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A CONFORMING DISCONTINUOUS GALERKIN FINITE

ELEMENT METHOD: PART III

XIU YE AND SHANGYOU ZHANG

Abstract. The conforming discontinuous Galerkin (CDG) finite element methods were intro-
duced in [12] on simplicial meshes and in [13] on polytopal meshes. The CDG method gets
its name by combining the features of both conforming finite element method and discontinuous
Galerkin (DG) finite element method. The goal of this paper is to continue our efforts on simplify-

ing formulations for the finite element method with discontinuous approximation by constructing
new spaces for the gradient approximation. Error estimates of optimal order are established for
the corresponding CDG finite element approximation in both a discrete H1 norm and the L2

norm. Numerical results are presented to confirm the theory.

Key words. Weak gradient, discontinuous Galerkin, stabilizer/penalty free, finite element meth-
ods, second order elliptic problem.

1. Introduction

Finite element methods with discontinuous approximation are flexible in finite
element construction and mesh generation. However, when discontinuous approx-
imation is used, finite element formulations tend to be more complex to ensure
connection of discontinuous function across element boundary. For example, stabi-
lizing/penalty terms are often needed in finite element methods with discontinuous
approximations to enforce connection of discontinuous functions across element
boundaries [2, 4, 5, 6, 7, 9, 10]. Removing stabilizing term from discontinuous
finite element methods will reduce the complexity of formulation and computer
programming.

Aiming on simplifying finite element formulation with discontinuous approxima-
tion, conforming discontinuous Galerkin finite element methods have been devel-
oped in [12] on simplicial mesh and in [13] on polytopal mesh for the following
model problem: seek an unknown function u satisfying

−∆u = f in Ω,(1)

u = 0 on ∂Ω,(2)

where Ω is a bounded polytopal domain in Rd. The weak form of the problem
(1)-(2) is given as follows: find u ∈ H1

0 (Ω) such that

(∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω).(3)

Conforming discontinuous Galerkin finite element method by name maintains the
flexibility of DG methods and the features of conforming finite element method
such as simple formulation: find uh ∈ Vh such that

(4) (∇wuh,∇wv) = (f, v) ∀v ∈ Vh,

where ∇w is a approximation of gradient ∇. Construction of the space to approxi-
mate ∇ is the key of maintaining ultra simple formulation (4). In [13], gradient is
approximated by a polynomial of order j = k + n − 1 with n the number of sides
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of polygonal element. This result has been improved in [1] by reducing the degree
of polynomial j. In [8], Wachspress coordinates are used to approximate ∇, which
are usually rational functions, instead of polynomials.

The goal of this paper is to develop a new CDG finite element method with a
different philosophy to approximate gradient ∇. In this method, we use piecewise
low order polynomial to approximate ∇w instead of using one piece high order
polynomial in [13]. Optimal order error estimates are established for the corre-
sponding conforming DG approximations in both a discrete H1 norm and the L2

norm. Numerical results are presented verifying the theorem.

2. Preliminaries

For any given polygon D ⊆ Ω, we use the standard definition of Sobolev spaces
Hs(D) with s ≥ 0. The associated inner product, norm, and semi-norms in Hs(D)
are denoted by (·, ·)s,D, ∥ · ∥s,D, and | · |s,D, respectively. When s = 0, H0(D)
coincides with the space of square integrable functions L2(D). In this case, the
subscript s is suppressed from the notation of norm, semi-norm, and inner products.
Furthermore, the subscript D is also suppressed when D = Ω.

Let Th be a partition of the domain Ω consisting of polygons in two dimension or
polyhedra in three dimension satisfying a set of conditions specified in [11]. Denote
by Eh the set of all edges/faces in Th, and let E0

h = Eh\∂Ω be the set of all interior
edges/faces. For simplicity, we will use term edge for edge/face without confusion.

Let Pk(K) consist all the polynomials degree less or equal to k defined on K. A
finite element space Vh is defined for k ≥ 1 as

(5) Vh =
{
v ∈ L2(Ω) : v|T ∈ Pk(T ), T ∈ Th

}
.

Let T1 and T2 be two polygons/polyhedrons in Th sharing e ∈ Eh. For e ∈ Eh and
v ∈ Vh +H1(Ω), the jump [v] is defined as

(6) [v] = v if e ⊂ ∂Ω, [v] = v|T1 − v|T2 if e ∈ E0
h.

The order of T1 and T2 is not essential. For e ∈ Eh and v ∈ Vh+H1(Ω), the average
{v} is defined as

(7) {v} = 0 if e ⊂ ∂Ω, {v} =
1

2
(v|T1 + v|T2) if e ∈ E0

h.

The space H(div; Ω) is defined as the set of vector-valued functions on Ω which,
together with their divergence, are square integrable; i.e.,

H(div; Ω) =
{
v ∈ [L2(Ω)]d : ∇ · v ∈ L2(Ω)

}
.

For any T ∈ Th, it can be divided in to a set of disjoint triangles Ti with T = ∪Ti.
Then Λh(T ) can be defined as

(8) Λk(T ) = {v ∈ H(div, T ), v|Ti ∈ RTk(T )},

where RTk(T ) is the usual Raviart-Thomas element of order k [3].
For a function v ∈ Vh +H1(Ω), its weak gradient ∇wv is defined as a piecewise

vector valued polynomial such that ∇wv|T ∈ Λk(T ) and satisfies the following
equation,

(9) (∇wv,q)T = −(v,∇ · q)T + ⟨{v},q · n⟩∂T ∀q ∈ Λk(T ).
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For simplicity, we adopt the following notations,

(v, w)Th
=

∑
T∈Th

(v, w)T =
∑
T∈Th

∫
T

vwdx,

⟨v, w⟩∂Th
=

∑
T∈Th

⟨v, w⟩∂T =
∑
T∈Th

∫
∂T

vwds.

3. CDG Method on Polytopal Mesh

In this section, we introduce the conforming DG Method and investigate the
well-posedness of the method.

Algorithm 1. A conforming DG finite element method for the problem (1)-(2)
seeks uh ∈ Vh satisfying

(∇wuh,∇wv)Th
= (f, v) ∀v ∈ Vh.(10)

Next we introduce a semi-norms |||v||| and a norm ∥v∥1,h for any v ∈ Vh +H1
0 (Ω)

as follows:

|||v|||2 =
∑
T∈Th

(∇wv,∇wv)T ,(11)

∥v∥21,h =
∑
T∈Th

∥∇v∥2T +
∑
e∈Eh

h−1
e ∥[v]∥2e.(12)

For any function φ ∈ H1(T ), the following trace inequality holds true (see [11]
for details):

(13) ∥φ∥2e ≤ C
(
h−1
T ∥φ∥2T + hT ∥∇φ∥2T

)
.

Lemma 3.1. For a given v ∈ Vh and T ∈ Th, there exists a q0 ∈ Λk(T ) such that,

(14) (∇v,q0)T = 0, and ⟨{v} − v,q0 · n⟩∂T = ∥{v} − v∥2∂T ,
and

∥q0∥T ≤ Ch
1/2
T ∥{v} − v∥∂T .(15)

Proof. This lemma is from the definition of RT finite elements. Let T = ∪n
i=1Ti be

decomposed to n triangles/tetrahedra and Λk = {q ∈ H(div, T ) | q|Ti ∈ RTk}.
We define a q0 ∈ Λk by∫

e

(q0 · n− {v}+ v)pkds = 0 ∀pk ∈ Pk(e), e ∈ ∂T ∩ ∪∂Ti,∫
e

(q0 · n− 0)pkds = 0 ∀pk ∈ Pk(e), e ∈ ∪∂Ti \ ∂T,∫
Ti

(q0 − 0) · pk−1dx = 0 ∀pk−1 ∈ (Pk−1(Ti))
d, 1 ≤ i ≤ n,

where e is a face-edge/polygon of Ti. e can be part of a face of T . For example,
a polygon face of T has to be subdivided in to several triangles, faces of some
subtetrahedra Ti. Since q0 · n is a Pk polynomial, q0 · n = {v} − v and

⟨{v} − v,q0 · n⟩∂T =
∑
e∈∂T

∫
e

({v} − v)2ds = ∥{v} − v∥2∂T .

Since ∇v is a vector Pk−1 polynomial, we have

(∇v,q0)T =

n∑
i=1

∫
Ti

q0 · pk−1dx = 0.
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Assuming T is a shape regular, size one polygon/polyhedron, by the finite dimen-
sional matrix norm, we have ∥q0∥T ≤ C∥{v}− v∥∂T . (15) follows by scaling T . �

Lemma 3.2. There exist two positive constants C1 and C2 independent of mesh
size h such that for any v ∈ Vh, we have

(16) C1∥v∥1,h ≤ |||v||| ≤ C2∥v∥1,h.

Proof. For any v ∈ Vh, it follows from the definition of weak gradient (9) and
integration by parts that for all q ∈ Λk(T )

(∇wv,q)T = −(v,∇ · q)T + ⟨{v},q · n⟩∂T
= (∇v,q)T − ⟨v − {v},q · n⟩∂T .(17)

By letting q = ∇wv in (17) we arrive at

(∇wv,∇wv)T = (∇v,∇wv)T − ⟨v − {v},∇wv · n⟩∂T .
It is easy to see that the following equations hold true for {v} defined in (7) on T
with e ⊂ ∂T ,

(18) ∥v − {v}∥e = ∥[v]∥e if e ⊂ ∂Ω, ∥v − {v}∥e =
1

2
∥[v]∥e if e ∈ E0

h.

From (18), (13) and the inverse inequality we have

∥∇wv∥2T ≤ ∥∇v∥T ∥∇wv∥T + ∥v − {v}∥∂T ∥∇wv∥∂T
≤ ∥∇v∥T ∥∇wv∥T + Ch

−1/2
T ∥v − {v}∥∂T ∥∇wv∥T

≤ ∥∇v∥T ∥∇wv∥T + Cαh
−1/2
T ∥[v]∥∂T ∥∇wv∥T

which implies

∥∇wv∥T ≤ C
(
∥∇v∥T + Cαh

−1/2
T ∥[v]∥∂T

)
,

and consequently

|||v||| ≤ C2∥v∥1,h.
Next we will prove C1∥v∥1,h ≤ |||v|||. For v ∈ Vh and q ∈ Λh(T ), by (9) and

integration by parts, we have

(19) (∇wv,q)T = (∇v,q)T + ⟨{v} − v,q · n⟩∂T .
Letting q = q0 defined in Lemma 3.1 in (19) and using (14)-(15) give

∥{v} − v∥2e ≤ C∥∇wv∥T ∥q0∥T ≤ Ch
1/2
T ∥∇wv∥T ∥{v} − v∥e,

which gives

(20) h
−1/2
T ∥{v} − v∥∂T ≤ C∥∇wv∥T .

Using (18) and summing the both sides of (20) over T , we obtain

(21)
∑
e∈Eh

h−1
e ∥[v]∥2e ≤ C|||v|||2.

It follows from the trace inequality, the inverse inequality and (20),

∥∇v∥2T ≤ ∥∇wv∥T ∥∇v∥T + Ch
−1/2
T ∥{v} − v∥∂T ∥∇v∥T ≤ C∥∇wv∥T ∥∇v∥T ,

which implies

(22)
∑
T∈Th

∥∇v∥2T ≤ C|||v|||2.
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Combining (21) and (22), we prove the lower bound of (16) and complete the
proof of the lemma. �

4. Error Estimates

In this section, optimal order error estimates are established for the correspond-
ing conforming DG approximations in both a discrete H1 norm and the L2 norm.
First we will derive the equations errors satisfied.

4.1. Error Equations. Let Qh be the element-wise defined L2 projection onto
Λk(T ) on each element T ∈ Th.

Lemma 4.1. Let ϕ ∈ H1
0 (Ω), then one has that for any q ∈ ∪T∈Th

Λk(T )

(23) (∇wϕ,q)Th
= (Qh∇ϕ,q)Th

.

Proof. Using (9) and integration by parts, we have that for any q ∈ ∪T∈Th
Λk(T )

(∇wϕ,q)Th
= −(ϕ,∇ · q)Th

+ ⟨{ϕ},q · n⟩∂Th

= −(ϕ,∇ · q)Th
+ ⟨ϕ,q · n⟩∂Th

= (∇ϕ,q)Th

= (Qh∇ϕ,q)Th
,

which proves the lemma. �

Let Qh be the element-wise defined L2 projection onto Pk(T ) on each element
T ∈ Th. Let eh = u − uh and ϵh = Qhu − uh. Next we derive the error equations
that eh and ϵh satisfy.

Lemma 4.2. For any v ∈ Vh, one has,

(∇weh,∇wv)Th
= ℓ1(u, v),(24)

(∇wϵh,∇wv)Th
= ℓ1(u, v) + ℓ2(u, v),(25)

where

ℓ1(u, v) = ⟨(∇u−Qh∇u) · n, v − {v}⟩∂Th
,

ℓ2(u, v) = (∇w(Qhu− u),∇wv)Th
.

Proof. It follows (7) that

(26)
∑
T∈Th

⟨∇u · n, {v}⟩∂T = 0.

Testing (1) by any v ∈ Vh, using integration by parts and (26), we arrive at

(27) (∇u,∇v)Th
− ⟨∇u · n, v − {v}⟩∂Th

= (f, v).

It follows from integration by parts, (9) and (23) that

(∇u,∇v)Th
= (Qh∇u,∇v)Th

= −(v,∇ · (Qh∇u))Th
+ ⟨v,Qh∇u · n⟩∂Th

= (Qh∇u,∇wv)Th
+ ⟨v − {v},Qh∇u · n⟩∂Th

= (∇wu,∇wv)Th
+ ⟨v − {v},Qh∇u · n⟩∂Th

.(28)

Using (27) and (28), we have

(∇wu,∇wv)Th
= (f, v) + ℓ1(u, v).(29)

The error equation (24) follows from subtracting (10) from (29),

(∇weh,∇wv)Th
= ℓ1(u, v) ∀v ∈ Vh.
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By adding ∇wQhu to the both sides of the equation above, we obtain (25). This
completes the proof of the lemma. �
4.2. Error Estimates in Energy Norm.

Lemma 4.3. For any w ∈ Hk+1(Ω) and v ∈ Vh, we have

|ℓ1(w, v)| ≤ Chk|w|k+1|||v|||,(30)

|||w −Qhw||| ≤ Chk|w|k+1,(31)

|ℓ2(w, v)| ≤ Chk|w|k+1|||v|||.(32)

Proof. Using the Cauchy-Schwarz inequality, the trace inequality (13), (18) and
(16), we have

|ℓ1(w, v)| =

∣∣∣∣∣ ∑
T∈Th

⟨(∇w −Qh∇w) · n, v − {v}⟩∂T

∣∣∣∣∣
≤ C

∑
T∈Th

∥∇w −Qh∇w∥∂T ∥v − {v}∥∂T

≤ C

(∑
T∈Th

hT ∥(∇w −Qh∇w)∥2∂T

) 1
2
(∑

e∈Eh

h−1
e ∥[v]∥2e

) 1
2

≤ Chk|w|k+1|||v|||,
which proves (30). It follows from (9), integration by parts, (13) and (18),

|(∇w(w −Qhw),q)T |
= | − (w −Qhw,∇ · q)T + ⟨{w −Qhw},q · n⟩∂T |
= |(∇(w −Qhw),q)T − ⟨w −Qhw − {w −Qhw},q · n⟩∂T |
≤ ∥∇(w −Qhw)∥T ∥q∥T + Ch−1/2∥[w −Qhw]∥∂T ∥q∥T
≤ Chk|w|k+1,T ∥q∥T .

Letting q = ∇w(w − Qhw) in the above equation and taking summation over T ,
we have

|||w −Qhw||| ≤ Chk|w|k+1.

The estimate above implies

ℓ2(w, v) = (∇w(Qhw − w),∇wv)Th

≤ |||Qhw − w||||||v|||
≤ Chk|w|k+1|||v|||,

which implies (32). We have proved the lemma. �
Theorem 4.1. Let uh ∈ Vh be the finite element solution of (10). Assume the
exact solution u ∈ Hk+1(Ω). Then, there exists a constant C such that

|||u− uh||| ≤ Chk|u|k+1,(33)

∥u− uh∥1,h ≤ Chk|u|k+1.(34)

Proof. Letting v = ϵh in (25) gives

|||ϵh|||2 = ℓ1(u, ϵh) + ℓ2(u, ϵh).(35)

Applying (30) and (32) to the equation (35) yields

|||ϵh||| ≤ Chk|u|k+1.(36)
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It follows from the triangle inequality, (36) and (31)

|||u− uh||| ≤ |||Qhu− uh|||+ |||u−Qhu||| ≤ Chk|u|k+1,(37)

which implies (35). Using (16) and (36), we have

∥u− uh∥1,h ≤ ∥u−Qhu∥1,h + ∥Qhu− uh∥1,h
≤ C(∥u−Qhu∥1,h + |||Qhu− uh|||)
≤ Chk|u|k+1,

which completes the proof of the lemma. �

4.3. Error Estimates in L2 Norm. Consider a dual problem that seeks Φ ∈
H1

0 (Ω) satisfying

−∆Φ = eh in Ω.(38)

Assume that the following H2-regularity holds

(39) ∥Φ∥2 ≤ C∥eh∥.

Recall eh = u− uh and ϵh = Qhu− uh.

Theorem 4.2. Let uh ∈ Vh be the finite element solution of (10). Assume that the
exact solution u ∈ Hk+1(Ω) and (39) holds true. Then, there exists a constant C
such that

(40) ∥u− uh∥ ≤ Chk+1|u|k+1.

Proof. Testing (38) by eh and using the fact that
∑

T∈Th
⟨∇Φ · n, {eh}⟩∂T = 0 and

(9) give

∥eh∥2 = −(∆Φ, eh) = (∇Φ, ∇eh)Th
− ⟨∇Φ · n, eh − {eh}⟩∂Th

= (Qh∇Φ, ∇eh)Th
+ (∇Φ−Qh∇Φ, ∇eh)Th

− ⟨∇Φ · n, eh − {eh}⟩∂Th

= −(∇ ·Qh∇Φ, eh)Th
+ ⟨Qh∇Φ · n, eh⟩∂Th

+ (∇Φ−Qh∇Φ, ∇eh)Th
− ⟨∇Φ · n, eh − {eh}⟩∂Th

= (Qh∇Φ, ∇weh)Th
+ ⟨Qh∇Φ · n, eh − {eh}⟩∂Th

+ (∇Φ−Qh∇Φ, ∇eh)Th
− ⟨∇Φ · n, eh − {eh}⟩∂Th

= (Qh∇Φ, ∇weh)Th
+ (∇Φ−Qh∇Φ, ∇eh)Th

− ℓ1(Φ, eh).

It follows from (23), (24) and the fact Φ = 0 on ∂Ω that

(Qh∇Φ, ∇weh)Th
= (∇wΦ, ∇weh)Th

= (∇wQhΦ, ∇weh)Th
+ (∇w(Φ−QhΦ), ∇weh)Th

= ℓ1(u,QhΦ) + (∇w(Φ−QhΦ), ∇weh)Th
.

Combining the two equations above gives

∥eh∥2 = ℓ1(u,QhΦ) + (∇w(Φ−QhΦ), ∇weh)Th

+ (∇Φ−Qh∇Φ, ∇eh)Th
− ℓ1(Φ, eh).(41)
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Figure 1. The first three levels of quadrilateral grids for Table 1.

Next we will estimate all the terms on the right hand side of (41). Using the
Cauchy-Schwarz inequality, the trace inequality (13) and (18) we obtain

|ℓ1(u,QhΦ)|
≤ |⟨(∇u−Qh∇u) · n, QhΦ− {QhΦ}⟩∂Th

|

≤ C

(∑
T∈Th

h∥(∇u−Qh∇u)∥2∂T

)1/2(∑
T∈Th

h−1∥[QhΦ− Φ]∥2∂T

)1/2

≤ Chk+1|u|k+1|Φ|2.
It follows from (33) and (31) that

|(∇weh, ∇w(Φ−QhΦ))Th
| ≤ C|||eh||||||Φ−QhΦ||| ≤ Chk+1|u|k+1|Φ|2.

The estimate (34) implies

|(∇Φ−Qh∇Φ, ∇eh)Th
| ≤ C(

∑
T∈Th

∥∇Φ−Qh∇Φ∥2T )1/2∥eh∥1,h

≤ Chk+1|u|k+1|Φ|2.
Using (16), (18), (36), and (31), we obtain

|ℓ1(Φ, eh)| =

∣∣∣∣∣ ∑
T∈Th

⟨(Qh∇Φ−∇Φ) · n, eh − {eh}⟩∂T

∣∣∣∣∣
≤

∑
T∈Th

h
1/2
T ∥Qh∇Φ−∇Φ∥∂Th−1/2

T ∥[eh]∥∂T

≤ Ch∥Φ∥2(
∑
T∈Th

h−1
T (∥[εh]∥2∂T + ∥[u−Qhu]∥2∂T )1/2

≤ Ch∥Φ∥2(|||εh|||+ (
∑
T∈Th

h−1
T ∥[u−Qhu]∥2∂T )1/2

≤ Chk+1|u|k+1∥Φ∥2.
Combining all the estimates above with (41) yields

∥eh∥2 ≤ Chk+1|u|k+1∥Φ∥2.
The estimate (40) follows from the above inequality and the regularity assumption
(39). We have completed the proof. �
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Table 1. Example 5.1. Error profile for (42) on quadrilateral
grids (Figure 1).

Grid ∥Qhu− uh∥ Rate |||Qhu− uh||| Rate
P1 CDG finite element with RT1 gradient

6 0.2575E-03 2.00 0.1593E-01 1.03
7 0.6440E-04 2.00 0.7921E-02 1.01
8 0.1610E-04 2.00 0.3955E-02 1.00

P2 CDG finite element with RT2 gradient
6 0.1118E-05 3.01 0.6222E-03 2.02
7 0.1395E-06 3.00 0.1549E-03 2.01
8 0.1744E-07 3.00 0.3869E-04 2.00

P3 CDG finite element with RT3 gradient
4 0.1961E-05 4.32 0.3487E-03 3.72
5 0.1133E-06 4.11 0.3142E-04 3.47
6 0.6941E-08 4.03 0.3429E-05 3.20

P4 CDG finite element with RT4 gradient
2 0.1300E-03 4.81 0.1633E-01 3.75
3 0.2187E-05 5.89 0.4589E-03 5.15
4 0.4354E-07 5.65 0.1610E-04 4.83

Figure 2. The first three levels of quadrilateral grids for Table 2.

5. Numerical Example

We compute two examples in 2D and one example in 3D.

5.1. Example 5.1. We solve the Poisson equation (1) on the 2D unit square
domain Ω = (0, 1)2. The exact solution is

u(x, y) = sin(πx) sin(πy).(42)

The first three quadrilateral grids are plotted in Figure 1. When computing weak
gradient, we subdivide each quadrilateral in to four triangles. The computational
results are listed in Table 1. Optimal order of convergence is achieved in all cases.

5.2. Example 5.2. We solve the Poisson equation (1) again in 2D with the ex-
act solution (42). We use polygonal grids, consisting of quadrilaterals, pentagons
and hexagons, shown in Figure 2. We subdivide each quadrilateral, pentagon and
hexagon in to 4, 5 and 6 triangles, respectively, to define the piecewise RTk space
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Table 2. Example 5.2. Error profile for (42) on polygonal grids
(Figure 2).

Grid ∥Qhu− uh∥ Rate |||Qhu− uh||| Rate
P1 CDG finite element with RT1 gradient

6 0.3574E-03 2.00 0.2070E-01 1.03
7 0.8939E-04 2.00 0.1030E-01 1.01
8 0.2235E-04 2.00 0.5143E-02 1.00

P2 CDG finite element with RT2 gradient
6 0.1083E-05 3.00 0.5480E-03 2.00
7 0.1354E-06 3.00 0.1370E-03 2.00
8 0.1692E-07 3.00 0.3424E-04 2.00

P3 CDG finite element with RT3 gradient
5 0.1110E-06 4.01 0.2999E-04 3.05
6 0.6927E-08 4.00 0.3713E-05 3.01
7 0.6613E-09 3.39 0.4629E-06 3.00

P4 CDG finite element with RT4 gradient
2 0.4829E-04 5.36 0.4935E-02 4.13
3 0.1192E-05 5.34 0.2112E-03 4.55
4 0.3421E-07 5.12 0.1086E-04 4.28
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Figure 3. The first three levels of grids used for solving (43).

for computing the weak gradient. We list the errors and the order of convergence in
Table 2. As we proved, we obtain the optimal order of convergence in both norms.

5.3. Example 5.3. We solve the Poisson equation (1) on the 3D unit cube domain
Ω = (0, 1)3, with a non-homogeneous Dirichlet boundary condition. The exact
solution is

u(x, y, z) = sin
πx

2
sin

πy

2
sin

πz

2
.(43)

We use uniform cubic grids shown in Figure 3. To compute weak gradients, we
subdivide each cube in to six tetrahedra. The computational results are listed in
Table 3. Optimal order of convergence is achieved in all cases. It seems we have a
half order superconvergence in H1-like norm, based on numerical data on this test
problem.
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Table 3. Example 5.3. Error profile for (43) on cubic grids (Fig-
ure 3.)

Grid ∥Qhu− uh∥ Rate |||Qhu− uh||| Rate
P1 CDG finite element with RT1 gradient

5 0.5668E-03 1.75 0.8767E-02 1.68
6 0.1517E-03 1.90 0.2781E-02 1.66
7 0.3901E-04 1.96 0.9106E-03 1.61

P2 CDG finite element with RT2 gradient
4 0.5311E-04 3.76 0.4049E-02 2.86
5 0.3887E-05 3.77 0.5739E-03 2.82
6 0.3062E-06 3.67 0.9165E-04 2.65

P3 CDG finite element with RT3 gradient
3 0.1013E-03 4.24 0.3856E-02 3.46
4 0.3849E-05 4.72 0.3037E-03 3.67
5 0.1331E-06 4.85 0.2188E-04 3.79
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