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UNIQUE SOLVABILITY AND DECOMPOSITION METHOD FOR

ONE NONLINEAR MULTI-DIMENSIONAL INTEGRO-

DIFFERENTIAL PARABOLIC EQUATION

TEMUR JANGVELADZE AND ZURAB KIGURADZE

Abstract. The paper is devoted to the construction and study of the decomposition type semi-

discrete scheme for one nonlinear multi-dimensional integro-differential equation of parabolic type.
Unique solvability of the first type initial-boundary value problem is given as well. The studied
equation is some generalization of integro-differential model, which is based on the well-known
Maxwell system arising in mathematical simulation of electromagnetic field penetration into a

medium.

Key words. Additive averaged semi-discrete scheme, nonlinear integro-differential multi-dimensional
equation, unique solvability.

1. Introduction

The process of electromagnetic field penetration into a medium is described by
Maxwell system of nonlinear partial differential equations [16]. In [7], reduction to
the integro-differential form of mentioned Maxwell system is proposed

(1)
∂H

∂t
= −rot

a
 t∫

0

|rotH|2 dτ

 rotH

 ,
where H = (H1, H2,H3) is a vector of magnetic field and a = a (S) is defined for
S ∈ [0,∞).

One must note that in one-component case H = (0, 0, U) from (1) we get the
following integro-differential equation

(2)
∂U

∂t
= ∇

a
 t∫

0

|∇U |2 dτ

∇U

 .
The main characteristic feature of models of type (1) is associated with the ap-

pearance of the nonlinear coefficient at the higher derivatives depending on the
time integral. This circumstance requires different approach than it is necessary
to solve local differential problems. Along with its origin from the applied prob-
lems, the studied integro-differential equation (2) may be considered as a natural
generalization of the well-known p-Laplacian models (see, for example, [20], [27]).
The model (1) for scalar one-dimensional space case was first investigated in [4], [7]
and scalar multi-dimensional space case (2) was studied in [5]. Later, these types
of integro-differential models were considered in the numerous papers as well (see,
for example, [1], [6], [9] - [11], [15], [17] - [19], [26], [29]). The asymptotic behavior
and existence of solution by means of Galerkin method for multi-dimensional case
and for non-homogeneous right side was studied in [26].

In [4], [5], [7] the solvability of the first boundary value problem is studied using
a modified version of the Galerkin method and compactness arguments that are
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used in [20], [27] for investigation of nonlinear elliptic and parabolic models. The
uniqueness of the solutions is investigated also in [4], [5], [7]. The asymptotic behav-
ior of solutions is discussed in [6], [10] - [12], [15] and in a number of other works as
well. Note also that to numerical resolution of (1) type one-dimensional equations
were devoted many works as well (see, for example, [8], [9], [12], [15] and references
therein). Many authors study the Rothe scheme, semi-discrete scheme with space
variable, finite element and finite difference approximation for a differential and
integro-differential models (see, for example, [12], [14] and references therein).

It is very important to study decomposition analogs for the above mentioned
multi-dimensional differential and integro-differential models as well. There are
some effective algorithms for solving the multi-dimensional problems (see, for ex-
ample, [2], [3], [21] - [25], [28] and references therein).

Our work is dedicated to the unique solvability of the initial-boundary value
problem. We shall focus our attention on (2) multi-dimensional type model Inves-
tigations are given in usual Sobolev spaces. Main attention is paid to investigation
of semi-discrete additive average scheme. Reduction of multi-dimensional model
to one-dimensional ones is proposed and corresponding convergence theorem with
rate of convergence is given.

This article is organized as follows. In Section 2 the formulation of the problem
and some of its properties are given. Particularly, unique solvability of the stated
problem is considered there. Main attention is paid to the construction and inves-
tigation of the semi-discrete additive average scheme. This question is discussed in
Section 3. Finite difference scheme for one-dimensional case and its implementation
are discussed in Sections 4 and 5 respectively. Numerical experiments confirming
the theoretical findings are carried out and some of them are given in Section 6.
Some conclusions are given in Section 7.

2. Formulation of the problem and unique solvability

Let Ω be a bounded domain in the n-dimensional Euclidean space Rn, with a
sufficiently smooth boundary ∂Ω. In the domain Q = Ω× (0, T ) let us consider the
following first type initial-boundary value problem:

(3)
∂U

∂t
−

n∑
i=1

∂

∂xi

1 +

t∫
0

∣∣∣∣ ∂U∂xi
∣∣∣∣2 dτ

 ∂U

∂xi

 = f(x, t), (x, t) ∈ Q,

(4) U(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ],

(5) U(x, 0) = 0, x ∈ Ω,

where x = (x1, x2, ..., xn), T is a fixed positive constant and f is the given function
of its arguments.

Theorem 2.1. If

f,
∂f

∂t
,
√
ψ
∂f

∂xi
∈ L2(Q), f(x, 0) = 0,

where ψ ∈ C∞(Ω), ψ(x) > 0, for x ∈ Ω; ∂ψ
∂ν = 0, for x ∈ ∂Ω and ν is the

outer normal of ∂Ω, then there exists the unique solution U of problem (3) - (5)
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satisfying:

(6)

T∫
0

∫
Ω

∂U
∂t
V +

n∑
i=1

1 +

t∫
0

∣∣∣∣ ∂U∂xi
∣∣∣∣2dτ

 ∂U

∂xi

∂V

∂xi

dxdt = T∫
0

∫
Ω

fV dxdt,

for all V ∈ L4

(
0, T ;

◦
W 1

4 (Ω)

)
.

Here and thereafter, the usual C∞, Cm, k, Lp and Sobolev
◦
W k
p spaces are used.

Proof. To prove the existence of solution the similar procedure can be used as
given in [5], [10] that is based on an approach from [20], [27].

As for uniqueness of solution of problem (3) - (5), let us assume that there are
two solutions U1 and U2 and introduce the following notation Z (x, t) = U2(x, t)−
U1(x, t). From (3) - (5) we get:

(7)

∂Z

∂t
−

n∑
i=1

∂

∂xi

1 +

t∫
0

∣∣∣∣∂U2

∂xi

∣∣∣∣2 dτ
 ∂U2

∂xi

−

1 +

t∫
0

∣∣∣∣∂U1

∂xi

∣∣∣∣2 dτ
 ∂U1

∂xi

 = 0, (x, t) ∈ Q,

(8) Z (x, t) = 0, (x, t) ∈ ∂Ω× [0, T ] ,

(9) Z (x, 0) = 0, x ∈ Ω.

Let us multiply (7) by Z and integrate the obtained identity on Ω×(0, t). Taking
into account (8) and (9) we have

(10)

1

2

∫
Ω

Z2 (x, t) dx+
n∑
i=1

t∫
0

∫
Ω

1 +

t∫
0

∣∣∣∣∂U2

∂xi

∣∣∣∣2 dτ
 ∂U2

∂xi

−

1 +

t∫
0

∣∣∣∣∂U1

∂xi

∣∣∣∣2 dτ
 ∂U1

∂xi

 ∂Z

∂xi
dxdτ = 0.

Note that, 1 +

t∫
0

∣∣∣∣∂U2

∂xi

∣∣∣∣2 dτ
 ∂U2

∂xi

−

1 +

t∫
0

∣∣∣∣∂U1

∂xi

∣∣∣∣2 dτ
 ∂U1

∂xi

(∂U2

∂xi
− ∂U1

∂xi

)

(11) =
1

2

2 + t∫
0

∣∣∣∣∂U2

∂xi

∣∣∣∣2 dτ +
t∫

0

∣∣∣∣∂U1

∂xi

∣∣∣∣2 dτ
[∂U2

∂xi
− ∂U1

∂xi

]2

+
1

2

 t∫
0

∣∣∣∣∂U2

∂xi

∣∣∣∣2 dτ −
t∫

0

∣∣∣∣∂U1

∂xi

∣∣∣∣2 dτ
[∣∣∣∣∂U2

∂xi

∣∣∣∣2 − ∣∣∣∣∂U1

∂xi

∣∣∣∣2
]
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≥ 1

2

 t∫
0

∣∣∣∣∂U2

∂xi

∣∣∣∣2 dτ −
t∫

0

∣∣∣∣∂U1

∂xi

∣∣∣∣2 dτ
[∣∣∣∣∂U2

∂xi

∣∣∣∣2 − ∣∣∣∣∂U1

∂xi

∣∣∣∣2
]
.

Introducing the following notation

Wi(x, t) =

t∫
0

(∣∣∣∣∂U2

∂xi

∣∣∣∣2 − ∣∣∣∣∂U1

∂xi

∣∣∣∣2
)
dτ,

from (10) and (11) we get∫
Ω

Z2 (x, t) dx+

n∑
i=1

t∫
0

∫
Ω

Wi(x, t)
∂Wi(x, t)

∂t
dxdτ ≤ 0

or ∫
Ω

Z2 (x, t) dx+
1

2

n∑
i=1

∫
Ω

W 2
i (x, t) dx ≤ 0.

The last estimation implies that Z ≡ 0. Thus, Theorem 2.1 has been proved.

3. Semi-discrete additive averaged scheme

The main goal of this section is the construction and investigation of the Rothe
type semi-discrete averaged scheme of sum approximation for the problem (3) - (5).
On [0, T ] let us introduce a net with mesh points denoted by tj = jτ , j = 0, 1 . . . J ,
with τ = T/J .

Let us construct the additive average Rothe type semi-discrete scheme:

(12)
ηi
uj+1
i − uj

τ
=

∂

∂xi

[(
1 + τ

j+1∑
k=1

∣∣∣∣∂uki∂xi

∣∣∣∣2
)
∂uj+1

i

∂xi

]
+ f j+1

i ,

u0i = u0 = 0, i = 1, ..., n, j = 0, 1 . . . J − 1,

with homogeneous boundary conditions. Here uji (x) is the solution of problem (12)
and the following notations are also introduced:

uj(x) =

n∑
i=1

ηiu
j
i (x),

n∑
i=1

f j+1
i (x) = f j+1(x) = f(x, tj+1),

where ηi, i = 1, ..., n are arbitrary positive constants satisfying
n∑
i=1

ηi = 1 and uj(x)

denotes approximation of exact solution of problem (3) - (5) at tj .
The object of this section is to prove one main statement of this paper. We use

usual scalar product ( , ) and norm ∥ · ∥ of the space L2(Ω) as follows:

(U, V ) =

∫
Ω

U(x)V (x)dx, ∥U∥ = (U, U)1/2.

Theorem 3.1. Let us U ∈ C2, 2
x, t (Q), then functions uj defined by the solutions

of problems (12) converge to the solution of problem (3) - (5) and the following
estimate is true ∥∥U j − uj

∥∥ = O(τ1/2), j = 1 . . . J,
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where U j(x) = U(x, tj).

Proof. Let us introduce the following notations:

zj = U j − uj , zji = U j − uji .

For the exact solution of problem (3) - (5) we have

ηi
U j+1 − U j

τ
= ηi

n∑
ℓ=1

∂

∂xℓ

[(
1 + τ

j+1∑
k=1

∣∣∣∣∂Uk∂xℓ

∣∣∣∣2
)
∂U j+1

∂xℓ

]
+ ηif

j+1 +O(τ).

After subtracting (12) from the above relation we get

ηi

(
U j+1 − U j

τ
− uj+1

i − uj

τ

)
= ηi

n∑
ℓ=1

∂

∂xℓ

[(
1 + τ

j+1∑
k=1

∣∣∣∣∂Uk∂xℓ

∣∣∣∣2
)
∂U j+1

∂xℓ

]

− ∂

∂xi

[(
1 + τ

j+1∑
k=1

∣∣∣∣∂uki∂xi

∣∣∣∣2
)
∂uj+1

i

∂xi

]
+ ηif

j+1 − f j+1
i +O(τ).

Thus, introducing the well-known notation [25]

zj+1
i − zj

τ
= zj+1

i t̄

and using equalities (3) and (12) we have the following problem:

(13)

ηiz
j+1
i t̄ =

∂

∂xi

[(
1 + τ

j+1∑
k=1

∣∣∣∣∂Uk∂xi

∣∣∣∣2
)
∂U j+1

∂xi

−

(
1 + τ

j+1∑
k=1

∣∣∣∣∂uki∂xi

∣∣∣∣2
)
∂uj+1

i

∂xi

]
+ ψj+1

i (x),

z0i = 0,

with homogeneous boundary conditions where

ψj+1
i (x) = − ∂

∂xi

[(
1 + τ

j+1∑
k=1

∣∣∣∣∂Uk∂xi

∣∣∣∣2
)
∂U j+1

∂xi

]

+ηi

n∑
ℓ=1

∂

∂xℓ

[(
1 + τ

j+1∑
k=1

∣∣∣∣∂Uk∂xℓ

∣∣∣∣2
)
∂U j+1

∂xℓ

]

+ηif
j+1(x)− f j+1

i (x) +O(τ) = ψ
j+1

i (x) +O(τ).

Multiplying (13) scalarly on 2τzj+1
i we obtain

(14)

2τηi

(
zj+1
i t̄ , zj+1

i

)
+ 2τ

((
1 + τ

j+1∑
k=1

∣∣∣∣∂Uk∂xi

∣∣∣∣2
)
∂U j+1

∂xi

−

(
1 + τ

j+1∑
k=1

∣∣∣∣∂uki∂xi

∣∣∣∣2
)
∂uj+1

i

∂xi
,
∂zj+1
i

∂xi

)
− 2τ

(
ψj+1
i , zj+1

i

)
= 0.
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It can be easily checked that((
1 + τ

j+1∑
k=1

∣∣∣∣∂Uk∂xi

∣∣∣∣2
)
∂U j+1

∂xi
−

(
1 + τ

j+1∑
k=1

∣∣∣∣∂uki∂xi

∣∣∣∣2
)
∂uj+1

i

∂xi
,
∂zj+1
i

∂xi

)

=
1

2

2 + τ

j+1∑
k=1

∣∣∣∣∂Uk∂xi

∣∣∣∣2 + τ

j+1∑
k=1

∣∣∣∣∂uki∂xi

∣∣∣∣2,
∣∣∣∣∣∂zj+1

i

∂xi

∣∣∣∣∣
2


+

τ j+1∑
k=1

[∣∣∣∣∂Uk∂xi

∣∣∣∣2 − ∣∣∣∣∂uki∂xi

∣∣∣∣2
]
,

∣∣∣∣∂U j+1

∂xi

∣∣∣∣2 −
∣∣∣∣∣∂uj+1

i

∂xi

∣∣∣∣∣
2


≥ 1

2

τ j+1∑
k=1

[∣∣∣∣∂Uk∂xi

∣∣∣∣2 − ∣∣∣∣∂uki∂xi

∣∣∣∣2
]
,

∣∣∣∣∂U j+1

∂xi

∣∣∣∣2 −
∣∣∣∣∣∂uj+1

i

∂xi

∣∣∣∣∣
2
 .

From (14) for the error we get

2τηi

(
zj+1
i t̄ , zj+1

i

)
+τ

τ j+1∑
k=1

[∣∣∣∣∂Uk∂xi

∣∣∣∣2 − ∣∣∣∣∂uki∂xi

∣∣∣∣2
]
,

∣∣∣∣∂U j+1

∂xi

∣∣∣∣2 −
∣∣∣∣∣∂uj+1

i

∂xi

∣∣∣∣∣
2


≤ 2τ(ψj+1
i , zj+1

i ).

Using the well-known identities [25]:

zj+1
i = zj + τzj+1

i t̄ , 2τ
(
zj+1
it̄ , zj+1

i

)
=
∥∥∥zj+1
i

∥∥∥2 + τ2
∥∥∥zj+1
it̄

∥∥∥2 − ∥∥zj∥∥2 ,
after simple transformations from the last inequality we have

ηi

(∥∥∥zj+1
i

∥∥∥2 + τ2
∥∥∥zj+1
it̄

∥∥∥2)+
1

2

∥∥∥∥∥τ
j+1∑
k=1

[∣∣∣∣∂Uk∂xi

∣∣∣∣2 − ∣∣∣∣∂uki∂xi

∣∣∣∣2
]∥∥∥∥∥

2

+
τ2

2

∥∥∥∥∥∥
∣∣∣∣∂U j+1

∂xi

∣∣∣∣2 −
∣∣∣∣∣∂uj+1

i

∂xi

∣∣∣∣∣
2
∥∥∥∥∥∥
2

≤ ηi
∥∥zj∥∥2 + 1

2

∥∥∥∥∥τ
j∑

k=1

[∣∣∣∣∂Uk∂xi

∣∣∣∣2 − ∣∣∣∣∂uki∂xi

∣∣∣∣2
]∥∥∥∥∥

2

+ 2τ
(
ψj+1
i , zj + τzj+1

it̄

)
.

Summing this equality from 1 to n we arrive at

n∑
i=1

ηi

(∥∥∥zj+1
i

∥∥∥2 + τ2
∥∥∥zj+1
it̄

∥∥∥2)+
1

2

n∑
i=1

∥∥∥∥∥τ
j+1∑
k=0

[∣∣∣∣∂Uk∂xi

∣∣∣∣2 − ∣∣∣∣∂uki∂xi

∣∣∣∣2
]∥∥∥∥∥

2

(15)

+
τ2

2

n∑
i=1

∥∥∥∥∥∥
∣∣∣∣∂U j+1

∂xi

∣∣∣∣2 −
∣∣∣∣∣∂uj+1

i

∂xi

∣∣∣∣∣
2
∥∥∥∥∥∥
2

≤
n∑
i=1

ηi
∥∥zj∥∥2 + 1

2

n∑
i=1

∥∥∥∥∥τ
j∑

k=1

[∣∣∣∣∂Uk∂xi

∣∣∣∣2 − ∣∣∣∣∂uki∂xi

∣∣∣∣2
]∥∥∥∥∥

2
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+2τ
n∑
i=1

(ψj+1
i , zj) + 2τ

n∑
i=1

(ψj+1
i , τzj+1

it̄ ).

Note that,

(16)
n∑
i=1

ηiz
j+1
i =

n∑
i=1

ηi(U
j+1 − uj+1

i ) = zj+1,
n∑
i=1

ηi
∥∥zj∥∥2 =

∥∥zj∥∥2 .
Using the Jensen’s inequality [13] we have(

n∑
i=1

ηiz
j+1
i

)2

≤
n∑
i=1

ηi

n∑
i=1

ηi

(
zj+1
i

)2
=

n∑
i=1

ηi

(
zj+1
i

)2
,

and thus,

(17)
∥∥zj+1

∥∥2 =

∥∥∥∥∥
n∑
i=1

ηiz
j+1
i

∥∥∥∥∥
2

≤
n∑
i=1

ηi

∥∥∥zj+1
i

∥∥∥2 .
Applying assumptions on f j+1

i and ηi we have

(18)

n∑
i=1

ψ
j+1

i (x) = −
n∑
i=1

∂

∂xi

[(
1 + τ

j+1∑
k=1

∣∣∣∣∂Uk∂xi

∣∣∣∣2
)
∂U j+1

∂xi

]

+

n∑
i=1

ηi

n∑
ℓ=1

∂

∂xℓ

[(
1 + τ

j+1∑
k=1

∣∣∣∣∂Uk∂xℓ

∣∣∣∣2
)
∂U j+1

∂xℓ

]

+
n∑
i=1

ηif
j+1(x)−

n∑
i=1

f j+1
i (x) = 0.

So, we have property of sum approximation

n∑
i=1

ψj+1
i (x) = O(τ).

Taking into account relations (16) - (18) and Schwarz inequality we get from (15)

∥∥zj+1
∥∥2 + n∑

i=1

ηiτ
2
∥∥∥zj+1
it̄

∥∥∥2 + 1

2

n∑
i=1

∥∥∥∥∥τ
j+1∑
k=1

[∣∣∣∣∂Uk∂xi

∣∣∣∣2 − ∣∣∣∣∂uki∂xi

∣∣∣∣2
]∥∥∥∥∥

2

≤
∥∥zj∥∥2 + 1

2

n∑
i=1

∥∥∥∥∥τ
j∑

k=1

[∣∣∣∣∂Uk∂xi

∣∣∣∣2 − ∣∣∣∣∂uki∂xi

∣∣∣∣2
]∥∥∥∥∥

2

+2τ(O(τ), zj) + τ2
∥∥ψj+1

∥∥2 + n∑
i=1

ηiτ
2
∥∥∥zj+1
it̄

∥∥∥2 .
Here we used the following inequality

2τ
n∑
i=1

(ψj+1
i , τzj+1

it̄ ) = 2
n∑
i=1

(η
−1/2
i τψj+1

i , η
1/2
i τzj+1

it̄ )

≤
n∑
i=1

η−1
i τ2

∥∥∥ψj+1
i

∥∥∥2 + n∑
i=1

ηiτ
2
∥∥∥zj+1
it̄

∥∥∥2
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and the notation ∥∥ψj+1
∥∥2 =

n∑
i=1

η−1
i

∥∥∥ψj+1
i

∥∥∥2.
Using boundedness of

∥∥ψj+1
∥∥ we find

(19)

∥∥zj+1
∥∥2 + 1

2

n∑
i=1

∥∥∥∥∥τ
j+1∑
k=1

[∣∣∣∣∂Uk∂xi

∣∣∣∣2 − ∣∣∣∣∂uki∂xi

∣∣∣∣2
]∥∥∥∥∥

2

≤
∥∥zj∥∥2 + 1

2

n∑
i=1

∥∥∥∥∥τ
j∑

k=1

[∣∣∣∣∂Uk∂xi

∣∣∣∣2 − ∣∣∣∣∂uki∂xi

∣∣∣∣2
]∥∥∥∥∥

2

+ 2τ(O(τ), zj) +O(τ2).

Summing (19) with respect to j from 0 to m− 1 we get

(20)

∥zm∥2 + τ

2

n∑
i=1

∥∥∥∥∥
∣∣∣∣∂Um∂xi

∣∣∣∣2 − ∣∣∣∣∂umi∂xi
∣∣∣∣2
∥∥∥∥∥
2

≤ 2τ
m−1∑
j=0

(
O(τ), zj

)
+ Cτ

≤ τ

m−1∑
j=0

[
O(τ2) +

∥∥zj∥∥2]+O(τ) ≤ τ

m−1∑
j=0

∥∥zj∥∥2 + Cτ.

The desired result of Theorem 3.1 now follows from (20) by the standard discrete
Gronwall lemma (see, for example [25]).

4. Finite difference scheme for one-dimensional case

Let us consider one-dimensional case of problem (3) - (5). So, let Ω = (0, 1) and
in the domain (0, 1)×(0, T ) consider the following one-dimensional initial-boundary
value problem:

(21)
∂U

∂t
− ∂

∂x

1 +

t∫
0

∣∣∣∣∂U∂x
∣∣∣∣2 dτ

 ∂U

∂x

 = f(x, t), (x, t) ∈ (0, 1)× (0, T ),

(22) U(0, t) = U(1, t) = 0, t ∈ [0, T ],

(23) U(x, 0) = 0. x ∈ [0, 1],

The numerical resolution of multi-dimensional integro-differential model (3) can
be now reduced to the one-dimensional (21) type models, numerical realization
of which can be done using early investigated finite difference and finite element
schemes (see, for example, [9], [12], [15], [18]). Here we give numerical realization
algorithm for carrying out the numerical experiments using finite difference scheme.
Results of those numerical experiments is given in Section 6.

In order to describe the finite difference method we introduce a net whose mesh
points are denoted by (xm, tj) = (mh, jτ), wherem = 0, 1, ...,M ; j = 0, 1, ..., J with
h = 1/M and again τ = T/J . The initial line is denoted by j = 0. The discrete
approximation at (xm, tj) is denoted by ujm and the exact solution to problem (21)
- (23) at those points by U jm. We will use the following known notations [25]:

ujx,m = ujx̄,m+1 =
ujm+1 − ujm

h
, (u, v)h =

M−1∑
m=1

umvmh, ∥u∥h = (u, u)
1/2
h .
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Let us correspond to problem (21) - (23) the difference scheme:

(24)

uj+1
m − ujm

τ
−

{[
1 + τ

j+1∑
k=1

(ukx̄,m)2

]
uj+1
x̄,m

}
x

= f jm,

m = 1, 2, ...,M − 1; j = 0, 1, ..., J − 1,

(25) uj0 = ujM = 0, j = 0, 1, ..., J,

(26) u0m = 0, m = 0, 1, ...,M.

In [9], [12] the following theorem of convergence was proved.

Theorem 4.1. Let us U ∈ C4, 2
x, t (Q), then the solution uj = (uj1, u

j
2, . . . , u

j
M−1),

j = 1, 2, . . . , J of the difference scheme (24) - (26) tends to solution of problem (21)

- (23) U j = (U j1 , U
j
2 , . . . , U

j
M−1), j = 1, 2, . . . , J as τ → 0, h→ 0, and the following

estimate holds

∥uj − U j∥h ≤ C(τ + h), j = 1, 2, . . . , J.

5. Numerical implementation remarks

We now comment on the numerical implementation of the discrete problem (24)
- (26). Note that (24) can be rewritten as:

uj+1
m − ujm

τ
− 1

h

{[
1 + τ

j+1∑
k=1

(
ukm+1 − ukm

h

)2
]
uj+1
m+1 − uj+1

m

h

−

[
1 + τ

j+1∑
k=1

(
ukm − ukm−1

h

)2
]
uj+1
m − uj+1

m−1

h

}
= f jm,

m = 1, . . . ,M − 1.

Let

Aℓm = 1 + τ
ℓ∑

k=1

[(
ukm+1 − ukm

h

)2
]
, m = 0, 1, . . . ,M − 1,

then (24) becomes

(27)

uj+1
m − ujm

τ
− 1

h

{
Aj+1
m

uj+1
m+1 − uj+1

m

h
− Aj+1

m−1

uj+1
m − uj+1

m−1

h

}
= f jm,

m = 1, 2, . . . ,M − 1.

System (27) can be written in a matrix form

H
(
uj+1

)
≡ G

(
uj+1

)
− 1

τ
uj − f j = 0.

The vector u containing all the unknowns u1, . . . , uM−1 at the level indicated. The
vector G is given by

G
(
uj+1

)
= Tj+1uj+1,
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where the (M −1)× (M −1) matrix T is symmetric and tridiagonal with elements:

(28) Tℓ
rs =



− 1

h2
Aℓr−1, s = r − 1,

1

τ
+

1

h2
(
Aℓr +Aℓr−1

)
, s = r,

− 1

h2
Aℓr, s = r + 1,

0, otherwise,

where r = 0, 1, . . . ,M − 1, s = 0, 1, . . . ,M − 1, and ℓ = 1, 2, . . . , J − 1.
Newton method for the system is given by

∇H
(
uj+1

) ∣∣∣∣(k)
(
uj+1

∣∣∣∣(k+1)

− uj+1

∣∣∣∣(k)
)

= −H
(
uj+1

) ∣∣∣∣(k),
where k is the number of iterations. The elements of the matrix ∇H

(
uj+1

)
require

the derivative of A. The elements are

∂Aj+1
r−1

∂uj+1
s

= − τ

h2
∂

∂uj+1
s

[(
uj+1
r − uj+1

r−1

)2]
=



2τ

h
uj+1
x̄,r , s = r − 1,

−2τ

h
uj+1
x̄,r , s = r,

0, otherwise,

and

∂Aj+1
r

∂uj+1
s

= − τ

h2
∂

∂uj+1
s

[(
uj+1
r+1 − uj+1

r

)2]
=



2τ

h
uj+1
x,r , s = r,

−2τ

h
uj+1
x,r , s = r + 1,

0, otherwise.

Combining (28) and two relations above for partial derivatives we have

∇H
(
uj+1

) ∣∣∣∣
r s

=



− 1

h2
Aj+1
r−1 −

2τ

h2

(
uj+1
x̄,r

)2
, s = r − 1,

1

τ
+

1

h2

(
Aj+1
r +Aj+1

r−1

)
+
2τ

h2
(
uj+1
x,r

)2
+

2τ

h2

(
uj+1
x̄,r

)2
, s = r,

− 1

h2
Aj+1
r − 2τ

h2
(
uj+1
x,r

)2
, s = r + 1,

0, otherwise.

Let us state well-known statement (see, for example, [22]).

Theorem 4.2 Given the nonlinear system of equations

Hm (y1, . . . , yM−1) = 0, m = 1, 2, . . . ,M − 1.
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If Hm are three times continuously differentiable in a region containing the solution
ξ1, . . . , ξM−1 and the Jacobian does not vanish in that region, then Newton method
converges at least quadratically.

The Jacobian in this theorem is the matrix ∇H computed above. The term
1/τ on diagonal ensures that the Jacobian does not vanish. The differentiability is
guaranteed, since ∇H is quadratic. Newton method is costly, because the matrix
changes at every step of the iteration. One can use modified Newton method (keep
the same matrix for several iterations) but the rate of convergence will be slower.

6. Results of numerical experiments

The study of operator splitting techniques has a long history and has been pur-
sued with various methods. Since alternating-direction methods and fractional step
methods these procedures, which reduce the time-stepping of multi-dimensional
problems to locally one-dimensional computations, have been applied in the nu-
merical simulation of many practically important problems.
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Figure 1. The exact (top) and numerical (bottom) solutions at
t = 0.2.
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Figure 2. The exact (top) and numerical (bottom) solutions at
t = 1.

Beginning from the basic works [2], [3], [23] the methods of constructing of
effective algorithms for the numerical solution of the multi-dimensional problems
of the mathematical physics and the sphere of problems solvable with the help of
those algorithms were essentially extended. At present there are some effective
algorithms for solving the multi-dimensional problems of the mathematical physics
(see, for example, [21], [25], [28] and references therein). Those algorithms mainly
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belong to the methods of splitting-up or sum approximation according to their
approximating properties.

Here we consider the following test example: let us consider case n = 2, Ω =
(0, 1)× (0, 1) and let us choose the right side of the equation (3) so that the exact
solution is given by

U(x1, x2, t) = x1x2(1− x1)(1− x2) sin(t).

Parameters used here are T = 1, τ = 0.004 and for spatial discretization we used
h1 = h2 = 0.02. Results of test experiment for exact and numerical solution are
given on Figures 1 and 2.

For the errors analysis the maximum of the absolute values of errors between
exact and numerical solutions for different time levels are shown in Table 1 and
Figures 3.

Table 1. Errors.

t Absolute Values of Errors Between Exact and Numerical Solutions

0.1 0.0021162280
0.2 0.0053472308
0.3 0.0072442167
0.4 0.0085204597
0.5 0.0079440224
0.6 0.0074552945
0.7 0.0064486412
0.8 0.0050587253
0.9 0.0038834107
1 0.0025198852
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Figure 3. The differences between exact and numerical solutions
at t = 0.2 (top) and at t = 1 (bottom).

We have carried out with several other numerical experiments and observed the
same situation.

We also run test experiments for different values of time step τ and get the rate
of convergence as in Theorem 3.1 (Table 2).
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Table 2. The empirical rate of convergence in the error energy
norm for τ .

τ Error Rate for τ

0.002 0.0084650404 0.4889140184
0.0005 0.0042980698 0.5420998137
0.0004 0.0038083651 0.5055851868
0.0002 0.0026825156

7. Conclusions

We will try to make some comments on the results we obtained. The additive
averaged semi-discrete scheme for nonlinear multi-dimensional integro-differential
equation of parabolic type is studied. The investigated equation is some gener-
alization of integro-differential model which is based on the well-known Maxwell
system arising in mathematical simulation of electromagnetic field penetration into
a medium. Unique solvability of the first type initial-boundary value problem is
given. Reduction of multi-dimensional model to one-dimensional ones is discussed
and convergence theorem with order of convergence is proved. For two-dimensional
case the numerical experiments supporting the theoretical findings are presented.
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