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A CORRECTED NEAREST NEIGHBOR TRANSPOTATION

METHOD OF AERODYNAMIC FORCE FOR

FLUID-STRUCTURE INTERACTIONS
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Abstract. Aeroelastic analysis of the aircraft is a typical fluid-structure interaction problem. It
is influenced by interactions between aerodynamic forces and deformations of elastic structures.
The aerodynamic field and structural deformation are modeled by different physical equations,

and the associated computational meshes do not match each other. Therefore, passing data from
a mesh to the other one in a physically reasonable way is a challenging task. Current aerodynamic
force transportation methods, such as virtual work conserved method (VWC), area weighted shape
function method (AWSF), proximity minimum strain energy method (PMSE), and inverse distance

weighted method (IDW), either destroy physical conservations or cause unreasonable distributions
of structural forces. In this paper we propose a corrected nearest neighbor transportation method
(CNNT) of aerodynamic force for the fluid-structure coupling analysis. The force transportation
process is divided into two phases. First, the aerodynamic forces are allocated to the structural

nodes initially using the conventional methods or, e.g., AWSF, IDW. Then, the initially allocated
structural forces are corrected by solving an optimization problem with the physical conservations
as its optimization target. The optimization problem is solved by a barrier interior point method
efficiently.A sport airplane model is employed to verify effectiveness of CNNT. Comparisons with

the VWC, AWSF, PMSE, IDW are also made. The numerical experiments show that the CNNT
maintains the force, moment, and virtual work conservations, and exhibitsreasonable distributions
of structural forces, indeed.

Key words. Aerodynamic force transportation, fluid-structure interaction, nearest neighbor
method, and corrected algorithm.

1. Introduction

Aeroelastic analysis of the aircraft is a typical fluid-structure interaction prob-
lem. It is influenced by the interactions between deformations of elastic structures
caused by fluid flows and aerodynamic forces decided by structure frameworks.
Loose couplings adopt a three-field formulation, the aerodynamic model, structural
model, and the coupling process. Such schemes have advantages that each compo-
nent of coupling problems can be handled as an isolated identity. The aerodynamic
field can be modeled by Navier-Stokes or Eular equations that can be solved for
example by finite volume methods or panel methods, while the structural deforma-
tion is modeled by elasticity theory that can be solved in general by finite elements
methods. These two models describe the interfaces of the aircraft using different
resolutions so that the meshes they use don’t match each other. Therefore, the chal-
lenging task is to pass data from a mesh to the other one in a physically reasonable
way. Specifically, aerodynamic forces need to be transferred from fluid to structure,
while structure displacements need to be interpolated form structure back to fluid.
In the process of data exchange, five criteria should be satisfied [1, 2]: (1) global
conservations of forces and moments; (2) accurate displacement interpolations; (3)
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global conservations of virtual works; (4) consistency of local loads; (5) stability
and efficiency.

In aspect of the displacement interpolations, the interpolation accuracy rather
than the conservations of physical quantities is a main focus. Therefore, various
interpolation methods with high accuracies can be taken as choices. In general,
the displacement interpolation methods are divided into local interpolation meth-
ods and global interpolation methods [3].The local interpolation methods, such
as nodal projection method [4, 5],weighted residual method [6] and constant vol-
ume method [7], produces interpolation matrices that are sparse and can be solved
quickly. However, it requires additional mesh information and searching process,
which will increase the computational complexity. The global displacement inter-
polation methods are easily implemented, but yield full interpolation matrices, such
as infinite panel spline (IPS) method [8], finite plate spline (FPS) [9], thin plate
spline (TPS) [10], multi-quadric spline (MQ) [11], and Shepard method [12]. Com-
pared with the methods above, radial basis function (RBF) spline methods [13,14]
perform the interpolation on various sub-regions of an aircraft, and show advan-
tages in dealing with a large number of scatter data. The RBF spline interpolation
methods have been widely used in fluid-solid coupling analysis in [15–18]. It was
investigated in [19, 20] that the TPS and MQ are superior to the other RBF with
the most robust, easily implemented, and accurate properties. In this paper, we
adopt the TPS based radial basis function to fulfill the displacement interpolation.

On the other hand, the aerodynamic forces need to be transferred from fluid
nodes to structure nodes. This process is significantly different from the dis-
placement interpolation because the conservations of total forces, moments, vir-
tual works, and reasonable distributions of forces are required. A generally used
method for the force transportation is a so-called virtual work conserved method
(VWC), which is embedded into conventional FE softwares, like the MSC-Nastran.
The VWC derives the transportation formulation based on the law of virtual work
conservation, and the associated transportation matrix is just the transpose of the
displacement interpolation matrix [21]. The load is also globally conserved by the
VWC. However, it usually causes unreasonable local force distributions in a sense
that the transported forces may be opposite to the associated aerodynamic forces
on some local structural nodes. Various local methods are also commonly used
for the force transportation, and the main idea of these methods is to distribute
an aerodynamic force to the structural nodes in its nearest neighborhood. For
instance, an area weighted shape function method (AWSF) [22] finds the nearest
three structural nodes of a fluid node to construct a triangle and distribute the aero-
dynamic force according to the area weights, a proximity minimum strain energy
method (PMSE) [23]chooses the several nearest structural nodes to allocate the
aerodynamic force by assuming the load conservation laws and minimizing a strain
energy, an inverse distance weighted method (IDW) [12]also chooses the nearest
structural nodes, but allocates the force using the inverses of Euclidean distances
between structure node and fluid nodes as weights. Even though the load distri-
butions of these local methods are relatively reasonable, compared with the VWC,
the physical conservations are destroyed, such as the virtual works are not main-
tained by all three methods, while the moments are not preserved by the AWSF
and IDW. Moreover, in the AWSF some structure nodes may get no force, and
in the PMSE, local force deviations may appear in areas with high curvatures or
irregular distributions of structure nodes. To our best knowledge, an aerodynamic
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force transportation method with the physical conservations and reasonable force
distributions has not been reported in the literature.

In this paper we propose a corrected nearest neighbor transportation method
(CNNT) of aerodynamic forces for the fluid-structure coupling analysis. The force
transportation process is divided into two phases. First, the aerodynamic forces
are allocated to the structural nodes initially. This can be fulfilled using the above-
mentioned local methods or their combinations, e.g., AWSF, IDW, where the IDW
is relatively preferable because of its excellent local performance and easy imple-
mentation. Second, the initially allocated structural forces are corrected by solving
an optimization problem with the physical conservations as its optimization tar-
get. Specifically, the force, moment and virtual work deviations between fluid and
structure are summed together as the objective function, and small percentage de-
viations of the initial forces serve as the upper and lower bounds of constrains. The
optimization problem is solved by a barrier interior point method efficiently. The
proposed CNNT is used on a sport airplane to verify its effectiveness. The numerical
experiments show that the CNNT maintains the force, moment, and virtual work
conservations, and exhibits reasonable distributions of structural forces indeed. The
results of VWC, AWSF, PMSE, IDW are also presented for comparison.

The rest of the paper is organized as follows.The model problem and displace-
ment interpolation are described in Section 2.Four conventional aerodynamic force
transportation methods are introduced in Section 3.In Section 4, the CNNT method
is proposed,and corresponding numerical schemes are presented. In section 5, the re-
sults of different aerodynamic force transportation methods are compared in global
and local performance using a sport airplane model. Conclusions are given in the
last section.

2. Model problem and preliminaries

We denote the coefficients of a point in R3 by P (x, y, z).The basis of polynomials
of degree k is denoted by {sl(P )}ml=1. For k = 1, i.e., the linear polynomials, m = 4
and {sl(P )}4l=1 = {1, x, y, z}.

Let X be a model of aircraft that is discretized by a structural mesh G with
coefficients of nodes, PGi = (xGi, yGi, zGi), i = 1, 2, ..., nG, nG is the number of
nodes. The aerodynamic (or fluid) mesh K is shown in FIGURE 1 UP. The nodes
of K that represent the center points of fluid elements are denoted by QKi =
(xKi, yKi, zKi), i = 1, 2, ..., nK , nK is the number of nodes. The meshes G and
K are created from different models for structural and fluid analyses, respectively.
According to different requirements of resolutions and computational models, G
and K do not match inevitably; see FIGURE 1 DOWN for an illustration of non-
matching meshes. Therefore, passing data from one mesh to the other one is a
key to success of the fluid-structure analysis. This involves two aspects: trans-
ferring aerodynamic forces from K to G to calculate displacements of structure
nodes (hollow circles) and interpolating structure displacements (or deformations)
from G to K to fluid nodes to recalculate the aerodynamic forces. Below, we use
uG = {uGi}nG

i=1, FG = {FGi}nG
i=1 and uK = {uKi}nK

i=1,FK = {FKi}nK
i=1 to denote

displacements and forces on fluid and structure, respectively.
As discussed in Introduction, in the stage of displacement interpolations, the

accuracy rather than the conservations of physical quantities is a main concern.The
(RBF) spline method [13, 14] has been widely used in fluid-solid coupling analysis
in [15–18]. It performs the interpolation on various sub-regions of an aircraft and
turns to be robust, easily implemented, and accurate, see [19,20] for instance.
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Figure 1. UP: An aircraft with a fluid mesh; Down: Non-
matching meshes between fluid and structure in a section of aircraft
wing.

In the RBF interpolation, the displacement u(P ) of any point P (x, y, z) on the
fluid and structure interface is approximated in a general form of

(1) u(P) =

nG∑
j=1

Rj(P )aj +
m∑
l=1

sl(P )bl,

where sl, l = 1, 2, ...,m, are the base functions of polynomials, Rj(P ) is the jth
radial basis function:

(2) Rj(P ) = φ(∥P −PGj∥), ∥P −PGj∥ =
√
(x− xGj)2 + (y − yGj)2 + (z − zGj)2,

and φ(r) := r2 ln(r2) is the thin-plate spline (TPS) radial basis function.The coef-
ficients aj and bl are determined by the known displacement of structure nodes.

Assuming uG are the known displacements of nG structure nodes, then the
matrix form of (1) is

(3) uG = RGGaG +PGmbm.

where aG and bm are the associated vector forms of coefficients.
Radial basis function matrix RGG and the polynomial matrix PGm are

RGG = [Rj(PGi)]i,j=1,...,nG , and PGm = [sl(PGi)]i=1,...,nG,l=1,...,m.

In this paper,we consider m = 4,then PGm is simplified as

PGm = [1 xGi yGi zGi]i=1,...,nG .

By adding the additional constraint condition,

(4)

nG∑
i=1

sl(PGi)al = 0, l = 1, 2, ...,m,
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the discrete structure displacement(1) and the constraint condition(4) can be writ-
ten as follows:

(5)

[
uG

0m

]
=

[
RGG PGm

PT
Gm 0mm

] [
aG
bm

]
.

Once the coefficients of aG and bm are solved in (5), we derive the displacement
of any fluid nodes by

(6) uK =
[
RKG PKm

] [ aG
bm

]
,

where

RKG = [Rj(QKi)]i=1,...,nK ,j=1,...,nG
, and PKm = [sl(QKi)]i=1,...,nK ,l=1,...,m.

3. Conventional aerodynamic force transportation methods

In this section, we introduce several conventional aerodynamic force transporta-
tion methods and analyze their features in aspects of conservations of physical
quantities and distributions of forces. They are virtual work conserved method
(VWC), area weighted shape function method (AWSF),minimum proximity strain
energy method (MPSE) and inverse distance weighted method (IDW).

3.1. Virtual work conserved method.
According to (5) and (6), the relationship between fluid displacement uK and

structure displacement uG is given by:

(7) uK =
[
RKG PKm

] [ RGG PGm

PT
Gm 0mm

]−1 [
uG

0m

]
.

Then the virtual displacement would be

(8) δuK =
[
RKG PKm

] [ RGG PGm

PT
Gm 0mm

]−1 [
δuG

0m

]
.

On the other hand,the virtual works of the fluid δWK and the structure δWG

acting on the interface can be written respectively as

(9) δWK = FT
KδuK , δWG = FT

GδuG.

Employing the conservation of the virtual works, i.e., δWK = δWG, we have

(10) FT
KδuK = FT

GδuG =
[
FT

G 0
] [ δuG

0m

]
.

Then substituting (8) into (10), we derive the transported forces FG as follows:

(11)

[
FG

0m

]
=

([
RKG PKm

] [ RGG PGm

PT
Gm 0mm

]−1
)T

FK .

This method is referred to as virtual work conserved method (VWC), which guar-
antees the equality of virtual works according to (10). It is a method embedded into
conventional FE softwares, like the MSC-Nastran. The equation (11) is equivalent
to

(12)

[
FG

0m

]
=

[
RGG PGm

PT
Gm 0mm

]−1 [
RKG PKm

]T
FK ⇔[

RGG PGm

PT
Gm 0mm

] [
FG

0m

]
=

[
RT

KG

PT
Km

]
FK .
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Focusing on the polynomial part of equation above gives

(13) PT
GmFG = PT

KmFK,

which implies the conservations of force and moment (see the equation(4) ).
The VWC keeps the conservations well. However, the equation (10) is a strong

constraint, which could cause opposing structural forces on some local regions.

3.2. Area weighted shape function method.
Generally speaking, the initial result of fluid analysis is the pressure on fluid grid

in CFD method. As the consistency of input and output between fluid analysis
and structure analysis is required, it is improper to directly use the pressure to
imply the conversions. Therefore, a relatively easy way is to convert integrated
aerodynamic node forces to the structure model [24].In the area weighted shape
function method (AWSF), each aerodynamic force on fluid node is transferred to
three nearest structure nodes that form a suitable triangle and assigned according
to the area weights.

First, for any fluid node K, we find the suitable triangle that consists of structure
nodes and contains K as an interior point. To keep the local consistency of load
distribution, the closest triangle should be obtained, as the triangle ∆234 shown in
FIGURE 2.

Figure 2. Fluid node and the relative structure nodes in triangle.

Denote the nodeK and the three structure nodes in the triangle by (x, y), (x2, y2),
(x3, y3), (x4, y4), respectively in two dimension, as shown in FIGURE 3.Then the
areas of S2, S3, S4 in FIGURE 3 can be calculated as follows:

S2 =
1

2

∣∣∣∣∣∣
x3 y3 1
x4 y4 1
x y 1

∣∣∣∣∣∣ , S3 =
1

2

∣∣∣∣∣∣
x4 y4 1
x2 y2 1
x y 1

∣∣∣∣∣∣ , S4 =
1

2

∣∣∣∣∣∣
x2 y2 1
x3 y3 1
x y 1

∣∣∣∣∣∣ .
The second step is to allocate the aerodynamic force FK at the node K to three

nodes of ∆234 to derive the associated structural forces Fi,i=2,3,4. Below in this
section, we always use FK and Fi to denote each component of x, y, z components
of FK and Fi, respectively. The structural forces at the three nodes of ∆234 are
obtained as follows:

(14) Fi = FK · Si/
4∑

i=2

Si, i = 2, 3, 4.
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Figure 3. Area weight within the triangle.

According to this approach, the moment conservation can be easily verified by
(15)

MS =
4∑

i=2

Fi|K⃗i| =
4∑

i=2

Si|K⃗i|FK/
4∑

i=2

Si

=
1

2
[(K⃗3× K⃗4)× K⃗2 + (K⃗4× K⃗2)× K⃗3 + (K⃗2× K⃗3)× K⃗4]FK/

4∑
i=2

Si

= 0 · FK/
4∑

i=2

Si = 0 = MK ,

where MS is the total moment caused by the forces on three structure nodes, MK

is the moment caused by the aerodynamic force; here, the fluid node K serves as
the moment reference point.

Therefore, the AWSF can obey the law of force and moment conservations and
local consistency of load distribution in two dimension. In three dimension, how-
ever, the fluid node is generally outside the plane of the triangle, which cause errors
in the moments.

3.3. Proximity minimum strain energy method.
The proximity minimum strain energy method (PMSE) assumes that there is a

virtual beam element between n nearest local structure nodes and the fluid node K
as shown in FIGURE 4. As the fluid node fixed and the structure node allocated
with force Fi, the strain energy of each beam is

Ui =
1

6EJ
F 2
i l

3
i ,

where EJ is the bending stiffness of virtual beam,li is the Euclidean distance be-
tween the ith structure node and the fluid node K.Then the total strain energy in
the proximity is:

U =

n∑
i=1

Ui.

The forces distributed to the structure nodes are required to minimize the strain
energy of system and satisfy the force conservation conditions. Assume the co-
efficients of structure nodes and fluid node are (xGi, yGi, zGi) and (xK , yK , zK),



CNNT OF AERODYNAMIC FORCE 753

Figure 4. Virtual beams between the fluid node and the structure nodes.

respectively, and the direction of the force is constant before and after the trans-
portation, then there are

(16)
n∑

i=1

Fi = FK ;
n∑

i=1

FixGi = FKxK ;
n∑

i=1

FiyGi = FKyK ;
n∑

i=1

FizGi = FKzK .

In order to get a dual problem of the above problem, the following Lagrange
functionis introduced:

L(λ, λx, λy, λz) =
n∑

i=1

(
1

6EJ
F 2
i l

3
i − λFi − λxFix̄i − λyFiȳi − λzFiz̄i),

where

(x̄i, ȳi, z̄i) = (xGi, yGi, zGi)− (xK , yK , zK), li =
√
x̄2
i + ȳ2i + z̄2i .

Considering the extreme conditions of the Lagrange function ∂L(λ, λx, λy, λz)/∂Fi

= 0, and let 3EJ = 1, we have

(17) Fil
3
i = λ+ λxix̄i + λyiȳi + λziz̄i.

Substituting the above formula into (16) yields

n∑
i=1

l−3
i

n∑
i=1

x̄il
−3
i

n∑
i=1

ȳil
−3
i

n∑
i=1

z̄il
−3
i

n∑
i=1

xGil
−3
i

n∑
i=1

xGix̄il
−3
i

n∑
i=1

xGiȳil
−3
i

n∑
i=1

xGiz̄il
−3
i

n∑
i=1

yGil
−3
i

n∑
i=1

yGix̄il
−3
i

n∑
i=1

yGiȳil
−3
i

n∑
i=1

yGiz̄il
−3
i

n∑
i=1

zGil
−3
i

n∑
i=1

zGix̄il
−3
i

n∑
i=1

zGiȳil
−3
i

n∑
i=1

zGiz̄il
−3
i




λ
λx

λy

λz

 =


FK

FKxK

FKyK
FKzK

 .

After solving the above linear equation to obtain the value of the Lagrange
multiplier λ, λx, λy, λz and then bringing it into the (17), the forces Fi on the
structure nodes are assigned.

3.4. Inverse distance weighted method.
The main purpose of IDW is to allocate more force on the structure nodes close to

the fluid node K. The weight of force allocated on each structure node is decided by
the inverse of Euclidean distance li. Therefore the force allocated on each structure
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node can be easily calculated by

Fi =
1/(li)

α

n∑
i=1

1/(li)α
FK ,

where α is a parameter adjusting the weights. We use α = 1 in the tests below. It
is clear that the force is preserved, while the conservations of moment and virtual
work are not maintained in this method.

Among the four conventional force transportation methods, the conservations of
force,moment and virtual work are maintained by the VWC. However, it usually
causes an unreasonable local force distribution. The local methods, AWSF, PMSE,
and IDW,produce the relatively reasonable force distributions, compared with the
VWC, but the physical conservations are destroyed. Specifically, the virtual works
are not maintained by all three methods, while the moments are not preserved
by the AWSF and IDW. Moreover, in the AWSF some structure nodes may get
no force, and in the PMSE, local force deviations may appear in areas with high
curvatures or irregular distributions of structure nodes.

4. A corrected nearest neighbor transportation method

In this section we propose a corrected nearest neighbor transportation method
(CNNT) of aerodynamic forces for the fluid-structure coupling analysis. The force
transportation process is divided into two phases. First, the aerodynamic forces
are allocated to the structural nodes initially using the above-mentioned methods
or their combinations, e.g., AWSF, IDW, where the IDW is relatively preferable
because of its excellent local performance and easy implementation. The initially
allocated forces are denoted by F0

G = {F 0
Gi}

nG
i=1. Second, the initially allocated

structural forces F0
G are corrected by solving an optimization problem with the

physical conservations as its optimization target.
According to this idea, a natural optimization problem to correct is proposed by

(18)

min
FG

1

2
(FT

GuG − FT
KuK)2

s.t.

{
QGFG = MK

(1− ε)F0
G ≤ FG ≤ (1 + ε)F0

G
,

where the structure forces FG are the optimization variables, FK are the fluid
forces, and uG,uK are structure and fluid displacements, respectively. The first
equation in the constraints represents the conservation of forces and moments, in
which MK are the total forces and moments of fluid, and QG is a coefficient matrix
to calculate the total forces and moments of structure, which is defined by

(19) QG =
[
Q1

G Q2
G . . . QnG

G

]
,Qi

G =


1 0 0
0 1 0
0 0 1
0 −zGi yGi

zGi 0 −xGi

−yGi xGi 0

 .

The second equation in the constraints of (18) ensures that the force directions
are the same as those of initial forces F0

G, and the force magnitudes vary in small
ranges of F0

G, characterized by a small parameter ε.
As the minimum of virtual work is an objective function, and the force and

moment conservations act as constraints, the physical meaning of optimization
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problem (18) is quite clear. However, it is extremely difficult to solve since the
constraints in (18) involve both equalities and inequalities. To overcome this, we
modify the optimization problem (18) to

(20)
min
FG

1

2
(QGFG −MK)T (QGFG −MK) +

1

2
(FT

GuG − FT
KuK)2

s.t.(1− ε)F0
G ≤ FG ≤ (1 + ε)F0

G.

The idea (20) is to treat the force and moment conservations as a part of the
objective instead of the constraints. The scheme (20) only contains the constraints
of inequalities, and can be solved efficiently by a barrier interior point method
(see [25] ), for example.

We next address the virtual works in the objective of (20). On the one hand, the
structure displacements uG are determined by the structural forces FG as follows:

(21) uG = A−1FG,

whereA is the structure stiffness matrix. On the other hand, let F̃G be the structure
forces calculated from FK using the VWC method (11), then based on the property
(10) of virtual work conservation of VWC, we have

(22) FT
KuK = F̃T

GuG = F̃T
GA

−1FG.

Substituting (21) and (22) into(20), the optimization problem (20)is rewritten as

(23)
min
FG

1

2
(QGFG −MK)T (QGFG −MK) +

1

2
(FT

GA
−1FG − F̃T

GA
−1FG)

2

s.t.(1− ε)F0
G ≤ FG ≤ (1 + ε)F0

G,

which is equivalent to

(24)
min
FG

D(FG) :=
1

2
FT

GHFG + fTFG +
1

2
(FT

GA
−1FG − F̃T

GA
−1FG)

2

s.t.(1− ε)F0
G ≤ FG ≤ (1 + ε)F0

G,

in which

(25) H = QT
GQG and fT = MT

KQG.

We present a barrier interior point method to solve (24). For simplicity, we
denote

(26) UP = (1 + ε)F0
G and DOWN = (1− ε)F0

G,

and a standard log-barrier function (see [25] ) is defined as

(27) B(FG, µ) = D(FG)− µ

[
nG∑
i=1

log(FGi −DOWNi) +

nG∑
i=1

log(UPi − FGi)

]
,

where µ > 0 is barrier factor. The algorithm for solving the optimization problem
(24) is described as the following:

Step 1. Give an initial interior point F0
G, with µ1, δ1 > 0, δ2 > 0, k := 1.

Step 2. Taking Fk−1
G as an initial point, solve the nonlinear minimization problem

Fk
G(µk) = argminFG

B(FG, µk) and the iteration stops when ∥∇B(Fk
G(µk), µk)∥ ≤

δ1.

Step 3. When µ

∣∣∣∣nG∑
i=1

log(F k
Gi(µk)−DOWNi) +

nG∑
i=1

log(UPi − F k
Gi(µk))

∣∣∣∣ ≤ δ2,

the iteration stops; otherwise, chose µk+1 < µk and Fk
G = Fk

G(µk), go to step 2.
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Based on this barrier interior point method, the optimization problem (24) can
be solved efficiently, and all the conservations of forces, moments, and virtual works
are achieved, as shown in the numerical experiments.

We mention that the choice of sequence µk will affects the barrier interior point
method. In our computations, we use

µ1 = D(FG)/

(
1/

nG∑
i=1

(F k
Gi(µk)−DOWNi) + 1/

nG∑
i=1

(UPi − F k
Gi(µk))

)
,

and µk+1 = αµk, 0 < α < 1.

The parameters α and δ2 are problem-dependent. For instance, a large α may
slow the convergence rate, while a small α may make the iteration stop too early
to find a good optimal solution.

The calculation process of the CNNT in a bigger flow chart of the general fluid-
structure coupling analysis process is illustrated in FIGURE 5, and we also describe
it below,

Figure 5. CNNT method within the fluid-structure coupling flow chart.

1) Obtain the pressure distribution from fluid analysis and integrate into a con-
centrated force at the center point of the fluid element.

2) Transform the fluid force to be the structure force using the proposed CNNT.
3) After the displacement of the structural nodes is obtained from structural

analysis, the RBF interpolation based on TPS (in Section 2) is used to accurately
interpolate the displacement from the structure node to the fluid element grid.

4) Calculate the new pressure distribution according to the deformation.
5) Repeat step 4), 1), 2), 3) until the iteration converges to complete the fluid-

structure coupling analysis.
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Remark 4.1.The optimization problem (24) keeps the global conservations of phys-
ical quantities. The idea can be extended to the conservations on various regions
of an aircraft similarly, for instance, on the nth region, by adding the following
functions into the objective of (24):

(28) Dn(FG) :=
1

2
FT

GC
T
nHCnFG+fTCnFG+

1

2
(FT

GC
T
nA

−1FG−F̃T
GC

T
nA

−1FG)
2,

where Cn is the selection matrix related to the nth region. Using this way, both
the global and region conservations can be dealt with.

Figure 6. Structure model in finite element method.

Figure 7. Fluid model in high-order panel method.

5. Numerical experiments

An example of sport plane is used to make comparison of different aerodynamic
force transportation methods. The structure model comes from the numerical ex-
ample of MSC.NASTRAN named freedlm.dat, which is shown in FIGURE 6. This
finite structure model is constructed by shell and beam element, and solved by
finite elements methods.

The fluid model is restored from the structure, which is shown in FIGURE 7,
and solved by high-order panel methods [26]. In geometry, the wing aspect ratio
is 10 and dihedral angle is 5 degree, with 8.3614m2 in area, 0.9144m in chord and
9.144m in span. About three thousands panel elements are meshed to perform fluid
analysis in high-order panel method. The pressure result is given in the form of
constant in a panel.

A fluid-structure coupling case of 0.4 Mach number in speed, 25063.55Pa in
dynamic pressure and 4 degree in attack angle is executed. In the CNNT, both of
global conservation and upper wing region conservation are considered to construct
the object function. And ε = 10% is selected in (24) to limit the range of force on
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Table 1. Total integrated load in different methods.

Fx Fy Fz Mx My Mz
Fk -480.192 -388.592 5568.437 384242.940 27266.236 36803.670
Fg VWC -480.192 -388.592 5568.437 384242.940 27266.236 36803.667
Error V 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Fg PMSE -480.192 -388.592 5568.437 384242.941 27266.236 36803.667
Error P 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Fg AWSF -480.192 -388.592 5568.437 382400.284 27270.035 36599.718
Error A 0.00% 0.00% 0.00% -0.48% 0.01% -0.55%
Fg IDW -480.192 -388.592 5568.437 386855.984 28156.183 36954.730
Error I 0.00% 0.00% 0.00% 0.68% 3.26% 0.41%
Fg A-CT -480.192 -388.592 5568.437 384242.939 27266.236 36803.670
Error A-CT 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Fg I-CT -480.192 -388.597 5568.431 384243.123 27265.558 36804.286
Error I-CT 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

structure. As for the force transportation method, 16 nearest structure nodes to a
fluid point are chosen in PMSE and IDW.

As the wing region occupies most percentage of physical parameters of the global
airplane in this case, only the results of the right side upper wing is selected to
make a comparison in different force transportation methods. The results of whole
airplane are similar, and we do not present them here. The fluid mesh of the right
side upper wing is shown in FIGURE 8 with 204 elements (center point of which
is the fluid point), with 191 corresponding structure nodes.The total integrated
results and local distribution results of the right-side upper wing region are listed
below.

Figure 8. Fluid mesh and integration coordinates of the right
side upper wing.

5.1. Total integrated results.
In the process of force transportation, four conventional methods, VWC (suffixed

by ‘V’), PMSE (suffixed by ‘P’), AWSF (suffixed by ‘A’) and IDW (suffixed by ‘I’)
are first implied. Then CNNT results based on AWSF and IDW are respectively
applied and suffixed by ‘-CT’. The original force on fluid is expressed by ‘Fk’, while
force on structure is represented by ‘Fg’. In this way, results of total force (Fx,
Fy, Fz), moment (Mx, My, Mz) in three directions and total virtual work (Wk for
fluid, Wg for structure) are integrated at the coordinate in the root of the right-side
upper wing in FIGURE 8 and listed below.
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Table 2. Total virtual work in different methods.

VWC PMSE AWSF IDW AWSF-CT IDW-CT
Wk 21841.130 21856.708 21723.491 21984.785 21914.772 22090.281
Wg 21841.130 21872.514 21604.742 22093.595 21914.765 22090.276
Error 0.00% 0.07% -0.55% 0.49% 0.00% 0.00%

Its obvious that force can be all preserved in four conventional transportation
method in TABLE 1, but only VWC and PMSE can maintain the conservation of
moment. AWSF cause small errors in moments in three dimension although it is
moment conservative in two dimension. The IDW causes larger error in moments
as no moment conservation law is included in the algorithm. Nevertheless, the
moments of CNNT are perfectly preserved as shown in the row of Fg A-CT and
Fg I-CT.

As displacement is decided by force, different fluid virtual works of Wk and
structure virtual work Wg would be obtained in different methods, as shown in
TABLE 2.

(a) Fk

(b) VWC (c) PMSE

(d) AWSF (e) IDW

Figure 9. Fluid mesh and integration coordinates of the right
side upper wing.
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(a) Fk

(b) PMSE

(c) IDW

Figure 10. Force magnitude of rear fuselage.

From the results of TABLE 2, it can be first concluded that VWC perfectly
maintains the conservation of virtual works, as predicted by the theory of VWC.
The PMSE, AWSF and IDW all lead to relatively larger error in virtual works.
Based on the CNNT, the virtual work errors of AWSF-CT and IDW-CT decrease
to almost zero.Therefore, the CNNT method can successfully achieve the global
conservations based on an initial force distribution of local force transportation
methods that is not originally conservative.

We mention that the errors caused by conventional force transportation methods
seem to not large. But with hundreds time of iterations in loose fluid-structure
coupling analysis, the errors may accumulate into very large ones.

5.2. Local distribution results.
As the local performance is also an important aspect in force transportation, force

direction, force distribution and integrated result along the wing are compared for
different methods.

5.2.1. Force direction.
The CNNT does not change the direction of initial value, so the force direction

is compared only in conventional transportation methods below in FIGURE 9.
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(a) Fk

(b) VWC (c) PMSE

(d) AWSF (e) IDW

(f) AWSF-CT (g) IDW-CT

Figure 11. Force magnitude in different methods.

Most force directions in the initial aerodynamic forces Fk are upward, except
several downward forces at the trailing edge and lateral ones at the tip of the wing.
We see from FIGURE 9 that in the VWC, nodes with unreasonable opposite force
appear. In the AWSF, there are nodes allocated with no force, as only three nodes
are chosen for each fluid node. But in the IDW, almost all the force directions
are kept (force in the tip is ignored for its little magnitude) and no missed nodes
exist. The PMSE seems to have the same good local performance, but behaves
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Figure 12. Force and moment in four conventional force trans-
portation methods.

badly on large curvature region like the rear fuselage, as shown within the red box
in FIGURE 10.

5.2.2. Force distribution.
The force magnitude is a representation of the force distribution. How similar

structure force distribution is to the original force distribution of fluid is another
criterion to judge the local force performance. Force magnitude of all the methods
used in this paper are compared in FIGURE 11.

In FIGURE 11, the VWC and PMSE demonstrate significant difference with
Fk as circled in red ellipse. AWSF is better than VWC and PMSE. IDW almost
maintain the distribution of Fk. As only 10% float is allowed around the initial
distribution, the changes of distribution are not obvious in the CNNT. Therefore,
CNNT based on IDW obtain better force distribution than the one based on AWSF.
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Figure 13. Force and moment in the CNNT based on AWSF and IDW.

5.3. Integral force and moment.
The integrated force and moment diagram of four conventional force transporta-

tion methods are illustrated in FIGURE 12, by integrating the force in FIGURE
11 from tip (0.0 in spanwise) to root (1.0 in spanwise) with the coordinate listed
in FIGURE 8.The integrated force and moment results of CNNT is illustrated in
FIGURE 13.

By comparing the curves in FIGURE 12, it can be concluded that the magni-
tude of integrated force with any transportation methods is always larger than the
original result of Fk. This may be caused by the position of integrating section. On
the other hand, the IDW shows more deviation than the other three conventional
transportation methods. In FIGURE 13, based on the CNNT, the deviation of
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IDW decreases as shown in IDW-CT curve. Although IDW-CT curve is as close to
Fk as AWSF-CT, it is still obviously different from AWSF-CT.

6. Conclusions

In this paper we presented a new aerodynamic force transportation method,
the corrected nearest neighbor transportation method (CNNT), to guarantee the
conservations of virtual work, forces and moments, and the consistency of local
force distributions in a fluid-structure coupling problem. The CNNT treats the
aerodynamic force transportation in two phases. First, the aerodynamic forces are
allocated initially to the structural nodes using the conventional approaches, such
as AWSF, IDW. Then the initially allocated forces are corrected based on an opti-
mization problem, which can be solved by a barrier interior point method efficiently.
The proposed method is tested using a sport airplane, and numerical experiments
show its effectiveness. The comparisons with the conventional methods, e.g., VWC,
PMSF, AWSF, and IDW were made to demonstrate that the CNNT is the only
method to preserve the conservations of physical quantities required and reasonable
distributions of forces indeed. Additionally, the CNNT is very flexible and can be
generalized to situations that the conservations of laws are maintained on both the
whole aircraft and its various sub-regions.

The CNNT incorporates solving the barrier interior point method. However, the
increase in computational cost is slight with respect to in the whole fluid-structure
coupling computation. Therefore, the CNNT can be applied to large airplane anal-
ysis without special treatment. Besides, as aerodynamic force transformation is
only a part of loose coupling, and loose coupling is a generally used method both
in static and dynamical aeroelastic problems, CNNT can be directly applied in dy-
namical aeroelastic problems. An extension of CNNT to dynamical aeroelasticity
analysis will be studied in a forthcoming research.
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