div Taylor–Hood method with k = 3, 4 and vary
the viscosity µ = 10−j j = 1, 2, 3, 4 on a perturbed criss cross mesh with h = 1/20
and α = 0. In this setting, vertex singularity of the mesh is Θ∗ = O(1). The
estimates stated in Theorems 3.4 and 3.10 read

µ−1∥ph − (pi − γi∇ · ui)∥ ≤ ∥∇(wh − ui)∥ ≤ Cmin{γ−1
i , (µγi)

−1/2}.

We report the quantities ∥∇(w − ui)∥, ∥∇ · ui∥ and ∥ph − (pi − γi∇ · ui)∥ for
γi = 10i and k ∈ {3, 4} in Figure 8. We observe that the estimate ∥∇·ui∥ converges
with rate O(γ−1

i ) regardless of the value of µ. The errors ∥ph− (pi− γi∇·ui)∥ and



856 M. NEILAN AND A. ZYTOON

...

..

100

.

101

.

102

.

103

.

104

.

105

.

106

.

10−9

.

10−8

.

10−7

.

10−6

.

10−5

.

10−4

.

10−3

.

γi

.

. ..∥∇(u− ui)∥

. ..∥∇ · ui∥

. ..∥p− pr∥
...

..

100

.

101

.

102

.

103

.

104

.

105

.

106

.

10−6

.

10−5

.

10−4

.

10−3

.

10−2

.

10−1

.100 .

γi

.

. ..∥∇(u− ui)∥

. ..∥∇ · ui∥

. ..∥p− pr∥

Figure 9. Errors of grad-div finite element method using the
Taylor-Hood pair Pk × Pk−1 on type–I triangulation with k = 4
(left) and k = 3 (right). Here, pr = pi − γi∇ · ui.

.

∥∇(wh − ui)∥ initially converge with rates O(γ−1
i ) but quickly increase for large

γi-values with rate O(γi) due to the round-off error (cf. Section 5.1.2).

5.3. Grad-div Taylor–Hood methods on type–I triangulations. In the final
set of numerical experiments, we compute the grad-div Taylor–Hood methods on
type–I triangulations with h = 1/24 (cf. Figure 1). Recall from Remark 3.8 that
on this mesh, not all interior vertices are interpolating vertices, and therefore the
cubic–quadratic Scott–Vogelius pair is not stable on this mesh.

Similar to the previous sections with compute the grad-div stabilized finite ele-
ment method using the Pk ×Pk−1 pair with k = 3, 4 and fixed viscosity µ = 1. As
the Scott–Vogelius pair (wh, ph) is unavailable on this mesh, we instead compute
the errors ∥∇(u− ui)∥, ∥∇ · ui∥, and ∥p− (pi − γi∇ · ui)∥, where (u, p) are given
by (25).

We report these quantities in Figure 9. We observe a clear convergence of the
divergence of the computed solution with ∥∇ · ui∥ = O(γ−1

i ) (asymptotically) in
both cases k = 3, 4. On the other hand, the errors for the quartic–cubic pair
perform much better for large values of the grad-div parameter γi. Indeed, in
this case the errors stabilize relatively quickly at γi = 102. On the other hand,
for the cubic-quadratic case, we see that the errors ∥∇(u − ui)∥ and especially
∥p − (pi − γi∇ · ui)∥ increase for large γi-values. This behavior may be due to
the instability of the Scott-Vogelius pair and the lack of a discrete divergence–free
subspace with optimal approximation properties.
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