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ASYMPTOTICALLY EXACT A POSTERIORI ERROR

ESTIMATES FOR THE LOCAL DISCONTINUOUS

GALERKIN METHOD FOR NONLINEAR KDV

EQUATIONS IN ONE SPACE DIMENSION

MAHBOUB BACCOUCH

Abstract. In this paper, we develop and analyze an implicit a posteriori error estimates
for the local discontinuous Galerkin (LDG) method for nonlinear third-order Korteweg-de
Vries (KdV) equations in one space dimension. First, we show that the LDG error on each
element can be split into two parts. The first part is proportional to the (p+1)-degree right
Radau polynomial and the second part converges with order p+ 3

2
in the L2-norm, when

piecewise polynomials of degree at most p are used. These results allow us to construct
a posteriori LDG error estimates. The proposed error estimates are computationally
simple and are obtained by solving a local steady problem with no boundary conditions
on each element. Furthermore, we prove that, for smooth solutions, these a posteriori
error estimates converge at a fixed time to the exact spatial errors in the L2-norm under
mesh refinement. The order of convergence is proved to be p+ 3

2
. Finally, we prove that

the global effectivity index converges to unity at O(h
1
2 ) rate. Several numerical examples

are provided to illustrate the global superconvergence results and the convergence of the
proposed error estimator.

Key words. Local discontinuous Galerkin method, nonlinear KdV equations, supercon-
vergence, a posteriori error estimation.

1. Introduction

KdV-type equations describe the propagation of waves in a variety of non-
linear, dispersive media and appear often in many physical applications; see
e.g. [27, 30] and the references therein. In this paper, we propose and ana-
lyze a residual-based a posteriori error estimator for the local discontinuous
Galerkin (LDG) method for one-dimensional nonlinear Korteweg-de Vries
(KdV) equations of the form

ut + (f(u))x + uxxx = g(x, t), x ∈ Ω = [a, b], t ∈ [0, T ],(1a)

subject to the initial condition

u(x, 0) = u0(x), x ∈ [a, b],(1b)

and periodic boundary conditions. Here, g(x, t), and u0(x) are some given
smooth functions. We assume that the nonlinear flux function f(u) is suf-
ficiently smooth with respect to the variable u and the exact solution is
also smooth on [a, b] × [0, T ] for a fixed time T . For the sake of simplicity,
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we only consider periodic boundary conditions. This assumption is not es-
sential and the LDG scheme can be easily designed for purely Dirichlet or
Mixed Dirichlet-Neumann boundary conditions; see [4, 7, 13, 19] for some
discussion.

The LDGmethod is a successful numerical technique for solving linear and
nonlinear partial differential equations (PDEs) containing higher than first-
order spatial derivatives. It was first introduced by Cockburn and Shu [29]
for solving convection-diffusion problems. Since then, several LDG schemes
have been developed and analyzed for various high order differential equa-
tions in one and multiple dimensions including two-point boundary-value
problems [20, 21, 22, 23, 24], convection-diffusion problems [2, 4, 7, 13, 26,
29], second-order wave equations [3, 9, 10, 11, 14], the sine-Gordon equation
[15, 16, 17, 18, 25], KdV-type equations [12, 19, 31, 33, 34, 35, 36, 37], and the
fourth-order Euler-Bernoulli beam equation [5, 6, 8], just to mention a few.
The LDG method has many advantages over the classical numerical meth-
ods available in the literature such as the finite difference and finite element
methods. For instance, LDG methods are robust and high-order accurate,
can achieve stability without slope limiters, and are element-wise conser-
vative. Moreover, LDG methods are extremely flexible in the mesh-design,
they can easily handle meshes with hanging nodes, elements of various types
and shapes, and local spaces of different orders. As we shall see below, they
further exhibit global superconvergence properties that can be used to con-
struct asymptotically exact a posteriori error estimates by solving a local
residual problem on each element. More details about the LDG methods
for high order time dependent PDEs can be found in the review paper [35]
and the proceeding of Shu [32]. Furthermore, some LDG methods for solv-
ing high order PDEs were developed by Yan and Shu [38], which were high
order accurate and stable schemes.

In [12], we presented a posteriori error estimates for the LDG method for
the linearized KdV equation in one space dimension ut + αux + βuxxx = 0.
The proposed error estimates are computationally simple and are obtained
by solving a local steady problem with no boundary condition on each el-
ement. We proved that the significant parts of the spatial discretization
errors for the LDG solution and its spatial derivatives (up to second order)
are proportional to (p+1)-degree Radau polynomials. We used these results
to develop asymptotically exact a posteriori error estimates. We also proved
that, for smooth solutions, the proposed a posteriori LDG error estimates
for the solution and its spatial derivatives, at a fixed time t, converge to the

true errors at O(hp+
3
2 ) rate. The purpose of this paper is to extend these

results to nonlinear KdV equations of the form (1). In [19], we presented
and analyzed a superconvergent LDG scheme for solving (1). Optimal a pri-
ori error estimates for the LDG solution and for the two auxiliary variables
that approximate the first- and second-order derivatives are derived in the
L2-norm. The order of convergence is proved to be p + 1. We also proved
that the derivative of the LDG solution is superconvergent with order p+1
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towards the derivative of a special projection of the exact solution. Finally,
we proved that the LDG solution is superconvergent with order p+ 3

2 toward
a special Gauss-Radau projection of the exact solution. Our proofs are valid
for arbitrary regular meshes using P p polynomials with p ≥ 1 and under the
condition that |f ′(u)| possesses a uniform positive lower bound.

In this paper, we present and analyze an implicit a posteriori LDG error
estimate for the nonlinear KdV equation (1). We use the results of the first
part of this work [19] to prove that the significant part of the spatial dis-
cretization error for the LDG solution is proportional to the (p+ 1)-degree
right Radau polynomial, when piecewise polynomials of degree at most p
are used. We use this result to construct a residual-based a posteriori error
estimate for the spatial error. The leading term of the discretization error
is estimated by solving a local steady problem with no boundary conditions
on each element. We further prove that the proposed LDG error estimate

converges to the true spatial error at O(hp+
3
2 ) rate. Finally, we prove that

the global effectivity index in the L2-norm converges to unity at O(h
1
2 ) rate.

In our analysis we proved these convergence results under mesh refinement
and at a fixed time t and time discretization is assumed to be exact. Our
proofs are valid for any regular meshes and using piecewise polynomials of
degree p ≥ 1. We would like to point out that the present LDG method has
several features over the standard numerical methods due to the following
nice properties: (i) the LDG method can be easily designed for any order of
accuracy (the order of accuracy can be locally determined in each cell, thus
allowing for efficient p-adaptivity), (ii) it can be used on arbitrary triangula-
tions, even those with hanging nodes, thus allowing for efficient h-adaptivity,
(iii) the LDG method provides optimal convergence properties for both the
solution and the auxiliary variables that approximate its derivatives, (iv)
the LDG method is extremely local in data communications (the evolution
of the solution in each cell needs to communicate only with the immedi-
ate neighbors, regardless of the order of accuracy, thus allowing for efficient
parallel implementations), and (iv) it achieves superconvergence properties,
which play a key role to construct asymptotically exact a posteriori error
estimators.

The rest of the paper is organized as follows: In section 2 we present
the semi-discrete LDG method for solving the nonlinear KdV equation (1).
We also recall some preliminary results from the first part of this work
[19], which will be needed in our error analysis. In section 3 we prove the
main superconvergence result towards the p-degree right Radau interpolat-
ing polynomial. This result will be used to prove that the LDG error can
be split into a significant part, which is proportional to the (p + 1)-degree
right Radau polynomial, and a less significant part, which converges to zero

in the L2-norm at O(hp+
3
2 ) rate. In section 4 we present and analyze our

a posteriori error estimation procedure. In section 5 we present numerical
results to illustrate the global superconvergence results and the convergence
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of the proposed error estimator. We conclude and discuss our results in
section 6.

2. The LDG scheme and preliminary results

2.1. The LDG scheme. Here, we recall the LDG scheme for solving (1)
[19]. The main idea of the LDG method is to rewrite (1) into a system of
first-order PDEs and then discretize it by the standard DG method. To do
this, we introduce two auxiliary variables q = ux and r = qx to convert (1a)
into the first-order system

ut + (f(u))x + rx = g, r − qx = 0, q − ux = 0.(2)

Next, we subdivide the domain Ω = [a, b] into N intervals Ii = [xi−1, xi], i =
1, 2, . . . , N , where a = x0 < x1 < · · · < xN = b. The length of Ii is denoted
by hi = xi − xi−1. Let h = max

1≤i≤N
hi be the length of the largest interval. In

our analysis, we assume that the mesh is quasi-regular in the sense that the
ratio between the maximum and the minimum mesh sizes stays bounded
during mesh refinements.

Let v
∣∣
i
be the value of the continuous function v at x = xi. For simplicity,

we use v−
∣∣
i
and v+

∣∣
i
to denote the left limit and the right limit of v at the

discontinuity point xi, i.e.,

v−
∣∣
i
= v(x−i , t) = lim

s→0−
v(xi + s, t), v+

∣∣
i
= v(x+i , t) = lim

s→0+
v(xi + s, t).

Multiplying the three equations in (2) by three different test functions v, w,
and z, respectively, integrating over the interval Ii, and using integration by
parts, we get

∫
Ii

utvdx−
∫
Ii

(r + f(u))vxdx+ (f(u) + r)v
∣∣
i
− (f(u) + r)v

∣∣
i−1

=

∫
Ii

gvdx,

(3a)

∫
Ii

rwdx+

∫
Ii

qwxdx− qw
∣∣
i
+ qw

∣∣
i−1

= 0,(3b) ∫
Ii

qzdx+

∫
Ii

uzxdx− uz
∣∣
i
+ uz

∣∣
i−1

= 0.(3c)

We define the following discontinuous finite element space

V p
h = {v : v|Ii ∈ P p(Ii), i = 1, 2, . . . , N},

where P p(Ii) is the space of polynomials of degree at most p on Ii with
coefficients as functions of t.
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The LDG scheme consists of finding uh, qh, rh ∈ V p
h , such that, ∀ v, w, z ∈

V p
h and ∀ i = 1, 2, . . . , N ,∫

Ii

(uh)tvdx−
∫
Ii

(rh + f(uh))vxdx

+(f̂ + r̂h)v
−∣∣

i
− (f̂ + r̂h)v

+
∣∣
i−1

=

∫
Ii

gvdx,(4a) ∫
Ii

rhwdx+

∫
Ii

qhwxdx− q̂hw
−∣∣

i
+ q̂hw

+
∣∣
i−1

= 0,(4b) ∫
Ii

qhzdx+

∫
Ii

uhzxdx− ûhz
−∣∣

i
+ ûhz

+
∣∣
i−1

= 0,(4c)

where f̂ , ûh, q̂h, and r̂h are the so-called numerical fluxes, which are, respec-
tively, the discrete approximations to f(u), u, q, and r at the nodes. In this
paper, we take the following numerical fluxes [19]:

• The numerical flux f̂ associated with the convection is taken as the
Godunov flux i.e., for i = 0, 1, . . . , N,

(4d) f̂
∣∣
i
= f̂(uh(x

−
i , t), uh(x

+
i , t)) =


min

u−
h ≤u≤u+

h

f(u), if u−h < u+h ,

max
u+
h≤u≤u−

h

f(u), if u−h ≥ u+h .

• The numerical fluxes ûh, q̂h, and r̂h can be taken as

(4e) ûh
∣∣
i
= u−h

∣∣
i
, q̂h

∣∣
i
= q+h

∣∣
i
, r̂h

∣∣
i
= r+h

∣∣
i
, i = 0, 1, . . . , N.

To complete the definition of the LDG scheme, we still need to define the
discrete initial condition uh(x, 0) ∈ V p

h . In this paper, we use a special
projection Ph of the exact initial condition u0(x)

(5) uh(x, 0) = Phu(x, 0), x ∈ Ii, i = 1, 2, . . . , N.

The projection Ph is needed to prove global superconvergence result toward
Gauss-Radau projections; see [19]. It is defined as follows: Suppose qh, rh ∈
V p
h are the unique solutions (with given Phu) to∫

Ii

rhwdx+

∫
Ii

qhwxdx− q+h w
−∣∣

i
+ q+h w

+
∣∣
i−1

= 0, ∀ w ∈ V p
h ,(6a)

∫
Ii

qhzdx+

∫
Ii

Phu zxdx− (Phu)
−z−

∣∣
i
+ (Phu)

−z+
∣∣
i−1

= 0, ∀ z ∈ V p
h ,

(6b)

then we require

(P−
h u− Phu)

−∣∣
i
= (P+

h q − qh)
+
∣∣
i
− (P+

h r − rh)
+
∣∣
i
,

(7a)

∫
Ii

(P−
h u− Phu)vdx =

∫
Ii

(
(P+

h q − qh)− (P+
h r − rh)

)
vdx, ∀ v ∈ P p−1(Ii),

(7b)
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where q = ux, r = qx, and P±
h u are two Gauss-Radau projections of u onto

V p
h defined element-by-element by the following conditions∫

Ii

(P−
h u− u)vdx = 0, ∀ v ∈ P p−1(Ii), and (P−

h u− u)−
∣∣
i
= 0,(8a) ∫

Ii

(P+
h u− u)vdx = 0, ∀ v ∈ P p−1(Ii), and (P+

h u− u)+
∣∣
i−1

= 0.(8b)

As discussed in [19, 31], Ph is only needed for technical purposes in the
proof of superconvergence results. In our numerical examples we used the
projection P−

h and observed similar conclusions.

2.2. Preliminary results. In this subsection, we recall some results from
[19] which will be needed in our error analysis. First, we introduce some
notation and definitions. The L2-norm of u(x, t) over Ii is denoted by

∥u∥0,Ii =
(∫

Ii
u2(x, t)dx

) 1
2
. LetHs(Ii), s = 0, 1, . . . be the standard Sobolev

space

Hs(Ii) =

{
u :

∫
Ii

|∂k
xu(x, t)|2dx < ∞, 0 ≤ k ≤ s

}
.

The Hs(Ii)-norm is defined as

∥u∥s,Ii =

(
s∑

k=0

∥∥∥∂k
xu(·, t)

∥∥∥2
0,Ii

) 1
2

.

The norm on the whole computational domain Ω is defined as

∥u∥s,Ω =

(
N∑
i=1

∥u∥2s,Ii

) 1
2

.

We remark that if u ∈ Hs(Ω), then ∥u∥s,Ω is the standard Sobolev norm(∑s
k=0

∥∥∂k
xu
∥∥2
0,Ω

) 1
2
.

For simplicity, we use ∥u∥ and ∥u∥s to denote ∥u∥0,Ω and ∥u∥s,Ω, respec-
tively. Finally, use ∥u(0)∥ to denote ∥u(·, t = 0)∥.

Let eu = u − uh, eq = q − qh and er = r − rh denote the errors between
the exact solutions of (2) and the LDG solutions defined in (4). We note
that the actual errors can be decomposed into two parts as

(9) eu = ϵu + ēu, eq = ϵq + ēq, er = ϵr + ēr,

where ϵu = u − P−
h u, ϵq = q − P+

h q and ϵr = r − P+
h r are the projection

errors and ēu = P−
h u− uh, ēq = P+

h q − qh and ēr = P+
h r− rh are the errors

between the LDG solutions and the projection of the exact solutions.
Throughout the paper, the letter C (with or without subscript) will denote

a generic positive constant that is independent of the mesh size h, but it
may depend upon the exact smooth solution u of (1a). Note that C is not
necessarily the same at each occurrence.
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Now, we are ready to state several error estimates from [19]. These esti-
mates will be needed in our error analysis.

Theorem 2.1. Let p ≥ 1. Let (u, q = ux, r = qx) and (uh, qh, rh) be the
exact and LDG solutions of (2) and (4), where uh(x, 0) is defined in (5). We
assume that u ∈ Hp+3(Ω) and ut ∈ Hp+1(Ω). Also, we assume that the flux
function f(u) ∈ C3

b (R), where Cm
b (D) is the set of real m-times continuously

differentiable functions which are bounded together with their derivatives up
to the mth order. Then, there exists a positive constant C independent of h
such that, ∀ t ∈ [0, T ],

∥eu∥+ ∥eq∥+ ∥(eu)t∥+ ∥er∥ ≤ Chp+1,(10a)

∥(ēu)x∥ ≤ Chp+1,(10b)

∥ēu∥ ≤ Chp+
3
2 .(10c)

Proof. All proofs can be found in [19]. More precisely, the estimate (10a)
can be found in its Theorem 3.1. The superconvergence result (10b) can be
found in its Theorem 4.1. Finally, the estimate (10c) is given in its Theorem
4.4. �

3. Superconvergence towards the right Radau interpolating poly-
nomial

In this section, we prove an important superconvergence result towards
the p-degree right Radau interpolating polynomial. This result will be used
to prove that the LDG error eu can be split into a significant part, which
is proportional to the (p + 1)-degree right Radau polynomial, and a less

significant part, which converges to zero in the L2-norm at O(hp+
3
2 ) rate.

Before we state the main superconvergence result, we need some prop-
erties of the Legendre of Radau polynomials. Let L̃p(ξ) be the Legendre
polynomial of degree p on the reference interval [−1, 1]. It can be defined
by the Rodrigues formula [1]

(11a) L̃p(ξ) =
1

2pp!

dp

dξp
(
(ξ2 − 1)p

)
, −1 ≤ ξ ≤ 1.

The Legendre polynomial satisfies the properties L̃p(1) = 1, L̃p(−1) =
(−1)p, and the orthogonality relation∫ 1

−1
L̃p(ξ)L̃q(ξ)dξ =

2

2p+ 1
δpq,(11b)

where δpq is the Kronecker symbol.
From (11a), we can easily deduce that

L̃p+1(ξ) =
(2p+ 2)!

2p+1[(p+ 1)!]2
ξp+1 + q̃p(ξ), where q̃p ∈ P p([−1, 1]),
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which gives

(11c) L̃
(p+1)
p+1 (ξ) =

(2p+ 2)!

2p+1(p+ 1)!
.

The (p+ 1)-degree right Radau polynomial on [−1, 1] is defined by

(11d) R̃p+1(ξ) = L̃p+1(ξ)− L̃p(ξ), −1 ≤ ξ ≤ 1.

We note that R̃p+1(ξ) has p+ 1 real distinct roots −1 < ξ0 < · · · < ξp = 1.
Mapping the physical element Ii into the reference element [−1, 1] by the

standard affine mapping

(11e) x =
xi + xi−1

2
+

hi
2
ξ,

we get the p-degree shifted Legendre and right Radau polynomials on Ii

Lp,i(x) = L̃p

(
2x− xi − xi−1

hi

)
, Rp,i(x) = R̃p

(
2x− xi − xi−1

hi

)
, x ∈ Ii.

Using the mapping (11e) and the orthogonality relation (11b), we obtain

∥Lp,i∥20,Ii =
∫
Ii

L2
p,i(x)dx =

hi
2

∫ 1

−1
L̃2
p(ξ)dξ =

hi
2

2

2p+ 1
=

hi
2p+ 1

.(11f)

Throughout this paper the roots of Rp+1,i(x), x ∈ Ii are denoted by

xi,j =
xi + xi−1

2
+

hi
2
ξj , j = 0, 1, . . . , p.(11g)

We note that the (p+1)-degree right Radau polynomial on Ii can be written
as

(11h) Rp+1,i(x) =
(2p+ 2)!

hp+1
i [(p+ 1)!]2

p∏
j=0

(x− xi,j).

In the next lemma, we prove some properties of Rp+1,i which will be needed
in our a posteriori error analysis.

Lemma 3.1. The (p+ 1)-degree right Radau polynomial on Ii satisfies the
following properties

∥Rp+1,i∥20,Ii = cphi, where cp =
4(p+ 1)

(2p+ 1)(2p+ 3)
,(12) ∫

Ii

R′
p+1,iLp,idx = 2.(13)
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Proof. In order to prove (12), we use the orthogonality relation (11b) to
write

∥Rp+1,i∥20,Ii =

∫
Ii

R2
p+1,i(x)dx

=
hi
2

∫ 1

−1
R̃2

p+1(ξ)dξ

=
hi
2

∫ 1

−1

(
L̃p+1(ξ)− L̃p(ξ)

)2
dξ

=
hi
2

∫ 1

−1
(L̃2

p+1(ξ) + L̃2
p(ξ)− 2L̃p+1(ξ)L̃p(ξ))dξ

=
hi
2

[
2

2p+ 3
+

2

2p+ 1

]
=

4(p+ 1)

(2p+ 1)(2p+ 3)
hi = cphi,

where cp =
4(p+1)

(2p+1)(2p+3) .

Next, we show (13). Using the definition of Rp+1,i and the orthogonality
relation (11b), we get∫

Ii

R′
p+1,iLp,idx =

∫
Ii

(
L′
p+1,i − L′

p,i

)
Lp,idx =

∫
Ii

L′
p+1,iLp,idx,

since L′
p,i is a polynomial of degree p− 1 on Ii.

Using integration by parts and the orthogonality relation (11b), we obtain∫
Ii

R′
p+1,iLp,idx

=Lp+1,i(xi)Lp,i(xi)− Lp+1,i(xi−1)Lp,i(xi−1)−
∫
Ii

Lp+1,iL
′
p,idx

=Lp+1,i(xi)Lp,i(xi)− Lp+1,i(xi−1)Lp,i(xi−1).

Since Lp+1,i(xi) = Lp,i(xi) = 1, Lp,i(xi−1) = (−1)p, and Lp+1,i(xi−1) =
(−1)p+1, we have∫

Ii

R′
p+1,iLp,idx = (1)(1)− (−1)p+1(−1)p = 2,

which completes the proof of the lemma. �

Next, we define two interpolating polynomials πu and π̂u as follows:

(1) The interpolating polynomial πu is defined element-by-element as
follows: For any function u, πu

∣∣
Ii

∈ P p(Ii) and interpolates u at

xi,j , j = 0, 1, . . . , p (the p+ 1 roots of Rp+1,i).
(2) The interpolating polynomial π̂u is also defined element-by-element

as follows: For any function u, π̂u
∣∣
Ii

∈ P p+1(Ii) and interpolates
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u at xi,j , j = 0, 1, . . . , p, and at an additional point x̄i in Ii with
x̄i ̸= xi,j , j = 0, 1, . . . , p.

Remark 3.1. The operator π̂ is needed for technical reasons in the proof
of the error estimates. We would like to mention that the interpolating
polynomial π̂u depends on the additional point x̄i. For clarity of presen-
tation, we simply choose x̄i = xi−1 (left-end point of Ii). We note that
x̄i ̸= xi,j , j = 0, 1, . . . , p. Moreover, we can easily verify the following

(14) π̂u = πu+ ci(t)Rp+1,i(x),

since both Rp+1,i(x) vanish at the Radau points xi,k, k = 0, 1, . . . , p. Using
(14) and the fact that π̂u(xi−1, t) = u(xi−1, t), we find

ci(t) =
u(xi−1, t)− πu(xi−1, t)

Rp+1,i(xi−1)
.

We note that

Rp+1,i(xi−1) = Lp+1,i(xi−1)−Lp,i(xi−1) = (−1)p+1−(−1)p = 2(−1)p+1 ̸= 0.

In the next lemma, we state and prove some properties of P−
h and π, which

play important roles in our a posteriori error analysis. In particular, we
prove that the interpolation error u − πu can be divided into a significant
and a less significant parts.

Lemma 3.2. Let P−
h and π be the Gauss-Radau and interpolating operators.

Then

πv = P−
h v, ∀ v ∈ P p+1(Ii).(15)

Moreover, if u ∈ Hp+2(Ii), t ∈ [0, T ] fixed, then the interpolation error
u− πu can be split as:

(16) u− πu = ϕi + γi, ϕi = αi(t)Rp+1,i(x), γi = u− π̂u, on Ii,

where αi(t) is the coefficient of Lp+1,i in the (p + 1)-degree polynomial π̂u
and

∥ϕi∥k,Ii ≤ Chp+1−k
i ∥u∥p+1,Ii

, 0 ≤ k ≤ p,(17a)

∥γi∥k,Ii ≤ Chp+2−k
i ∥u∥p+2,Ii

, 0 ≤ k ≤ p+ 1.(17b)

Finally, we have the following superconvergence result∥∥πu− P−
h u
∥∥
0,Ii

≤ Chp+2
i ∥u∥p+2,Ii

.(18)

Proof. First we show (15). Let v ∈ P p+1(Ii). Then v can be split as v(x) =
v1(x) + dp+1Lp+1,i(x), where v1 ∈ P p(Ii) and dp+1 is a constant. Applying
the operators π and P−

h and using the fact that πv1 = P−
h v1 = v1, ∀ v1 ∈

P p(Ii), we get

πv = v1 + dp+1π(Lp+1,i), P−
h v = v1 + dp+1P

−
h (Lp+1,i).
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Thus,
(19)
v−πv = dp+1 (Lp+1,i − π(Lp+1,i)) , v−P−

h v = dp+1

(
Lp+1,i − P−

h (Lp+1,i)
)
.

Using the standard interpolation error formula, the chain rule, (11c), and
(11h), there exists y ∈ Ii such that the interpolation error Lp+1,i−π(Lp+1,i)
is

Lp+1,i − π(Lp+1,i) =
L
(p+1)
p+1,i (y)

(p+ 1)!

p∏
j=0

(x− xi,j)

=
(2p+ 2)!

hp+1
i [(p+ 1)!]2

p∏
j=0

(x− xi,j) = Rp+1,i,

since L
(p+1)
p+1,i =

2p+1

hp+1
i

L̃
(p+1)
p+1 = (2p+2)!

hp+1
i (p+1)!

. Thus,

v − πv = dp+1Rp+1,i(x).(20)

On the other hand, since P−
h (Lp+1,i) ∈ P p(Ii), it can be written as

P−
h (Lp+1,i(x)) =

p∑
j=0

bjLj,i(x).(21)

Multiplying (21) by Lk,i(x), k = 0, 1, . . . , p − 1, integrating over Ii, using

the orthogonality property of the projection P−
h , and applying the relation

(11f), we obtain, for k = 0, 3, . . . , p− 1,

0 =

∫
Ii

Lk,i(x)P
−
h (Lp+1,i(x))dx =

p∑
j=0

bj

∫
Ii

Lk,i(x)Lj,i(x)dx

= bk

∫
Ii

L2
k,i(x)dx

= bk
hi

2k + 1
.(22)

Consequently bk = 0 for k = 0, 1, . . . , p− 1 so that

P−
h (Lp+1,i(x)) = bpLp,i(x).(23)

By the property of the projection P−
h , P−

h v(xi) = v(xi), we have

1 = Lp+1,i(xi) = P−
h (Lp+1,i(xi)) = bpLp,i(xi) = bp.(24)

Thus, we get

P−
h (Lp+1,i(x)) = Lp,i(x).(25)

Combining (19) and (25), we obtain

v − P−
h v = dp+1 (Lp+1,i − Lp,i) = dp+1Rp+1,i.(26)

From (20) and (26), we establish that

πv = P−
h v, ∀ v ∈ P p+1(Ii).
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Next, we prove (16). Adding and subtracting V = π̂u =
p∑

k=0

akLk,i +

αiLp+1,i ∈ P p+1(Ii) we split the interpolation error as

u− πu = (u− V ) + (V − πu) = ϕi + γi,

where

ϕi = V − πu, γi = u− V = u− π̂u.

We note that, by (14), πu = π(π̂u) = πV . Thus, by (25), we get

ϕi = V − πV =

p∑
k=0

akLk,i + αiLp+1,i − π

(
p∑

k=0

akLk,i + αiLp+1,i

)
= αi (Lp+1,i − π(Lp+1,i))

= αiRp+1,i.

Multiplying π̂u =
p∑

k=0

akLk,i + αiLp+1,i by Lp+1,i, integrating over Ii, and

using the orthogonality relation (11f), we obtain∫
Ii

Lp+1,iπ̂u dx =

p∑
k=0

ak

∫
Ii

Lp+1,iLk,idx+ αi

∫
Ii

L2
p+1,idx = αi

hi
2p+ 3

,

which gives

αi =
2p+ 3

hi

∫
Ii

Lp+1,iπ̂udx.

Thus, we completed the proof of (16).
Next, we will prove (17). By the standard interpolation error estimates

we have

(27) ∥ϕi∥k,Ii ≤ C1h
p+1−k
i ∥V ∥p+1,Ii

, ∥γi∥k,Ii ≤ C2h
p+2−k
i ∥u∥p+2,Ii

.

Finally, we find a bound of ∥V ∥p+1,Ii
by adding and subtracting u and

applying the triangle inequality as

∥V ∥p+1,Ii
≤ ∥V − u∥p+1,Ii

+ ∥u∥p+1,Ii
= ∥π̂u− u∥p+1,Ii

+ ∥u∥p+1,Ii

≤ (Chi + 1) ∥u∥p+1,Ii

≤ C ∥u∥p+1,Ii
,

which complete the proofs of (17).
In order to prove (18) we note that π̂u ∈ P p+1(Ii), thus by (15) and (14),

we have

(28) P−
h π̂u = π(π̂u) = πu,

and by the standard interpolation error we have

(29) ∥u− π̂u∥0,Ii ≤ C1h
p+2
i ∥u∥p+2,Ii

.

Applying P−
h to u = u− π̂u+ π̂u and using (28), we obtain

P−
h u = P−

h (u− π̂u) + P−
h (π̂u) = P−

h (u− π̂u) + πu,
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which, in turn, yields

(30) P−
h u− πu = P−

h (u− π̂u).

Now, we show that
∥∥P−

h v
∥∥
0,Ii

≤ C2 ∥v∥0,Ii by writing∥∥P−
h v
∥∥
0,Ii

=
∥∥P−

h v − v + v
∥∥
0,Ii

≤
∥∥P−

h v − v
∥∥
0,Ii

+ ∥v∥0,Ii
≤ Chp+1

i ∥v∥p+1,Ii
+ ∥v∥0,Ii

≤ C2 ∥v∥0,Ii .(31)

Taking the L2 norm of (30) and applying the estimate (31) with v = u− π̂u,
we obtain∥∥P−

h u− πu
∥∥
0,Ii

=
∥∥P−

h (u− π̂u)
∥∥
0,Ii

≤ C2 ∥u− π̂u∥0,Ii .(32)

Combining (32) and the standard interpolation estimates (29) we establish
(18). �

Now, we are ready to prove our main superconvergence result towards the
right Radau interpolating polynomial. Furthermore, we show that the sig-
nificant part of the discretization error for the LDG solution is proportional
to the (p+ 1)-degree right Radau polynomial.

Theorem 3.1. Under the assumptions of Theorem 2.1, there exists a con-
stant C such that

(33) ∥uh − πu∥ ≤ Chp+
3
2 ,

and the actual error can be split as

(34a) eu(x, t) = αi(t)Rp+1,i(x) + ωi(x, t), on Ii,

where ωi = γi + πu− uh, and

(34b)
N∑
i=1

∥∥∥∂k
xωi

∥∥∥2
0,Ii

≤ Ch2(p−k)+3, k = 0, 1, ∀ t ∈ [0, T ].

Proof. Adding and subtracting P−
h u to uh − πu, we have

uh − πu = (uh − P−
h u) + (P−

h u− πu) = −ēu + P−
h u− πu.

Taking the L2-norm and using the triangle inequality, we get

∥uh − πu∥ ≤ ∥ēu∥+
∥∥P−

h u− πu
∥∥ .

Using the estimates (10c) and (18), we establish (33).
Next, we add and subtract πu to eu and we use (16) to obtain

(35) eu = u− πu+ πu− uh = ϕi + γi + πu− uh = ϕi + ωi,

where ωi = γi + πu− uh.
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Applying the Cauchy-Schwarz inequality and the inequality ab ≤ 1
2(a

2 +

b2), we get

∥ωi∥20,Ii = ∥γi∥20,Ii + 2

∫
Ii

γi(πu− uh)dx+ ∥πu− uh∥20,Ii

≤ 2
(
∥γi∥20,Ii + ∥πu− uh∥20,Ii

)
.

Summing over all elements and applying (17) and (33) yields

N∑
i=1

∥ωi∥20,Ii ≤ C1h
2p+4 + C2h

2p+3 ≤ Ch2p+3,

which completes the proof of (34b) for k = 0. Next, we use the Cauchy-
Schwarz inequality and the inequality ab ≤ 1

2(a
2 + b2) to get

∥(ωi)x∥20,Ii =
∫
Ii

((γi + πu− uh)x)
2 dx ≤ 2

(
∥(γi)x∥20,Ii + ∥(πu− uh)x∥20,Ii

)
.

Using the inverse inequality ∥(πu− uh)x∥0,Ii ≤ Ch−1 ∥πu− uh∥0,Ii , we ob-
tain the estimate

∥(ωi)x∥20,Ii ≤ C
(
∥(γi)x∥20,Ii + h−2 ∥πu− uh∥20,Ii

)
.

Summing over all elements and applying (33) and the standard error esti-
mate (17), we establish (34b) for k = 1. �

Remark 3.2. In Theorem 2.1, we proved that the LDG solution uh con-

verges to P−
h u at O(hp+

3
2 ) rate while numerically the rate is observed of

order O(hp+2). We used the estimate (10c) to prove that uh converges to

πu at O(hp+
3
2 ) rate. We would like to point out that the superconvergence

estimate of the error between uh and P−
h u is not optimal. However, if one

can prove the optimal estimate
∥∥uh − P−

h u
∥∥ = O(hp+2), then the order of

convergence of uh to πu can be improved to be ∥uh − πu∥ = O(hp+2) since,
by (18),

∥∥P−
h u− πu

∥∥ = O(hp+2). It remains an open problem to investi-
gate the optimal superconvergence estimates for this problem. In [28], the
authors proved superconvergence results for the LDG method for the linear
wave equation. Their theoretical analysis in not trivial to extend to the non-
linear case. In the linear case, it is easy to construct a correction function,
which can be used to correct the error between the LDG solution and the
Gauss-Radau projection of the exact solution P−

h u. This problem is still
open for the nonlinear case. Thus, proving optimal superconvergence results
is still an open problem for the LDG method for nonlinear KdV equations.

4. A posteriori error estimation

In this section, we construct a residual-based a posteriori error estimator
for the LDG method for nonlinear KdV problems. The proposed estimator
is obtained by solving a local steady problem with no boundary conditions
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on each element. We further show that the LDG error estimate converges
to the exact spatial error as h → 0.

To obtain a procedure for computing the a posteriori error estimate, we
replace u by uh + eu and q by qh + eq in the third equation of (2) i.e.,
q − ux = 0 to obtain

(eu)x = qh − (uh)x + eq, x ∈ Ii.(36)

Multiplying (36) by a test function v and integrating over Ii, we get∫
Ii

(eu)xvdx =

∫
Ii

(qh − (uh)x + eq) vdx.(37)

Substituting (34a) into the left-hand side of (37) and choosing v = Lp,i(x)
yields

αi

∫
Ii

R′
p+1,iLp,idx =

∫
Ii

(qh − (uh)x + eq − (ωi)x)Lp,idx.(38)

Using (13), we obtain

αi(t) =
1

2

∫
Ii

(qh − (uh)x + eq − (ωi)x)Lp,idx.(39)

Our error estimate procedure consists of approximating the true error eu on
each element Ii by the leading term as

(40) eu(x, t) ≈ Eu(x, t) = ai(t)Rp+1,i(x), x ∈ Ii,

where the coefficient of the leading term of the error at fixed time t, ai(t),
is obtained from the coefficient αi(t) defined in (39) by neglecting the terms
ωi and eq, i.e.,

ai(t) =
1

2

∫
Ii

(qh − (uh)x)Lp,idx.(41)

The main results of this section are stated in the following theorem. In par-
ticular, we will show that the error estimate Eu converges to the true error
eu in the L2-norm as h → 0. Furthermore, we will prove the convergence to
unity of the global effectivity index Θu(t) under mesh refinement.

Theorem 4.1. Suppose that the assumptions of Theorem 2.1 are satis-
fied. If αi and ai are given by (39) and (41), respectively, and Eu(x, t) =
ai(t)Rp+1,i(x), then there exists a constant C independent of h such that

∥eu − Eu∥ ≤ Chp+
3
2 ,(42)

|∥eu∥ − ∥Eu∥| ≤ C1h
p+ 3

2 .(43)

Finally, if there exists a constant c = c(u) > 0 independent of h with

∥eu∥ ≥ Chp+1,(44)
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then, at a fixed time t, the global effectivity index in the L2 converges to

unity at O(h
1
2 ) rate i.e.,

(45) Θu(t) =
∥Eu∥
∥eu∥

= 1 +O(h
1
2 ).

Proof. First, we will prove (42). Since eu = αiRp+1,i+ωi, and Eu = aiRp+1,i,
we have

∥eu − Eu∥20,Ii = ∥(αi − ai)Rp+1,i + ωi∥20,Ii
≤ 2(αi − ai)

2 ∥Rp+1,i∥20,Ii + 2 ∥ωi∥20,Ii ,

where we used the inequality (a+b)2 ≤ 2a2+2b2. Summing over all elements
and applying the estimate (34b) with k = 0 yields

∥eu − Eu∥2 =
N∑
i=1

∥eu − Eu∥20,Ii ≤ 2

N∑
i=1

(αi − ai)
2 ∥Rp+1,i∥20,Ii + 2

N∑
i=1

∥ωi∥20,Ii

≤ 2
N∑
i=1

(αi − ai)
2 ∥Rp+1,i∥20,Ii + C1h

2p+3.(46)

Next, we will estimate
N∑
i=1

(αi − ai)
2 ∥Rp+1,i∥20,Ii . Subtracting (41) from (39)

and applying the triangle inequality, we get∣∣αi − ai
∣∣ = ∣∣∣∣12

∫
Ii

(eq − (ωi)x)Lp,idx

∣∣∣∣ ≤ 1

2

∫
Ii

(∣∣eq∣∣+ ∣∣(ωi)x
∣∣) ∣∣Lp,i

∣∣dx.
Using the inequality (a+ b)2 ≤ 2(a2 + b2) yields

(αi − ai)
2 ≤ 1

2

[(∫
Ii

∣∣eq∣∣∣∣Lp,i

∣∣dx)2

+

(∫
Ii

∣∣(ωi)x
∣∣∣∣Lp,i

∣∣dx)2
]
.

Applying the Cauchy-Schwarz inequality and the estimate (11f), we obtain

(αi − ai)
2 ≤

∥Lp,i∥20,Ii
2

(
∥eq∥20,Ii + ∥(ωi)x∥20,Ii

)
≤ hi

2(2p+ 1)

(
∥eq∥20,Ii + ∥(ωi)x∥20,Ii

)
.(47)

Multiplying by ∥Rp+1,i∥20,Ii and using (12) yields

(αi − ai)
2 ∥Rp+1,i∥20,Ii ≤

hi ∥Rp+1,i∥20,Ii
2(2p+ 1)

(
∥eq∥20,Ii + ∥(ωi)x∥20,Ii

)
= Cph

2
i

(
∥eq∥20,Ii + ∥(ωi)x∥20,Ii

)
,

where Cp =
cp

2(2p+1) =
2(p+1)

(2p+1)2(2p+3)
since cp =

4(p+1)
(2p+1)(2p+3) .
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Finally, summing over all elements and using the fact that h = max
1≤i≤N

hi,

we conclude that
N∑
i=1

(αi − ai)
2 ∥Rp+1,i∥20,Ii ≤ Cph

2

(
∥eq∥2 +

N∑
i=1

∥(ωi)x∥20,Ii

)
.

Applying the estimates (10a) and (34b) with k = 1, we establish

(48)
N∑
i=1

(αi − ai)
2 ∥Rp+1,i∥20,Ii ≤ Cph

2(C1h
2p+2 + C2h

2p+1) ≤ Ch2p+3.

Now, combining (46) with (48) yields

∥eu −Eu∥2 ≤ C1h
2p+3 + C2h

2p+3 ≤ Ch2p+3,

which completes the proof of (42).
In order to prove (43), we use the reverse triangle inequality to have∣∣ ∥Eu∥ − ∥eu∥

∣∣ ≤ ∥Eu − eu∥ .(49)

Combining (49) and (42) completes the proof of (43).
In order to prove (45), we divide the inequality in (49) by ∥eu∥ and we

use the estimate (42) and the assumption (44) to obtain∣∣∣∣∥Eu∥
∥eu∥

− 1

∣∣∣∣ ≤ ∥Eu − eu∥
∥eu∥

≤ C1h
p+ 3

2

Chp+1
≤ Ch

1
2 .

Therefore, ∥Eu∥
∥eu∥ = 1 +O(h

1
2 ), which completes the proof of (45). �

In the previous theorem, we proved that the residual-based a posteriori
error estimate Eu converges to the true spatial error eu in the L2-norm at

O(hp+
3
2 ) rate. We also proved that the global effectivity index in the L2-

norm converges to unity at O(h
1
2 ) rate. We note that Eu is a computable

quantity since it only depends on the LDG solutions uh and qh. Additionally,
(45) indicates that the computable quantity ∥Eu∥ provides an asymptotically
exact a posteriori estimator on the actual error ∥eu∥. We remark that ∥Eu∥
is computationally efficient since

∥Eu∥2 =
N∑
i=1

∥Eu∥20,Ii =
N∑
i=1

|ai| ∥Rp+1,i∥20,Ii = cp

N∑
i=1

|ai|hi,

where cp = 4(p+1)
(2p+1)(2p+3) and ai is given by (41). Finally, we would like

to mention that the computable quantity uh + Eu converges to the exact

solution u at O(hp+
3
2 ) rate since

∥u− (uh +Eu)∥ = ∥eu − Eu∥ ≤ Chp+
3
2 .

We emphasize that this accuracy enhancement is achieved by adding the
error estimate Eu to the LDG solution uh only once at the end of the com-
putation i.e., at t = T .
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An accepted efficiency measure of a posteriori error estimate is the effec-

tivity index. In this paper, we use the global effectivity index Θu(t) =
∥Eu∥
∥eu∥ .

Ideally, the global effectivity index should stay close to one and should con-
verge to one under mesh refinement.

Remark 4.1. The assumption in (44) imply that the term of order O(hp+1)
is present in the error eu. Even though the proof of (45) is valid under the
assumption (44), our computational results given in the next section suggest
that the global effectivity index Θu in the L2-norm converges to unity with at
least O(h) rate. Thus, the proposed a posteriori error estimation technique
is an excellent measure of the error and (45) indicates that our a posteriori
error estimator is asymptotically exact.

5. Numerical examples

In this section, we numerically validate our superconvergence results and
the global convergence of the proposed residual-based a posteriori error es-
timates. The initial condition is determined by uh(x, 0) = Phu(x, 0). We
also used uh(x, 0) = P−

h u(x, 0) and observed similar results. Temporal inte-
gration is performed by the fourth-order Runge-Kutta method. A time step
∆t is chosen so that temporal errors are small relative to spatial errors. We
do not discuss the effect of the time discretization error in this paper.
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Figure 1. Log-log plots of ∥u− uh∥ (left) and ∥uh − πu∥
(right) versus mesh sizes h for Example 5.1 on uniform
meshes having N = 8, 12, 16, 20 elements using P p, p =
1, 2, 3, 4.

Example 5.1. In this example, we apply the LDG method to the following
nonlinear KdV problem subject to the periodic boundary condition

(50)

{
ut + (u3 + u)x + uxxx = g(x, t), x ∈ [0, 2π], t ∈ [0, 1],
u(x, 0) = sin(x), x ∈ [0, 2π].
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Figure 2. Log-log plots of
∣∣ ∥eu∥ − ∥Eu∥

∣∣ (left) and
∥eu − Eu∥ (right) versus mesh sizes h for Example 5.1 on
uniform meshes having N = 8, 12, 16, 20 elements using P p,
p = 1, 2, 3, 4.

We select the source term g(x, t) such that the exact solution is u(x, t) =

sin(x+t). We note that f ′(u) = 3u2+1 > 0 so the numerical flux f̂ is simply

the upwind flux f̂
∣∣
i
= f(u−h )

∣∣
i
. We solve (50) using the LDG method on

uniform meshes obtained by partitioning the computational domain [0, 2π]
into N subintervals with N = 8, 12, 16, 20 and using the finite element
spaces P p with p = 1, 2, 3, 4. Figure 1 shows the actual L2 errors ∥eu∥ =
∥u− uh∥ and the L2 errors between the LDG solution uh and the p-degree
interpolating right Radau polynomial πu at t = 1 with log-log scale as well
as their orders of convergence. The L2 errors are presented in log scale just
for easy visualization. For each P p space, we fit, in a least-squares sense, the
data sets with a linear function and then determine from the fitting result
the slopes of the fitting lines. The slopes of the fitting lines are shown on the
graph for p = 1, 2, 3, 4. These results indicate that ∥u− uh∥ converges at
O(hp+1) rate whereas ∥uh − πu∥ converges at O(hp+2) rate. Thus, the LDG
solution uh is superconvergent with order p+2 to the p-degree interpolating
right Radau polynomial πu. Although the superconvergence rate is proved
to be of order p + 3

2 , our computational results indicate that the observed
numerical convergence rate is higher than the theoretical rate. In Figure 2 we
present the global errors

∣∣ ∥eu∥−∥Eu∥
∣∣ and ∥eu − Eu∥ at t = 1. These results

indicate that
∣∣ ∥eu∥−∥Eu∥

∣∣ = O(hp+2.5) and ∥eu − Eu∥ = O(hp+2). We note
that the observed numerical convergence rates are higher than the theoretical
rates established in Theorem 4.1. The results shown in Table 1 indicate that
the global effectivity indices converge to unity under h-refinement. The
numerical convergence rates at t = 1 for

∣∣Θu − 1
∣∣ are also shown in Table 1,

which suggest that the convergence rate is higher than the theoretical rate
established in Theorem 4.1. The global effectivity index Θu(t), t ∈ [0, 1] is
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shown in Figures 3 and 4 using (p,N) = (3, 12), (4, 12), (3, 20), (4, 20) . We
observe that the effectivity index remains constant as we refine the mesh.
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Figure 3. Global effectivity index Θu(t), t ∈ [0, 1] ver-
sus time for Example 5.1 using (p,N) = (3, 12) (left) and
(p,N) = (4, 12) (right).
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Figure 4. Global effectivity index Θu(t), t ∈ [0, 1] ver-
sus time for Example 5.1 using (p,N) = (3, 20) (left) and
(p,N) = (4, 20) (right).

Example 5.2. In this example, we consider the following nonlinear KdV
equation

(51)

{
ut + (3u2)x + uxxx = g(x, t), x ∈ [0, 2π], t ∈ [0, 1],
u(x, 0) = sin(x), x ∈ [0, 2π].

with periodic boundary conditions. Here, g is chosen so that the exact
solution is u(x, t) = sin(x + t) on the domain (x, t) ∈ [0, 2π] × [0, 1]. We
note that f ′(u) = u changes sign in the computational domain. In this
case, we use the Godunov flux (4d). We solve this problem using the LDG
method on uniform meshes having N = 8, 12, 16, 20 elements and using
P p polynomials with p = 1, 2, 3, 4. The L2 LDG errors ∥u− uh∥ and
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Table 1. Θu and the errors
∣∣Θu − 1

∣∣ with their orders of
convergence at t = 1 for Example 5.1 on uniform meshes
having N = 4, 8, 12, 16, 20 elements using P p, p = 1, 2, 3,
4.

N p = 1 p = 2
Θu

∣∣Θu − 1
∣∣ Order Θu

∣∣Θu − 1
∣∣ Order

4 0.70236 2.9764e-01 – 0.95223 4.7774e-02 –
8 0.83708 1.6292e-01 0.8694 0.99909 9.0992e-04 5.7143
12 0.91148 8.8519e-02 1.5045 0.99978 2.2393e-04 3.4578
16 0.94601 5.3987e-02 1.7188 0.99992 7.6255e-05 3.7446
20 0.96407 3.5930e-02 1.8247 0.99997 3.2214e-05 3.8616
N p = 3 p = 4

Θu

∣∣Θu − 1
∣∣ Order Θu

∣∣Θu − 1
∣∣ Order

4 0.96977 3.0235e-02 – 0.99854 1.4566e-03 –
8 0.99877 1.2302e-03 4.6193 0.99957 4.3036e-04 1.759
12 0.99960 3.9834e-04 2.7811 0.99973 2.6642e-04 1.1827
16 0.99980 2.0163e-04 2.3668 0.99984 1.5837e-04 1.808
20 0.99988 1.2276e-04 2.2237 0.99990 1.0388e-04 1.8898

∥uh − πu∥ at time t = 1 shown in Figure 5. As before, we observe that
∥u− uh∥ = O(hp+1) but ∥uh − πu∥ = O(hp+2). Consequently, the LDG
solution uh is superconvergent with order p+2 to the p-degree interpolating
right Radau polynomial πu. Again the computational results indicate that
the numerical convergence rate is higher than the theoretical rate, which is
proved to be of order p+ 3

2 . In Figure 6 we present the errors
∣∣ ∥eu∥−∥Eu∥

∣∣,
∥eu − Eu∥, and their order of convergence at t = 1. Clearly both errors
converge with order higher than the theoretical rate, which is proved to be
p+ 3

2 under mesh refinement. Table 2 lists the global effectivity indices and

the errors
∣∣Θu − 1

∣∣ with their order of convergence at t = 1. These results
indicate that the proposed a posteriori LDG error estimate is asymptotically
exact under mesh refinement. The convergence rate at t = 1 for

∣∣Θu − 1
∣∣ is

higher than O(h). Even though the assumption f ′(u) ≥ 0 does not always
hold true, the same results are observed.

Example 5.3. In this example, we consider the following nonlinear KdV
equation with flux function f(u) = eu

(52)

{
ut + (eu)x + uxxx = g(x, t), x ∈ [0, 2π], t ∈ [0, 1],
u(x, 0) = sin(x), x ∈ [0, 2π].

with periodic boundary conditions. We select g so that the exact solution
is u(x, t) = sin(x + t) on the domain (x, t) ∈ [0, 2π] × [0, 1]. We solve this
problem using the LDG method on uniform meshes having N = 8, 12, 16,
20, 24 elements and using P p polynomials with p = 1, 2, 3. In Figure 7 we
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Figure 5. Log-log plots of ∥u− uh∥ (left) and ∥uh − πu∥
(right) versus mesh sizes h for Example 5.2 on uniform
meshes having N = 8, 12, 16, 20 elements using P p, p =
1, 2, 3, 4.
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Figure 6. Log-log plots of
∣∣ ∥eu∥ − ∥Eu∥

∣∣ (left) and
∥eu − Eu∥ (right) versus mesh sizes h for Example 5.2 on
uniform meshes having N = 8, 12, 16, 20 elements using P p,
p = 1, 2, 3, 4.

report the L2 LDG errors ∥u− uh∥ and ∥uh − πu∥ at time t = 1. Again,
we observe that ∥u− uh∥ = O(hp+1) and ∥uh − πu∥ = O(hp+2). Thus,
the LDG solution uh is superconvergent with order p + 2 to the p-degree
interpolating right Radau polynomial πu. In Figure 8 we present the errors∣∣ ∥eu∥ − ∥Eu∥

∣∣, ∥eu − Eu∥, and their order of convergence at t = 1. We
observe that these errors converge with order higher than the theoretical
rate, which is proved to be p+ 3

2 under mesh refinement.
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Table 2. Θu and the errors
∣∣Θu − 1

∣∣ with their orders of
convergence at t = 1 for Example 5.2 on uniform meshes
having N = 4, 8, 12, 16, 20 elements using P p, p = 1, 2, 3,
4.

N p = 1 p = 2
Θu

∣∣Θu − 1
∣∣ Order Θu

∣∣Θu − 1
∣∣ Order

4 0.36379 6.3621e-01 – 0.33641 6.6359e-01 –
8 0.72464 2.7536e-01 1.2082 0.68769 3.1231e-01 1.0873
12 0.87373 1.2627e-01 1.9229 0.91684 8.3160e-02 3.2635
16 0.93320 6.6801e-02 2.2132 0.97471 2.5290e-02 4.1378
20 0.95367 4.6333e-02 1.6396 0.97814 2.1859e-02 0.65337
N p = 3 p = 4

Θu

∣∣Θu − 1
∣∣ Order Θu

∣∣Θu − 1
∣∣ Order

4 0.23828 7.6172e-01 – 0.29851 7.0149e-01 –
8 0.88436 1.1564e-01 2.7196 0.59125 4.0875e-01 0.7792
12 0.96815 3.1849e-02 3.1802 0.85875 1.4125e-01 2.6206
16 0.99249 7.5059e-03 5.0240 0.95571 4.4286e-02 4.0318
20 0.99650 3.4971e-03 3.4227 0.98343 1.6565e-02 4.4069
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Figure 7. Log-log plots of ∥u− uh∥ (left) and ∥uh − πu∥
(right) versus mesh sizes h for Example 5.3 on uniform
meshes having N = 8, 12, 16, 20, 24 elements using P p,
p = 1, 2, 3, 4.

6. Concluding remarks

In this paper, we proposed and analyzed a posteriori error estimator
for the LDG method applied to nonlinear third-order KdV equations. We
proved that the significant part of the discretization error for the p-degree
LDG solution is proportional to a (p + 1)-degree right Radau polynomial.
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Figure 8. Log-log plots of
∣∣ ∥eu∥ − ∥Eu∥

∣∣ (left) and
∥eu − Eu∥ (right) versus mesh sizes h for Example 5.3 on
uniform meshes having N = 8, 12, 16, 20, 24 elements using
P p, p = 1, 2, 3, 4.

We used these results to construct asymptotically exact a posteriori error
estimates. The a posteriori error estimator is computationally simple, ef-
ficient, and asymptotically exact. This estimator is obtained by solving a
local residual problem on each element. The proposed a posteriori error
estimate is shown to converge to the actual error in the L2-norm under
mesh refinement. The order of convergence is proved to be p + 3

2 , when
piecewise polynomials of degree p ≥ 1 are used. Our numerical experiments
demonstrate that the results in this paper hold true for nonlinear problems
with general flux functions, indicating that the restriction on f(u) is arti-
ficial. The generalization of our proofs to nonlinear equations with general
flux functions involves several technical difficulties and will be investigated
in the future. We are currently investigating the superconvergence proper-
ties and the asymptotic exactness of a posteriori error estimates for LDG
methods applied to two-dimensional KdV problems and wave equations on
rectangular and triangular meshes. Our future work will focus on extending
our a posteriori error analysis to problems on tetrahedral meshes. Also,
because we observed superconvergence of order p + 2 in our numerical ex-
amples, future work will include investigating how to improve our proofs to
obtain optimal superconvergence results. We expect that a similar special
projection of the initial conditions of Yang and Shu [39] and a new technique
will be needed to obtain the optimal rate of superconvergence.
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