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NUMERICAL ANALYSIS OF A HISTORY-DEPENDENT

VARIATIONAL-HEMIVARIATIONAL INEQUALITY FOR A

VISCOPLASTIC CONTACT PROBLEM

XIAOLIANG CHENG AND XILU WANG∗

Abstract. In this paper, we consider a mathematical model which describes the quasistatic
frictionless contact between a viscoplastic body and a foundation. The contact is modeled with
normal compliance and unilateral constraint. We present the variational-hemivariational formu-

lation of the model and prove its unique solvability. Then we introduce a fully discrete scheme to
solve the problem and derive an error estimate. Under appropriate regularity assumptions of the
exact solution, we obtain the optimal order error estimate. Finally, numerical results are reported
to show the performance of the numerical method.

Key words. Variational-hemivariational inequality, viscoplastic material, numerical approxima-
tion, optimal order error estimate.

1. Introduction

In this paper, we consider a frictionless contact model for rate-type viscoplastic
materials. The constitutive law of such materials can be described in the form of

σ̇(t) = Eε(u̇(t)) + G(σ(t), ε(u(t)),(1)

where u,σ, ε(u) denote the displacement, the stress tensor and the linearized strain
tensor, respectively. Operator E is linear and describes the elastic properties of
the material. Operator G is a nonlinear constitutive function and describes the
viscoplastic behavior.

Viscoplastic models are used to describe the behavior of real materials like rub-
bers, metals, rocks and so on. Concrete examples, experimental background and
mechanical interpretation concerning viscoplastic materials can be found in [8].
Mathematical modeling, well-posedness and numerical analysis concerning (1) and
its variations can be found in [24, 4, 10, 1, 25] and references therein. For compre-
hensive studies, we also refer to the book [13]. However, all these monographs are
in the framework of variational inequalities.

The notation of hemivariational inequality was first introduced in the 1980’s
([23]). It is related to the concept of the generalized gradient of a locally Lips-
chitz function ([7]). In contrast to variational inequalities with convex structures,
hemivariational inequalities are mathematical problems involving nonconvex terms.
Particularly, variational-hemivariational inequalities involve both convex and non-
convex terms. During the last three decades, hemivariational inequalities were
shown to be a very useful tool, especially in contact mechanics ([21]). Various ap-
plications to viscoelastic contact models have been studied in [12, 2, 15, 14]. More-
over, if there is a history-dependent operator in the viscoelastic contact model, the
problem leads to the history-dependent hemivariational inequality ([19, 26, 22, 27]).
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Compared with the well-developed studies on viscoelastic contact models, there
are relatively few publications devoted to hemivariational inequalities for viscoplas-
tic materials. The difficulty lies in the complex viscoplastic constitutive law. Taking
the integral of Equation (1):

σ(t) = Eε(u(t)) +
∫ t

0

G(σ(s), ε(u(s))) ds+ σ(0)− Eε(u(0)),(2)

it naturally contains the history-dependent term. What’s more, the constitutive
law has an implicit expression of stress field σ. It means that, when proving the
existence result, we need to consider a coupled system which is a history-dependent
hemivariational inequality combined with an integral equation, rather than only
one hemivariational inequality. When deriving error estimates, since σ can not be
described by u directly, we have to handle both u and σ, rather than only u.

Related references are in the following. In [5], a quasistatic viscoplastic contact
problem is proved to have a unique weak solution. The existence and uniqueness
results are obtained for the quasistatic contact model with memory term in [16],
moreover with memory and damage terms in [17]. The unique weak solvability for a
dynamic contact problem is the topic of [20]. In [18], the dynamic contact problem
with damage is proved to have a unique weak solution. To our knowledge, numerical
analysis and numerical simulation for hemivariational inequalities for viscoplastic
materials have not been investigated in the literature so far and we fill this gap
in the present paper. The problem concerned here is a quasistatic contact with
normal compliance, unilateral constraint and viscoplastic materials.

The paper is structured as follows. In Section 2, we present some necessary
preliminaries. In Section 3, we describe the model of the contact process, derive its
variational-hemivariational formulation, state the existence and uniqueness theorem
and prove it. Then in Section 4, we introduce a fully discrete scheme and provide
the error estimates. Finally, in Section 5, we present some numerical examples
which provide numerical evidence of our theoretical results.

2. Preliminaries

In this section, we present some necessary notation and preliminary material
which we will use in our paper.

Let X be a Banach space. We first recall the definitions of the generalized
directional derivative and the generalized gradient of Clarke for a locally Lipschitz
function φ : X → R ([7]). The generalized directional derivative of φ at x ∈ X in
the direction v ∈ X, denoted by φ0(x; v), is defined by

φ0(x; v) = lim sup
y→x,t↓0

φ(y+tv)−φ(y)
t .

The generalized gradient of φ at x, denoted by ∂Clφ(x), is a subset of a dual space
X∗ given by ∂Clφ(x) = { ζ ∈ X∗ | φ0(x; v) ≥ ⟨ζ, v⟩X∗×X for all v ∈ X}. In
particular, here we present two basic properties provided in [7]:

φ0(x; v) = max { ⟨ζ, v⟩ | ζ ∈ ∂Clφ(x) },(3)

φ0(x; v1 + v2) ≤ φ0(x; v1) + φ0(x; v2).(4)

Let d be a positive integer. The linear space of second-order symmetric tensors
on Rd is denoted by Sd. The inner products and the corresponding norms on Rd

and Sd are given by

u · v = uivi, ∥v∥Rd = (v · v)1/2 for all u,v ∈ Rd,

σ : τ = σij τij , ∥τ∥Sd = (τ · τ )1/2 for all σ, τ ∈ Sd.
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The convention of summation over repeated indices is used in this paper.
We consider a bounded domain Ω ⊂ Rd with Lipschitz continuous boundary

Γ. Since Γ is Lipschitz continuous, the unit outward normal vector exists a.e.
on Γ and is denoted by ν = (νi) ∈ Rd. For a vector field v, the normal and
tangential components of v are vν = v · ν and vτ = v − vνν. Similarly, for tensor
field σ : Ω → Sd, the normal and tangential components are σν = (σν) · ν and
στ = σν − σνν. Let Γ1 denote a measurable part of Γ such that meas (Γ1) > 0.
Let Γ3 be a measurable part of Γ .

We introduce the following Hilbert spaces with their inner products:

V = {v = (vi) ∈ H1(Ω;Rd) : v = 0 on Γ1}, (u,v)V =

∫
Ω

ε(u) : ε(v) dx,

Q = { τ = (τij) ∈ L2(Ω; Sd) : τij = τji }, (τ ,σ)Q =

∫
Ω

τ : σ dx.

We recall the definition of deformation operator ε : H1(Ω;Rd) → L2(Ω; Sd) :
ε(u) = (εij(u)), εij(u) =

1
2 (ui,j + uj,i),

where index following comma indicates a partial derivative. The associated norms
in V and Q are denoted respectively by ∥ · ∥V and ∥ · ∥Q. Completeness of the
space (V, ∥ · ∥V ) follows from the use of Korn’s inequality, which is allowed under
the assumption meas(Γ1) > 0. Due to the Sobolev trace theorem, there exists a
positive constant c0 which depends only on Γ1,Γ3 and Ω such that

∥v∥L2(Γ3;Rd) ≤ c0∥v∥V for all v ∈ V.

We also recall the Green formula∫
Ω

σ : ε(v) dx+

∫
Ω

Divσ · v dx =

∫
Γ

σν · v dΓ for all v ∈ V ,σ ∈ Q,

with the divergence operator defined by Divσ = (σij,j).
Here we present two abstract lemmas which will be used in our paper.
We introduce the following notation first. Consider a normed space Y with its

norm ∥·∥Y . Let V be a closed subspace of H1(Ω;Rd). We denote the trace operator
from V to L2(Γ3;Rd) by γ with norm ∥γ∥ = ∥γ∥L(V,L2(Γ3;Rd)) and γ∗ : L2(Γ3;Rd) →
V ∗ its adjoint. Assume that K is a nonempty, closed and convex subset of V . Next,
we consider the operators A : (0, T ) × V → V ∗,M : C(0, T ;V ) → C(0, T ;Y ), the
functional φ : Y × K → R and the function j : Γ3 × Rd → R which satisfy the
following hypotheses.



H(A): The operator A : (0, T )× V → V ∗ satisfies :

(i) A(·, v) is continuous on (0, T ) for all v ∈ V ;

(ii) A(t, ·) is hemicontinuous and strongly monotone with mA > 0 for all t
∈ (0, T ), i.e. ⟨A(t, v1)−A(t, v2), v1 − v2⟩V ∗×V ≥ mA∥v1 − v2∥2V for all
v1, v2 ∈ V ;

(iii) ∥A(t, v)∥V ∗ ≤ a0(t) + a1∥v∥V for all v ∈ V and all t ∈ (0, T ) with
a0 ∈ L2(0, T ), a0 ≥ 0 and a1 > 0;

(iv) A(t, 0) = 0 for all t ∈ (0, T ).
H(M) : The operator M : C(0, T ;V ) → C(0, T ;Y ) satisfies:

∥(Mu1)(t)− (Mu2)(t)∥Y ≤ LM
∫ t

0
∥u1(s)− u2(s)∥V ds for all u1, u2 ∈

C(0, T ;V ) and all t ∈ (0, T ) with LM > 0.
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

H(φ) : The functional φ : Y ×K → R satisfies:

(i) φ(y, ·) is convex, proper and lower semicontinuous for all y ∈ Y ;

(ii) 0 ∈ D(∂φ(y, ·)) for all y ∈ Y ;

(iii) there exists a constant mφ > 0 such that φ(u1, v2)− φ(u1, v1) + φ(u2, v1)
−φ(u2, v2) ≤ mφ∥u1 − u2∥Y ∥v1 − v2∥V for all ui ∈ Y, vi ∈ K, i = 1, 2.

H(j) : The function j : Γ3 × Rd → R satisfies:

(i) j(·, ξ) is measurable on Γ3 for all ξ ∈ Rd and there exists e ∈ L2(Γ3;Rd)
such that j(·, e(·)) ∈ L1(Γ3);

(ii) j(x, ·) is locally Lipschitz on Rd for a.e. x ∈ Γ3;

(iii) ∥∂j(x, ξ)∥Rd ≤ c̃0 + c̃1∥ξ∥Rd for all ξ ∈ Rd and a.e. x ∈ Γ3 with c̃0, c̃1 ≥ 0;

(iv) there exists constant m̃j ≥ 0 such that j0(x, ξ1; ξ2 − ξ1) + j0(x, ξ2; ξ1 − ξ2)
≤ m̃j∥ξ1 − ξ2∥2Rd , for all ξ1, ξ2 ∈ Rd and a.e. x ∈ Γ3.

Lemma 1. Assume that H(A), H(M), H(φ), H(j) hold, f ∈ C(0, T ;V ∗) and

mA > max{
√
3c̃1, m̃j}∥γ∥2.

Then there exists a unique function u ∈ C(0, T ;K) such that

⟨A(t, u(t)), v − u(t)⟩V ∗×V + φ(Mu(t), v)− φ(Mu(t), u(t))
+
∫
Γ3

j0(γu(t); γv − γu(t))dΓ ≥ ⟨f(t), v − u(t)⟩V ∗×V

for all v ∈ K and all t ∈ (0, T ).

Lemma 1 is a simplified result of Theorem 4.1 in [11]. In our paper, the function
j is defined on Γ3 ×Rd instead of Γ3 ×R×Rd. Note that the condition H(j)(iv) is
equivalent to the relaxed monotonicity condition of subdifferential

(ξ∗1 − ξ∗2) · (ξ1 − ξ2) ≥ −m̃j∥ξ1 − ξ2∥2Rd

for all ξi ∈ Rd, ξ∗i ∈ ∂Clj(x, ξi), i = 1, 2, a.e. x ∈ Γ3. Thus, Theorem 4.1 in [11]
can be applied here as Lemma 2. Note that the dependence on the spatial variable
x is not indicated in order to simplify the notation.

Remark. Assumption H(j) can be satisfied. We take the following function as
an example satisfying the assumption H(j).

j(r) =


0, if r < 0 ;
− b

2ar
2 + br, if 0 ≤ r ≤ a ;

ab
2 , if r > a.

∂Clj(r) =


0, if r < 0 ;
[0, b] , if r = 0 ;
− b

ar + b, if 0 < r ≤ a ;
0, if r > a.

More details can be found in [12, 22].
Then we present the second lemma, which is the well-known Gronwall inequality

([4]).

Lemma 2. For a fixed T , let 0 = t0 < t1 < · · · < tN = T and kn = tn − tn−1 for
n = 1, 2, · · · , N . Assume {gn}Nn=0 and {en}Nn=0 are two sequences of non-negative
numbers satisfying

en ≤ cgn + c
n∑

i=1

kiei−1, n = 1, · · · , N,

for a constant c > 0. Then, for another constant c > 0 independent of N ,
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max
0≤n≤N

en ≤ c max
0≤n≤N

gn.

3. A viscoplastic contact model

In this section, we describe the model of a contact problem, present its variational-
hemivariational formulation, state the existence and uniqueness result and finally
prove it.

We consider a viscoplastic body which occupies a bounded domain Ω ⊂ Rd (d =
2, 3) with a Lipschitz continuous boundary Γ. The boundary is divided into three
mutually disjoint measurable parts Γ1,Γ2 and Γ3 such that meas(Γ1) > 0. The
body forces of density f0 act on Ω and surface tractions of density f2 act on Γ2.
The body is clamped on Γ1, so the displacement field vanishes there. The potential
contact surface Γ3 is a part where the body may come in contact with an obstacle.
We also assume that the contact process is quasistatic and we study it in the time
interval [0, T ]. The classical formulation of the contact problem can be written as
follows.

Problem P Find a displacement field u : Ω × (0, T ) → Rd, a stress field σ :
Ω× (0, T ) → Sd such that

σ̇(t) = Eε(u̇(t)) + G(σ(t), ε(u(t))) in Ω× (0, T ),(5)

Divσ(t) + f0(t) = 0 in Ω× (0, T ),(6)

u(t) = 0 on Γ1 × (0, T ),(7)

σ(t)ν = f2(t) on Γ2 × (0, T ),(8)

σν(t) = σ1
ν(t) + σ2

ν(t),
−σ1

ν(t) ∈ ∂Cl jν(uν(t)),
uν(t) ≤ g, σ2

ν(t) ≤ 0,
σ2
ν(t)(uν(t)− g) = 0,

 on Γ3 × (0, T ),(9)

στ (t) = 0 on Γ3 × (0, T ),(10)

u(0) = u0 , σ(0) = σ0 in Ω.(11)

Equation (5) represents the viscoplastic constitutive law introduced in Section 1.
Equation (6) is the normalized equilibrium equation for quasistatic process. Condi-
tions (7) and (8) are displacement and traction boundary conditions, respectively.
The contact problem is frictionless and is represented by boundary condition (10).
The initial conditions are given by (11).

Boundary condition (9) is used to model the contact of the body and a foundation
made of a rigid body covered by a layer of an elastic material with thickness g > 0,
making the normal stress σν on the contact surface to be split into two parts, σ1

ν

and σ2
ν . The first part σ1

ν describes the deformability with a normal compliance
condition, governed by the subdifferential of a nonconvex potential j. The second
part σ2

ν describes the rigidity of the obstacle with the Signorini unilateral contact
condition. Note that the penetration is allowed but is restricted by the relation
uν ≤ g. When there is penetration and the normal displacement does not reach
the bound g, the contact is under normal compliance condition −σν ∈ ∂Cljν(uν).
Due to the nonmonotonicity of ∂Cljν , the condition can be used to describe the
hardening or the softening phenomena of the foundation. Further examples and
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interpretations about the nonmonotone normal compliance condition can be found
in [21].

In order to study Problem P , we need the following hypotheses on the data.
H(E) : The elasticity tensor E = (eijkl) : Ω× Sd → Sd satisfies:

(i) eijkl = ejikl = eklij ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d;

(ii) There exists mE > 0 such that Eτ : τ ≥ mE∥τ∥2 for all τ ∈ Sd and a.e.
in Ω.

H(G) : The constitutive function G : Ω× Sd × Sd → Sd satisfies:

(i) There exists LG > 0 such that ∥G(x,σ1, ε1)− G(x,σ2, ε2)∥ ≤ LG
(∥σ1 − σ2∥+ ∥ε1 − ε2∥) for all σ1,σ2, ε1, ε2 ∈ Sd, a.e. x ∈ Ω;

(ii) The mapping x 7→ G(x,σ, ε) is measurable on Ω for all σ, ε ∈ Sd;

(iii) The mapping x 7→ G(x,0,0) belongs to Q.

H(f): The densities of body forces and surface tractions satisfy:

f0 ∈ C(0, T ;L2(Ω;Rd)), f2 ∈ C(0, T ;L2(Γ2;Rd)).

(H0): The initial values u0 ∈ U,σ0 ∈ Q, where U is the set of admissible
displacements, i.e.

U = {v ∈ V : vν ≤ g on Γ3}.
Finally, the normal superpotential jν : Γ3 × Rd → R satisfies H(j) given in

Section 2.
We now set Problem P in its variational form. Take v ∈ U and t ∈ (0, T ). Using

Equation (6) and the Green formula, we deduce that∫
Ω

σ(t) : (ε(v)− ε(u(t)))dx =

∫
Ω

f0(t) · (v − u(t))dx+

∫
Γ

σ(t)ν · (v − u(t))dΓ.

Since

σ(t)ν · (v − u(t)) = σν(t)(vν − uν(t)) + στ (t)(vτ − uτ (t))

on Γ3 × (0, T ), split the surface integral over Γ1,Γ2 and Γ3 and take into account
condition (8), condition (10) and the fact that v − u(t) = 0 a.e. on Γ1. Then we
have ∫

Ω

σ(t) : (ε(v)− ε(u(t)))dx =

∫
Ω

f0(t) · (v − u(t))dx

+

∫
Γ2

f2(t) · (v − u(t))dΓ +

∫
Γ3

σν(t)(vν − uν(t))dΓ.

From Condition (9), we obtain

−σν(t)(vν − uν(t)) = −σ1
ν(t)(vν − uν(t))− σ2

ν(t)(vν − uν(t))

≤ j0ν(uν(t); vν − uν(t))− σ2
ν(t)(vν − g)− σ2

ν(t)(g − uν(t))

≤ j0ν(uν(t); vν − uν(t)).

Therefore,∫
Ω

σ(t) : (ε(v)− ε(u(t)))dx+

∫
Γ3

j0ν(uν(t); vν − uν(t))dΓ

≥
∫
Ω

f0(t) · (v − u(t))dx+

∫
Γ2

f2(t) · (v − u(t))dΓ.

We further define the function f : (0, T ) → V by
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(f(t),v)V =
∫
Ω
f0(t) · vdx+

∫
Γ2

f2(t) · vdΓ for all v ∈ V, t ∈ (0, T ).

Together with the initial conditions and the integral of Equation (5), we have the
variational formulation of Problem P .

Problem PV . Find a displacement field u : (0, T ) → U , a stress field σ : (0, T ) →
Q such that u(0) = u0, σ(0) = σ0 and

σ(t) =

∫ t

0

G(σ(s), ε(u(s))) ds+ σ0 − Eε(u0) + Eε(u(t)),(12)

(σ(t), ε(v)− ε(u(t)))Q +

∫
Γ3

j0ν(uν(t); vν − uν(t))dΓ ≥ (f(t), v − u(t))V(13)

hold for all v ∈ U and all t ∈ (0, T ).
For Problem PV , we have the following existence and uniqueness result.

Theorem 3. Assume H(E), H(G), H(f), (H0), H(j) and

mE > max{
√
3c̃1, m̃j}∥γ∥2.(14)

Then Problem PV has a unique solution with the following regularity

u ∈ C(0, T ;U), σ ∈ C(0, T ;Q).(15)

The proof of Theorem 3 is based on two lemmas shown below. Since the ar-
guments used are similar to those applied in [5, 16, 17] and the modifications are
straightforward, we skip the proof of them. We assume that the conditions in
Theorem 3 are all satisfied in the following.

Lemma 4. For each u ∈ C(0, T ;V ), there exists a unique function Mu ∈ C(0, T ;Q)
such that

(16) Mu(t) =

∫ t

0

G
(
Mu(s) + Eε(u(s)), ε(u(s))

)
ds+ σ0 − Eε(u0)

for all t ∈ (0, T ). Moreover, the operator M : C(0, T ;V ) → C(0, T ;Q) is a history-
dependent operator, i.e. there exists c > 0 which only depends on d,G, E such that

(17) ∥Mu(t)−Mv(t)∥Q ≤ c

∫ t

0

∥u(s)− v(s)∥V ds

for all u,v ∈ C(0, T ;V ) and all t ∈ (0, T ).

Next, we use the operator M found in Lemma 4 to derive the following equiva-
lence.

Lemma 5. Let (u,σ) satisfy (15). Then (u,σ) is a solution to Problem PV if and
only if

σ(t) = Eε(u(t)) +Mu(t),(18)

(Eε(u(t)), ε(v)− ε(u(t)))Q + (Mu(t), ε(v)− ε(u(t)))Q(19)

+

∫
Γ3

j0ν(uν(t); vν − uν(t))dΓ ≥ (f(t),v − u(t))V ∀v ∈ U,

for all t ∈ (0, T ).

Now we proceed to prove Theorem 3.
Proof. First, we define operator A : V → V ∗ and function φ : Q× U → R by

⟨Au,v⟩V ∗×V = (Eε(u), ε(v))Q for all u,v ∈ V,

φ(σ,v) = (σ, ε(v))Q for all σ ∈ Q, v ∈ U.
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With this notation, we consider the problem of finding a function u : (0, T ) → U
such that the inequality

⟨Au(t),v − u(t)⟩V ∗×V + φ(Mu(t),v)− φ(Mu(t),u(t))(20)

+

∫
Γ3

j0ν(uν(t); vν − uν(t))dΓ ≥ ⟨f(t),v − u(t)⟩V ∗×V

holds for all v ∈ U and all t ∈ (0, T ).
In order to solve the inequality, we employ Lemma 1 with K = U and Y = Q.

We use assumption H(E)(i) to get that

|⟨Au−Av,w⟩V ∗×V | ≤ dmax
i,j,k,l

∥eijkl∥L∞(Ω)∥u− v∥V ∥w∥V

for all u,v,w ∈ V . Hence,

∥Au−Av∥V ≤ c∥u− v∥V .
Moreover, from assumption H(E)(ii), we have

⟨Au−Av,u− v⟩ ≥ mE∥u− v∥2V .
Thus, condition H(A) is satisfied.

By definition of operator f and assumption H(f), we can deduce that f has
required regularity. H(M), H(j) and H(φ)(i)(ii) can also be satisfied.

Next, since

φ(σ1,u2)− φ(σ1,u1) + φ(σ2,u1)− φ(σ2,u2)
=

(
σ1 − σ2, ε(u2)− ε(u1)

)
Q

≤ ∥σ1 − σ2∥Q ∥u1 − u2∥V
for all σ1,σ2 ∈ Q,u1,u2 ∈ V , we conclude that H(φ) holds.

It is now a consequence of Lemma 1 that there exists a unique function u ∈
C(0, T ;U) which solves the inequality (20), then solves (19) at the same time.
Define σ by (18), it follows that (u,σ) is the unique solution with regularity (15)
satisfying (18) and (19). As a result of Lemma 5, Theorem 3 is proved. �

4. A fully discrete scheme and error estimates

In this section, we introduce a fully discrete scheme for Problem PV and provide
a result on error estimates.

Let V h ⊂ V,Qh ⊂ Q be finite-dimensional spaces which approximate the spaces
V and Q. We use Uh := V h

∩
U to approximate the convex set U . Here h > 0 is

a spatial discretization parameter. We assume that

ε(V h) ⊂ Qh,(21)

which is very natural and is valid as long as the polynomial degree for space V h is
at most one higher than that for space Qh.

Let PQh : Q → Qh be the orthogonal projection defined through the relation

(PQhτ , τh)Q = (τ , τh)Q ∀τ ∈ Q, τh ∈ Qh.

The orthogonal projection has useful non-expansive property: ∥PQhτ∥Q ≤ ∥τ∥Q
for all τ ∈ Q.

We use a possibly non-uniform partition of the time interval [0, T ] : 0 = t0 < t1 <
t2 < · · · < tN = T. We denote the time step size kn = tn − tn−1 for n = 1, · · · , N
and the maximal time step size k = max

n
kn. For a continuous function g = g(t),

we write gn = g(tn). Everywhere in the sequel, c will denote a general positive
constant independent of discretization parameters h and k. The values of c may
change in different inequalities.
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Choose uh
0 ∈ Uh and σh

0 ∈ Qh to be the approximation of initial values u0 ∈ U
and σ0 ∈ Q. We construct the following fully discrete approximation scheme for
Problem PV .

Problem Phk
V Find uhk = {uhk

n }Nn=0 ⊂ Uh and σhk = {σhk
n }Nn=0 ⊂ Qh such

that uhk
0 = uh

0 ,σ
hk
0 = σh

0 and for n = 1, 2, · · · , N,

(22) σhk
n = PQhEε(uhk

n ) +
n∑

j=1

kjPQhG(σhk
j−1, ε(u

hk
j−1)) + σhk

0 −PQhEε(uhk
0 ),

(23) (σhk
n , ε(vh −uhk

n ))Q +

∫
Γ3

j0ν(u
hk
nν ; v

h
ν − uhk

nν)dΓ ≥ (fn,v
h −uhk

n )V ∀vh ∈ Uh.

For the existence and uniqueness result of the fully-discrete scheme Phk
V , we

need to prove that, with {uhk
j }j≤n−1 known, uhk

n is uniquely determined by (22)
and (23). In fact, we only need to consider an elliptic variational-hemivariational
inequality: find uhk

n ∈ Uh such that for all vh ∈ Uh, there holds

(Eε(uhk
n ), ε(vh − uhk

n ))Q +
∫
Γ3

j0ν(u
hk
nν ; v

h
ν − uhk

nν)dΓ ≥ (fn,v
h − uhk

n )V

−
( n∑

j=1

kjG(σhk
j−1, ε(u

hk
j−1)), ε(v

h − uhk
n )

)
Q
− (σhk

0 − Eε(uhk
0 ), ε(vh − uhk

n ))Q.

From [15], we conclude that this inequality has a unique weak solution, which
implies the unique solvability of our Problem Phk

V .
In order to derive error estimates, we first prove the following theorem.

Theorem 6. Let {uhk
n }Nn=0 and {σhk

n }Nn=0 be the unique solution of Problem Phk
V .

There exists a constant c > 0 such that

∥σhk
n ∥Q + ∥uhk

n ∥V ≤ c, 0 ≤ n ≤ N.

Proof. From H(G), we have

∥G(σ, ε)− G(0,0)∥Q ≤ LG(∥σ∥Q + ∥ε∥Q)

⇒ ∥G(σ, ε)∥Q ≤ ∥G(0,0)∥Q + LG(∥σ∥Q + ∥ε∥Q).
So we now combine (22), H(E)(i) and the definition of the norm in space V to
obtain

∥σhk
n ∥Q ≤ ∥Eε(uhk

n )∥Q +
n∑

j=1

kj∥G(σhk
j−1, ε(u

hk
j−1))∥Q + ∥σhk

0 ∥Q + ∥Eε(uhk
0 )∥Q

≤ c∥uhk
n ∥V + c

n∑
j=1

kj(∥σhk
j−1∥Q + ∥uhk

j−1∥V ) + c∥G(0,0)∥Q + ∥σhk
0 ∥Q + c∥uhk

0 ∥V

≤ c∥uhk
n ∥V + c

n∑
j=1

kj(∥σhk
j−1∥Q + ∥uhk

j−1∥V ) + c.

Take vh = 0 ∈ Uh and use (22) in (23):

(Eε(uhk
n ), ε(uhk

n ))Q ≤
∫
Γ3

j0ν(u
hk
nν ;−uhk

nν)dΓ + (fn,u
hk
n )V

−(σhk
0 − Eε(uhk

0 ), ε(uhk
n ))Q − (

n∑
j=1

kjG(σhk
j−1, ε(u

hk
j−1)), ε(u

hk
n ))Q.
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Note that, from H(j)(iii)(iv) and (3), we can obtain∫
Γ3

j0ν(u
hk
nν ;−uhk

nν)dΓ ≤ m̃j∥γ∥2∥uhk
nν∥2V −

∫
Γ3

j0ν(0;u
hk
nν)dΓ

≤ m̃j∥γ∥2∥uhk
n ∥2V + c̃0

√
meas(Γ3)∥γ∥∥uhk

n ∥V .

Further combined with H(G)(i), we have

mG∥uhk
n ∥2V ≤ m̃j∥γ∥2∥uhk

n ∥2V + c̃0
√

meas(Γ3)∥γ∥∥uhk
n ∥V + ∥fn∥V ∥uhk

n ∥V

+c
n∑

j=1

kj(∥σhk
j−1∥Q + ∥uhk

j−1∥V )∥uhk
n ∥V + c∥G(0,0)∥Q∥uhk

n ∥V

+∥σhk
0 − Eε(uhk

0 )∥Q∥uhk
n ∥V .

Taking into account (14), we can find the expression

∥uhk
n ∥V ≤ c+ c

n∑
j=1

kj(∥σhk
j−1∥Q + ∥uhk

j−1∥V ).

Thus,

∥σhk
n ∥Q + ∥uhk

n ∥V ≤ c+ c
n∑

j=1

kj(∥σhk
j−1∥Q + ∥uhk

j−1∥V ).

From Lemma 2, we conclude that there is a constant c > 0 such that

∥σhk
n ∥Q + ∥uhk

n ∥V ≤ c. �
Now we proceed to derive error estimates. Taking the unique solution of Problem

PV at time t = tn, we have

σn = Eε(un) +

∫ tn

0

G(σ(s), ε(u(s)))ds+ σ0 − Eε(u0),(24)

(σn, ε(v − un))Q +

∫
Γ3

j0ν(unν ; vν − unν)dΓ ≥ (fn,v − un)V ∀v ∈ U.(25)

Subtracting (22) from (24), we obtain

σn − σhk
n

= σn −PQhσn + PQhσn − σhk
n

= (IQ −PQh)(σn − σ0) + PQhEε(un − uhk
n ) + [σ0 − σhk

0 − PQhEε(u0 − uhk
0 )]

+PQh [

∫ tn

0

G(σ(s), ε(u(s)))ds−
n∑

j=1

kjG(σj−1, ε(uj−1))]

+PQh

n∑
j=1

kj [G(σj−1, ε(uj−1))− G(σhk
j−1, ε(u

hk
j−1))],

where IQ is the identity operator defined on Q. Denote

In = ∥
∫ tn

0

G(σ(s), ε(u(s)))ds−
n∑

j=1

kjG(σj−1, ε(uj−1))∥Q, n = 1, · · · , N,

and

en = ∥σn − σhk
n ∥Q + ∥ε(un − uhk

n )∥Q n = 0, · · · , N.
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Using assumptions H(E)(i), H(G)(i) and the property of projection, we can derive
the following inequality:

∥σn − σhk
n ∥Q ≤ ∥(IQ −PQh)(σn − σ0)∥Q + c∥ε(un − uhk

n )∥Q(26)

+ce0 + In + c
n∑

j=1

kj(∥σj−1 − σhk
j−1∥Q + ∥ε(uj−1 − uhk

j−1)∥Q).

We combine (24) and (25) with v = uhk
n to obtain

(Eε(un), ε(un − uhk
n ))Q ≤ (fn,un − uhk

n )V +

∫
Γ3

j0ν(unν ;u
hk
nν − unν)dΓ(27)

+
(∫ tn

0

G(σ(s), ε(u(s)))ds, ε(uhk
n − un)

)
Q
+
(
σ0 − Eε(u0), ε(u

hk
n − un)

)
Q
.

We combine (22) and (23) with any vh = vh
n ∈ Uh to obtain

(28) −(Eε(uhk
n ), ε(un − uhk

n ))Q

= −(Eε(uhk
n ), ε(un − vh

n))Q − (Eε(uhk
n ), ε(vh

n − uhk
n ))Q

≤ −(Eε(uhk
n ), ε(un − vh

n))Q − (fn,v
h
n − uhk

n )V +

∫
Γ3

j0ν(u
hk
nν ; v

h
nν − uhk

nν)dΓ

+
( n∑

j=1

kjG(σhk
j−1, ε(u

hk
j−1)), ε(v

h
n − uhk

n )
)
Q
+
(
σhk

0 − Eε(uhk
0 ), ε(vh

n − uhk
n )

)
Q
.

Combining (24), (27) and (28), we have the following inequality by using as-
sumption H(E)(ii) and (4).

mE∥ε(un − uhk
n )∥2Q

≤ (Eε(un − uhk
n ), ε(un − uhk

n ))Q

≤ (Eε(un − uhk
n ), ε(un − vh

n))Q +

∫
Γ3

j0ν(u
hk
nν ; v

h
nν − unν) dΓ

+

∫
Γ3

j0ν(u
hk
nν ;unν − uhk

nν) dΓ +

∫
Γ3

j0ν(unν ;u
hk
nν − unν) dΓ

+
(
σ0 − σhk

0 − Eε(u0 − uhk
0 ) , ε(uhk

n − vh
n)

)
Q

+
( ∫ tn

0

G(σ(s), ε(u(s)))ds−
n∑

j=1

kjG(σhk
j−1, ε(u

hk
j−1)) , ε(uhk

n − vh
n)

)
Q

+
(
fn,un − vh

n)V − (σn, ε(un − vh
n)
)
Q
.

Note that, from H(j)(iii), (3) and Theorem 6, we have∫
Γ3

j0ν(u
hk
nν ; v

h
nν − unν)dΓ ≤ c

∫
Γ3

∥γ(vh
n − un)∥RddΓ ≤

c
√
meas(Γ3)∥vh

n − un∥L2(Γ3;Rd).
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Further combined with assumptions H(E)(i) and H(j)(iv), we have

mE∥ε(un − uhk
n )∥2Q

≤ c ∥ε(un − vh
n)∥Q ∥ε(un − uhk

n )∥Q + m̃j∥γ∥2 ∥un − uhk
n ∥2V

+ c∥vh
n − un∥L2(Γ3;Rd) + (fn,un − vh

n)V − (σn, ε(un − vh
n))Q

+ c
(
∥σ0 − σhk

0 ∥Q + ∥ε(u0 − uhk
0 )∥Q

)
∥ε(uhk

n − vh
n )∥Q

+
(∫ tn

0

G(σ(s), ε(u(s)))ds−
n∑

j=1

kjG(σhk
j−1, ε(u

hk
j−1)) , ε(uhk

n − vh
n)
)
Q
.

By definition of the norm in Hilbert space V and assumption of H(G)(i), the above
inequality can be rewritten as:

(mE − m̃j∥γ∥2)∥un − uhk
n ∥2V

≤ c∥un − vh
n∥V ∥un − uhk

n ∥V + c∥vh
n − un∥L2(Γ3;Rd) + (fn,un − vh

n)V

−(σn, ε(un − vh
n))Q + ce0 · ∥uhk

n − vh
n∥V + In · ∥uhk

n − vh
n∥V

+c
n∑

j=1

kj
(
∥σj−1 − σhk

j−1∥Q + ∥uj−1 − uhk
j−1∥V

)
∥uhk

n − vh
n∥V .

Denote Rn(un,v
h
n) = (fn,un − vh

n)V − (σn, ε(un − vh
n))Q. Using assumption (14)

and taking some manipulations, we can show that

∥un − uhk
n ∥V ≤ c

[
∥un − vh

n∥V + |Rn(un,v
h
n)|1/2 + ∥vh

n − un∥1/2L2(Γ3;Rd)
(29)

+e0 + In +
n∑

j=1

kj(∥σj−1 − σhk
j−1∥Q + ∥uj−1 − uhk

j−1∥V )
]
.

For any vh
n ∈ Uh, we can use (26) and (29) to find the expression

∥σn − σhk
n ∥Q + ∥un − uhk

n ∥V(30)

≤ c
[
∥un − vh

n∥V + |Rn(un,v
h
n)|1/2 + ∥vh

n − un∥1/2L2(Γ3;Rd)
+ e0 + In

+∥(IQ − PQh)(σn − σ0)∥Q
]
+ c

n∑
j=1

kj
(
∥σj−1 − σhk

j−1∥Q + ∥uj−1 − uhk
j−1∥V

)
.

Denote gn = ∥un−vh
n∥V + |Rn(un,v

h
n)|1/2+ ∥vh

n−un∥1/2L2(Γ3;Rd)
+ e0+ In+ ∥(IQ−

PQh)(σn − σ0)∥Q. Then (30) can be rewritten as

en ≤ cgn + c
n∑

j=1

kjej−1, n = 1, · · · , N.(31)

From Lemma 2, it implies that

max
1≤n≤N

(∥σn − σhk
n ∥Q + ∥un − uhk

n ∥V ) ≤ c max
1≤n≤N

gn.(32)
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What’s more, we give an estimate for the In:

In ≤
n∑

j=1

∫ tj

tj−1

∥G(σ(t), ε(u(t)))− G(σj−1, ε(uj−1))∥Qdt(33)

≤ c
n∑

j=1

∫ tj

tj−1

(∥σ(t)− σj−1∥Q + ∥u(t)− uj−1∥V )dt

≤ ctnk(∥σ̇∥L∞(0,T ;Q) + ∥u̇∥L∞(0,T ;V )).

Combining (32) and (33), we have the following result.

Theorem 7. Let (u,σ) be the solution of the Problem PV and {uhk
n ,σhk

n }Nn=1 be
the solution of Problem Phk

V . Then we have the error estimate

max
1≤n≤N

(∥σn − σhk
n ∥Q + ∥un − uhk

n ∥V )(34)

≤ c(∥σ0 − σh
0∥Q + ∥u0 − uh

0∥V ) + ck
(
∥σ̇∥L∞(0,T ;Q) + ∥u̇∥L∞(0,T ;V )

)
+c max

1≤n≤N

(
∥(IQ −PQh)(σn − σ0)∥Q

+ inf
vh

n∈Vh

{
∥un − vh

n∥V + |Rn(un,v
h
n)|1/2 + ∥vh

n − un∥1/2L2(Γ3;Rd)

})
.

Theorem 7 is the basis for error estimation. For brevity, we assume that Ω
is a polygonal or polyhedral domain. let T h be a regular family of finite element
triangulations of Ω into triangles or tetrahedrons. We now specify the finite element
spaces V h and Qh. According to assumption (21), we naturally use continuous
linear elements for the finite element space V h and piecewise constants for Qh.

Theorem 8. Assume g is concave on each line segment of Γ3. Let (u,σ) be the
solution of Problem PV and {uhk

n ,σhk
n }Nn=0 be the solution of Problem Phk

V . Assume

u ∈ C(0, T ;H2(Ω;Rd)), σ ∈ C(0, T ;H1(Ω; Sd)),
u|Γ3,i ∈ C(0, T ;H2(Γ3,i;Rd)), 1 ≤ i ≤ I.

The initial values uh
0 ∈ Uh and σh

0 ∈ Qh are chosen in such a way that

∥σ0 − σh
0∥Q ≤ ch, ∥u0 − uh

0∥V ≤ ch.

Then we have the optimal order error estimate

max
1≤n≤N

(∥σn − σhk
n ∥Q + ∥un − uhk

n ∥V ) ≤ c(k + h).(35)

Proof. For t ∈ [0, T ] , let Πhu(t) ∈ V h be the piecewise linear interpolant of u(t).
Then we have the error estimates ([6]):

∥u(t)−Πhu(t)∥V ≤ ch∥u(t)∥H2(Ω;Rd),

∥u(t)−Πhu(t)∥L2(Γ3;Rd) ≤ ch2
I∑

i=1

∥u(t)∥H2(Γ3,i;Rd),

∥(IQ − PQh)σ(t)∥Q ≤ ch∥σ(t)∥H1(Ω;Sd).

Thus,

∥(IQ − PQh)(σn − σ0)∥Q ≤ ch∥σn − σ0∥H1(Ω;Sd).
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Since g is concave on each line segment of Γ3, we have Πhu(t) ∈ U . Using
integration by parts and the trace theorem, we have

|R(t;u(t),Πhu(t))|
= |(f(t),u(t)−Πhu(t))V − (σ(t), ε(u(t)−Πhu(t)))Q|

= |
∫
Γ3

(σ(t)ν) · (u(t)−Πhu(t))dΓ|

≤ c∥σ(t)∥H1(Ω;Sd)∥u(t)−Πhu(t)∥L2(Γ3;Rd).

Combining above inequalities and (34), we have the error estimate (35). �

5. Numerical results

In this section, we provide numerical simulation results on Problem Phk
V . We

use iterative scheme based on primal-dual active set approach to solve the discrete
problem. More details can be found in [3].

The physical setting of the contact is depicted in Figure 1. Let Ω = (0, L1) ×
(0, L2) be the rectangle with a boundary Γ which is divided into three parts

Γ1 = {0} × [0, L1],Γ2 = ({L1} × (0, L2]) ∪ ((0, L1)× {L2}),Γ3 = (0, L1]× {0}.

The domain Ω represents the cross section of a three-dimensional viscoplastic body
subjected to the action of tractions in such a way that a plane stress hypothesis is
assumed.

Figure 1. Initial configuration of the two-dimensional example.

The contact boundary conditions on Γ3 are characterized as follows:

−σ1
ν =


0 if uν < 0,

c1νuν if uν ∈ (0, u1
ν ],

c1νu
1
ν + c2ν(uν − u1

ν) if uν ≥ u1
ν ,

(36)

uν ≤ g, σ2
ν ≤ 0, (uν − g)σ2

ν = 0,(37)

στ = 0.(38)

To better appreciate the nonmonotone character of the normal response, we show
the dependence of −σν as a function of the normal displacement uν related to the
relations (36) and (37), see Figure 2.
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0 u1  g u

-

Figure 2. Dependence of −σν on uν .

(a) with plastic term (b) without plastic term

Figure 3. Deformed meshes and contact interface forces with and
without plastic term.

Remark. From (37) and Figure 2, we use a multivalued normal compliance re-
sponse on Γ3. In fact, −σν take the value from [ c1νu

1
ν + c2ν(g − u1

ν), +∞ ] when
uν = g. In order to better observe the nonmonotone behavior on the boundary, we
made some modifications when plotting the normal compliance response −σν . If
uν reaches g, no matter what the value of −σν is, we plot it as c1νu

1
ν + c2ν(g − u1

ν).
The elasticity tensor E has the following form:

(Eτ)ij =
Eκ

1− κ2
(τ11 + τ22)δij +

E

1 + κ
τij , 1 ≤ i, j ≤ 2.

The coefficients E and κ denote the Young’s modulus and the Poisson’s ratio of
the material and δij denotes the Kronecker symbol. The viscoplastic function G is
assumed to be of the classical Perzyna type ([9]):

G(σ, ε(u)) = − 1

2λ
E(σ − PKσ),

where λ > 0 is the viscosity coefficient and PK is the orthogonal projection operator
(with respect to the norm ∥τ∥ = (Eτ , τ )1/2) over the convex subset K ⊂ S2. The
subset K is defined by

K = { τ ∈ S2 | τ211 + τ222 − τ11τ22 + 3τ212 ≤ σ2
Y },
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(a) g=0.006 and 18 nodes are in unilateral
contact

(b) g=0.01 and 15 nodes are in unilateral con-
tact

(c) g=0.018 and 13 nodes are in unilateral

contact

Figure 4. Deformed meshes and contact interface forces for dif-
ferent values of g.

σY being the uniaxial yield stress.
The following parameters are used in numerical experiments:

L1 = 1m, L2 = 1m, T = 1s,

E = 1000N/m2, κ = 0.4, λ = 50Ns/m2, σY = 2N/m2,

u1
ν = 0.006m, g = 0.01m, c1ν = 300N/m2, c2ν = −100N/m2,

f0(t) = (0, 0)N/m2,

f2(t) =

{
(0,−5) N/m on (0, L1)× {L2},
(0, 0) N/m on {L1} × (0, L2],

σ0 = 0N/m2, u0 = 0m.

Our numerical results are presented in Figure 3-6 and Table 1. They are de-
scribed in the following.

In Figure 3, the deformed configuration as well as the contact interface forces are
plotted with and without plasticity at T = 1s. The time step and spatial step are
chosen to be h = 1

32 , k = 1
64 . It is observed that the deformation without plasticity

is smaller than that with plasticity, which is consistent with the fact under our
physical setting. Moreover, in Figure 3(a), we have 0 ≤ uν < u1

ν for part of the
nodes , u1

ν ≤ uν < g for other part and uν = g for the remainder part. It can be
observed that the normal forces are increasing with respect to the penetration for
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(a) t=1/64s and 1 node is in unilateral contact (b) t=1/2s and 11 nodes are in unilateral con-
tact

(c) t=1s and 15 nodes are in unilateral contact

Figure 5. Deformed meshes and contact interface forces for dif-
ferent time values.
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Figure 6. Dependence of Error on h+ τ .

0 ≤ uν < u1
ν and are decreasing for u1

ν ≤ uν < g. This also agrees with the theory
since we have nonmonotone normal boundary condition.

In Figure 4, we plot the deformed configuration and the contact interface forces
for different values of the maximal penetration g. The time step and spatial step
are chosen to be h = 1

32 , k = 1
64 . Note that the number of nodes in unilateral

contact status increases with the reduction of the value g. Especially, since g = u1
ν

in Figure 4(a), we have monotone boundary condition in this case.
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Table 1. Error and convergence order.

h τ Error Convergence order
1/2 1/2 8.9609 -
1/4 1/4 5.4782 0.71
1/8 1/8 3.0784 0.83
1/16 1/16 1.5060 1.03
1/32 1/32 0.5657 1.41

In Figure 5, we present the evolution of the contact during the process. More
precisely, we plot the deformed meshes and the associated contact forces at three
different time moments. The time step and spatial step are chosen to be h =
1
32 , k = 1

64 . We can find that at t = 1
64s, almost all the contact nodes are in normal

compliance contact. And at t = 1s, 15 of 32 nodes, since the penetration limit
g = 0.01m are reached, are into a unilateral contact.

The numerical errors are also computed for several values of the discretization
parameter h and k, see Figure 6 and Table 1. Here the numerical error is in the
form of

Error := max
0≤n≤N

{∥un − uhk
n ∥V + ∥σn − σhk

n ∥Q},

where (u,σ) is the ‘reference’ solution. Since the exact solution is unknown, we
take the numerical solution corresponding to h = 1

64 , k = 1
64 as the ‘reference’ solu-

tion. Note that the theoretically predicted first-order convergence of the numerical
solution can be observed.
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