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THE WEAK GALERKIN FINITE ELEMENT METHOD FOR
SOLVING THE TIME-DEPENDENT STOKES FLOW

XIULI WANG, YUANYUAN LIU, AND QILONG ZHAI

Abstract. In this paper, we solve the time-dependent Stokes problem by the weak Galerkin (WG)
finite element method. Full-discrete WG finite element scheme is obtained by applying the implicit
backward Euler method for time discretization. Optimal order error estimates are established for
the corresponding numerical approximation in H! norm for the velocity, and L? norm for both
the velocity and the pressure in semi-discrete forms and full-discrete forms, respectively. Some
computational results are presented to demonstrate the accuracy, convergence and efficiency of
the method.
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1. Introduction

The Stokes problem [27] describes the dynamics of fluid flows in complex porous
media. It has wide applications in industrial and scientific fields, such as, petroleum,
biomedical engineering, and heat conduction model, etc. In this paper, we consider
the time-dependent Stokes problem, which has been treated by various numerical
methods, such as the finite element methods (FEMs) [9, 13], the finite volume meth-
ods [1, 21], the discontinuous Galerkin methods [2, 3, 10, 28], and the weak Galerkin
finite element methods [4, 15]. We provide a new developed weak Galerkin finite
element method in this paper. The concerning time-dependent Stokes equation
seeks the velocity function u and pressure function p satisfying

(1) w—pAu+Vp = f in Qx(0,7],
(2) V-u = 0,inQx(0,7],
(3) u = g, ondx (0,7,
(4) u(-,0) = u’ inQ,

where Q is a polygonal or polyhedral domain in R? (d = 2,3). fis a momentum
source term, p > 0 is the kinematic viscosity, and u; is the time partial derivation
of u(x,t). We assume that f, g and u’ are given, sufficiently smooth functions. For
simplicity, we consider (1) and (3) with x =1 and g = 0.

The weak forms in the primary velocity-pressure formulations for the Stokes
problems (1)-(4) find (u;p) € L2(0, T; [HE(Q)]4) x L2(0,T; LE(Q)), for any (v;q) €
[HE(Q)]4 x L3(Q2) with ¢ € (0, T satisfying

(ut7 V) + (vu7 VV) - (p7 V- V) = (fa V)v
(¢,V-u) = 0.

For the discretization of the Stokes equation, we use the weak Galerkin (WQ)

finite element method. The WG method was first introduced in 2011 [14] for the

second order elliptic problem and further applied to other partial differential equa-
tions, for example, the second order elliptic equation[12, 16, 22], the Stokes equation
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[17, 18, 24], linear elasticity equations [11], the parabolic equations [22, 25, 29] the
Brinkman equation [19, 23], the Biharmon problem [6, 7, 26] and the Helmholtz
equation [8], etc. The WG method refers to a general finite element technique for
partial differential equations in which differential operators are approximated by
weak forms as distributions for generalized functions. The main idea of the WG
method is the use of weak functions and their corresponding weak derivatives de-
fined as distributions. Weak functions and weak derivatives can be approximated
by polynomials with arbitrary degrees. Thus, there are three prominent features:
(1) The usual derivatives are replaced by distributions or discrete approximations
of distributions; (2) The approximating functions are discontinuous; (3) The WG
method allows the use of finite element partitions with arbitrary shape of polygons
in 2D or polyhedra in 3D with certain shape regularity. These features make the
WG method have many advantages, such as high order of accuracy, high flexibility,
and easy handling of complicated geometries.

In this paper, we provide an effective WG finite element method for the time-
dependent Stokes equation. The weak Galerkin finite element space consists of
discontinuous piecewise polynomials of degree k > 1 for the velocity u and poly-
nomials of degree k — 1 for the pressure p, respectively. The paper is organized
as follows. In Section 2, we introduce some standard notations in Sobolev space
and then develop the semi-discrete and full-discrete WG finite element scheme for
the Stokes equation (1)-(4). For time discretization, we use the backward Euler
method, which is an implicit method. In Section 3, we derive the semi-discrete
and full-discrete error equations for the WG approximations. Optimal order error
estimates for both the semi-discrete and full-discrete backward Euler WG finite
element approximations are established in Section 4 in H' norm for the velocity
and L? norm for both the velocity and the pressure functions. Finally, in Section
5, we present some numerical experiments to confirm the theoretical analysis.

2. The Weak Galerkin Finite Element Method

In this section, we introduce some preliminaries and notations for Sobolev space,
the semi-discrete and full-discrete WG finite element schemes for the Stokes problem
(1)-(4).

Let D be any open bounded domain with Lipschitz continuous boundary in
R? (d = 2,3). We use the standard notations for the Sobolev space H*(D), and
the associated inner product (-,-)s p, norm | - ||s p, and semi-norm | - |5 p for any
s > 0. The space H°(D) coincides with L?(D), for which the norm and the inner
product are denoted by || - ||p and (-, -)p, respectively. When D = Q, we shall drop
the subscript D in the norm and inner product notation.

Let T, be a partition of the domain € consisting of polygons in R? or polyhedral
in R? satisfying a set of conditions [5], and T" be each element with T as its
boundary. &, is the set of all edges or flat faces in Ty, and 52 = &EL\ON is the set
of all interior edges or flat faces. For each T' € T}, denote by hr the diameter of T,
and h = maxrpe7;, is the mesh size of 7p,.

We define weak Galerkin finite element space for the velocity function u and the
pressure function p, as follows

Vi = {v=1{vo,vs},volr € [Pe(T)], vs|ec € [Pe_1(e)]?, VT € Ty, Ve € OT},
%5 {v eV, v, =0o0n 00},
Wh {q:q € L), q|r € Po_1(T),YT € Tp,}.
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We would like to emphasize that any function v € V}, has a single value v, on each
edge e € &,.
A discrete weak gradient V,, .1 is defined as a linear operator by

(vw,r,Tvv q)T = *(V(), V- q) + <vb7 q- n>8T7 Vq € [PT(T)]dXd-
A discrete weak divergence V,, - is defined as a linear operator by

(vw,nT -V, (p)T = —(V07 V(,O) + <vb -1, (10>6T7 v@ S [PT(T)]dXd~

Next, we introduce three bilinear forms

s(v,w) = Z hEl<QbV0 — Vi, QuWo — Wo)or,
TETh
a(v,w) = (Vuv,Vuw)+ s(v,w),
b(v,q) = (Vuw v,q).

For any v € V), we have
IVI? = a(v,v) = IV VI + Y bzt [Quvo — vel3-
TET

Weak Galerkin Algorithm 1. Find w, = {uo(-,t), wp(-,t)} € L?(0,7; V) and
pn € L2(0,T; W), such that

(5) ((un)e, wo) + alun, v) = b(v,pr) = (fiw), Yo={vo, m} €V},
(6) b(un,q) = 0, Vg€ Wy,
(7) up(z,0) = Qupu’(z), Vo € Q.

Then, we introduce some projections. Denote by Qo the L? projection operator
from [L2(T)]¢ onto [P(T)]?. For each edge/face e € &y, denote by Q; the L2
projection from [L2(e)]¢ onto [Py_;(e)]?. We shall combine Q with @ by writing
Qn = {Qo,Qp}. Let L, and Ry, be two local L? projections onto Pj_1(T) and
[Pr—1(T)]%*4, respectively.

Lemma 2.1. [15] The projection operators satisfy the following commutative prop-
erties

(8) Vou(Qru) Rn(Vu), Yue [H'(Q)
9) Vo (Quu) = Lp(V-u), Yuec H(div,Q).

Lemma 2.2. [15] For any v, w € V;!, we have the boundedness and coercivity
la(v, w)| <ol - [Jwl,

a(v,v) = [lvf*.

Theorem 2.1. For the numerical solution of the weak Galerkin algorithm (5)-(6)
with the initial setting (7), there is a stability as follows

lun (B)[1* < € (]| n (012 +/ LA dr).
0

Proof. Taking v =uy, in (5) and ¢ = g3 in (6), we have
((an)e, up) + a(up, up) = (£ up).
Considering the definition of a(-,-), it follows that

a(up,up) > 0.
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Thus, it is to know that

((un)e, un) < (£, un),
ie.
1d
Using Canchy-Schwarz inequality and Young inequality, we obtain
1d
—— [ u} dmﬁC(/f2 dx—l—/ui dzx).

Integrating the above inequality with respect to ¢, we get

lun(®)]? < un(0)[2 + € / |62 dr + C / ()2 dr.

Based on the Gronwall lemma, we complete the proof of the theorem. (I

Next, for time discretization, we use the implicit backward Euler method to
discrete the semi-discrete WG finite element scheme (5)-(7). Let 7 denote the time
step, and t,, = nT(n = 0,1,---),u} = uy(t,). The backward Euler method for
time discretization is given by

n n—1
= u} —u
J,u? = h h
tUp, 77_
Therefore, we obtain the full-discrete weak Galerkin finite element scheme for the
Stokes equation (1)-(4).

Weak Galerkin Algorithm 2. A full-discrete numerical approximation for (1)-
(4) can be obtained by finding (w}; p}t) € V¥ x W), with any positive integer n and
0<t<T such that

(10) (5tuz’1’0)+a(u27’v)_b(’vOap;zl) = (fnva)a
(11) b(uy,q) = 0,
(12) ) = Quu.

Lemma 2.3. The full-discrete weak Galerkin finite element scheme (10)-(12) has
a unique solution.

Proof. 1t is sufficient to prove the following homogenous equation has a unique zero
solution

(13) (0puf,vo) + a(u},v) — b(vo,py) = 0,
(14) b(uz’ Q) = 0,

Taking v = u}} and ¢ = p} in (13) and (14), respectively, we have
(Opuf,uft) + a(ul,ul}) = 0.
Since

(Oruj, uj) n

1
;(UZ -4, »UZ)

((up,up) = (up=hup ™) + (uf —up ™' up — uj,

Y%

e 1 = [l = 12),
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we obtain

1 _
o= (i1 = %) + i < 0.

Repeating application yields
n
[uilf* +27 ) i JI* < 0.
i=1
It follows from the positive definiteness of norm that
Juil =0, 1<i<n, on u}=0.
From the rationality of the definition of || - || in paper [15], we get
uy=u, =0, 1<i<n,
With the Lemma 4.3 in paper [15], u} = 0 and the form (13), we arrive at
pﬁb =0, 1<1¢<n,
which completes the proof of this lemma. ([l
3. Error Equations

In this section, we will introduce error equations for the semi-discrete scheme
(5)-(7) and full-discrete scheme (10)-(12).

3.1. Semi-discrete weak Galerkin error equation. About all, we first define
the projections Epu and &E,p onto V, and W), respectively for the exact solution of
the Stokes problem (1)-(4).

(16) a(Ehuv X) - b(xvghp) = (—All, X) + (vp7 X)7

(17) b(Epu,x) = (V-u,x).

Those similar definitions of Wheeler’s projections are introduced in [5, 20]. Enu
and &,p are standard weak Galerkin finite element solution of the Stokes problem.

Lemma 3.1. Assume (u;p) € L?(0,t;[HE(Q)]?) x L2(0,t; L3(Q)) is the evact so-
lution of the Stokes problem (1)-(4), there exists a constant C satisfying

(18) IQnu— Epull < CRF([lules1 + [Iplx),
(19) |Qnu— Epul| < CA*(|lullisr + [Ipllx),
(20) lu—Quu < CR**'uliy.
Denote
e = FEpu-—up, €=E&p—pn,
n = Qpu—Epu, gy = Qpuy — Epuy,
p = u—Qpu, pt=u — Qpuy.

Lemma 3.2. Assume (w;p) € L2(0,t;[H3(Q)]4) x L2(0,t; L2(2)]?) is the exact
solution of (1)-(4), and (up;pn) € V2 x Wy, is the numerical solution of (5)-(7)
with any (v;q) € V2 x Wy, and 0 <t <T. Then, we have

(21) (etv 'U) + a(ev v) - b(va ’5) = _(Pt7 v) - (ntv v)v
(22) ble,q) = 0.
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Proof. First, testing (1) by v = {vo, v, } € V), we arrive at
(ug,v) = (Au,v) + (Vp,v) = (f,v).
Using the definition of a(Epu, v) and b(v, E,p), we obtain
(23) (ug, v) + a(Epu, v) — b(v, Erp) = (f,v).
The difference between (23) and (5) yields the following equation
a(Epu —up, v) = b(v,Epp — pn)
((un)e —ag,v)
= ((un)e — Epug, v) + (Epug — Quuy, v) + (Qruy — uy, v).

That is

(e, v) +ale,v) = b(v,e) = —(pt, v) = (ms, V).
This completes the derivation of (21).

Next, we test the equation (2) by ¢ € W}, and use the definition of b(Epu, v) to
obtain

(24) b(Epu,q) = 0.
It follows from (24) and (6) that
b(e,q) = 0,
which completes the derivation of (22). Therefore, we obtain the semi-discrete error
equations. O

3.2. Full-discrete weak Galerkin error equation. In this part, we derive the
full-discrete error equations for the Stokes problem (1)-(4). For simplicity, we only
present the analysis for the full-discrete scheme with backward Euler time dis-
cretization.
Denote
e’ = Epu" —uy, " =&p" —pp,
n" = Qpu"— Epu”, p" =u" - Qpu".
Lemma 3.3. Let (u};p}) € Vi, x Wy, be the numerical solution of (10) -(12), and
(u;p) € L2(0,T;[H(Q)]Y) x L2(0,T; L3(R)) be the exact solution of (1)-(4) for
0<t<T. Then, for any ve VY and ¢ € Wy, we have
(2505ten7 V) + a(en, V) - b(V, 5n) = _(Emn’ V) - (gtpnv V) - (u? - gtuzv V),
(26) be",q) = 0.
Proof. Considering (23) and (10), we arrive at
a(Ehun - UZ,V) - b(V, Ehpn 7p’;zl) = 7(u? - gtuZaV)'
Adding (9;(Epu™ — uy),v) to both sides of the above equation gives
(0i(Epu™ —u}}),v) + a(Epu™ — ul,v) — b(v, Exp™ — pi)
= (0¢(Bpu™ — Qpuy),v) + (0:(Qpu™ —u}),v) — (us — druy, v).
ie.
(0™, v) +a(e™,v) —b(v,e") = —(9:p",v) — (Oyn™,v) — (u; — Opu}l,v).
This completes the derivation of (25). From the full-discrete form (11) and (24),
we have the fact

b(e", q) = 0.
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This completes the derivation of (26). Thus, we get the full-discrete error equations.
O

4. Error Estimates

In this section, we shall establish optimal order error estimates for the velocity
approximation u, in a norm which is equivalent to the usual H' norm and the
standard L? norm, and for the pressure approximation py, in the standard L? norm
both for the semi-discrete scheme and full-discrete scheme, respectively.

4.1. Semi-discrete weak Galerkin error estimate. This section gives the er-
ror estimates for the semi-discrete weak Galerkin scheme.

Theorem 4.1. Let (up;py) € VP x W), be the numerical solution of the Stokes
problem (1)-(4). Assume the exact solution is smooth enough so that (u;p) €
L2(0,T; [HYH(Q)]?) x L2(0,T; LE(2)). Then the following error estimate holds true

¢
(27) lle]l* < [le(-, 0)1* + Chg(k“)/o (larllE s + llplR) dr.
Proof. Letting v = e in (21) and ¢ = ¢ in (22), we obtain
(28) (er,e) +ale,e) = —(n,e) — (pt, €).
From the definition of || - ||, Young’s inequality and the relation between || - || and
I~ 1l; we get
1d 1d,
(e,e) = - (ee) =g el
a(e,e) = |ef?,
1 1 1 1
_ < o2 4 Zlell2 < 2l l2 + Zllel?
(ore) < slloul?+ glell < Sl + Sl
1 2 Ly o 1 2 Ly o
- < = - <= ~lle|l?.
(o) < glml+ 5lel < sl + 2 el

Combining the forms above into (28) yields

d, 2 2 2

— < .

L el < el + o]
Integrating above inequality with respect to ¢, we have

¢
lefl* < lle(-, 0)]” +/0 (=11 + llpel|*) dr.

We complete the proof of (27) by (19) and (20). O
Theorem 4.2. Let (u;p) € L2(0,T; [HL(Q)]?) x L2(0,T; LE(Q)) be the eract so-

lution of the Stokes problem (1)-(4), and (up;pn) € VP x W), be the numerical
solution of the semi-discrete WG (5)-(7). Then there is a constant C satisfying

t t
(20) / lesl? dr < fle(- 0)J + CR2EHD / (sl + lIp]2) dr,

t
(30) el < \Ile(',O)IHQ+Chz(’““)/0 (larllz ey + lIplR) dr,

t t
(31) / lel? dr < Je(-0)|? + CR2¢+D / (lurl2 4y + [p]2) dr.
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Proof. When v = e, in (21) and ¢ = € in (22), we have

(er,er) +ale,e) —ble,e) = —(m,e) — (prrer),
ble,e) = 0.
‘We have the fact
d d
- = —— .e)q d
0 S dt/ﬂ(v e)q dx
= /(Voet)q da:Jr/(Voe)qt dx
Q Q

blet, q) + b(e, qr)-

From (22), we get b(et, q) = 0, for any ¢ € W), which yields
(er,€) +ale,e)) = —(pi, ) — (e, €).

Using the definition of || - || and Young’s inequality, we arrive at

1d
2dt

led|* + lell® (et,er) +ale,er) = —(n:,e) — (i, e)

A

1 1
2 2 2 2

—|le ~|le
Il + el + ol + g el
which leads to

d
leal® + —lell” < 2fmll* + 2llpe]*

Integrating above formula with respect to ¢, we obtain

t
0

t
/0 les|? dr + le]® < fle(- O] + 2 / (12 + 192 11?) dr.

From the estimates of 7; and p;, we get (29) and (30).

From the error equations (21), we have
b(V,S) = (ntav) + (ptav) + a(e,v) + (etav)‘

Using inf-sup Condition, Cauchy-Schwarz inequality and the property of a(-,-), we
obtain

Cllell - vl b(v,e) = (pt, v) + (i, V) + (e, v) + ale, V)

<

< Cllpel - v+ Clinell - IvIE+ Clleel - vl + llell - [IvIl-
Furthermore

lell* < CUmell + lloell + llell + lledl))?.

We get the following inequality by integrating the above inequality from 0 to ¢

t t
/0 lell? dr < [le(-, 0)I? + CR2¢*+D / (lurliZ,y + lpl2) dr.

This completes the proof of (29)-(31). O
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4.2. Full-discrete weak Galerkin error estimates. This part presents the er-
ror estimates for the backward Euler weak Galerkin scheme (10)-(12).

Theorem 4.3. Assume (u;p) € L*(0,T;[H(Q)]4) x L?(0,T; L3()) is the ezact
solution of the Stokes problem (1)-(4), and (upn,pn) € V¥ x Wy, is the numerical
solution of the full-discrete WG scheme (10)-(12), then the following error estimate
holds true

tn tn
@2 el < e+ CC [ el a2 [ s + ol d)
Proof. Letting v = €™ in (25) and ¢ = €™ in (26), we obtain
(5ten,en) + a(en’en) - 7(57&77”; en) - (5tpna en) - (u? - gtqu en)'

By the backward Euler form, the definition of || - || and Young’s inequality, we have

. en_en—l
(atenaen) = ( i ’en)
1 n .n n—1 _n
= (e (e en)
1 n 1 n— n
= —[le"[I* — =(e""",e"),
T T
a(e™e") = [le"[?

a7 ,n AN a7 .1 1 n
—@m" ") < 0" + 4lle™

a7 .1 1 n
< [om™ 17+ eI,
a3 n o n [ n 1 n
—(@ep"€") < 10" + lle”
a3 n 1 n
< 19" P + gl I,

and
n a9 ..n an 1 n 9 ,.n2 1 n 2
(o~ Baet) <y - Bl 4 e
Combining with all these formulas and repeating application, it follows

le™|* < e H* + Cr([|9en™ I? + 19ep" | + uf? — Dpu[|?)

n

< |+ Cr > (RY + RS+ R,
=1
where
: N [t
Rl = [Bell=1) / (@Qn — Enyu, dif < - / CH* ([l + lIpl)
T ti—1 T ti—1
7 a3 1 ]‘ bi 1 bi k+1
Ry = 19l =21 " @ -Dwdl <[ on i + ol de.
T ti—1 T ti—1
. _ 1 t; t;
Ry = Jult) — Bt = 2| / (5 — tior)uge(s) ds]| < / s dt.
ti—1 ti—1

We get the estimate (32) by summing over all elements T' € 7}, in above inequalities.
|
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Theorem 4.4. Let (u;p) € L2(0,T; [HL(Q)]?) x L2(0,T; LE(Q2)) be the exact so-
lution of the problem (1)-(4), and (un;pn) € V¥ x W, be the numerical solution
arising from full-discrete WG scheme (10)-(12) satisfying

tn tn

(33)  lle™ll < \IIeOIIIJrC(T/0 [z dt+h’““/0 ([aellss1 +lpllx) db),
tn tn

(34) [0 < HIeOIIIJrC(T/0 [zt dt+hk“/0 (e llssr + lIplle) db),
tn tn

(35) el < \IIeOIIIJrC(T/0 [z dt+hk“/0 (aellss1 +llpllx) ).

Proof. Taking v = d;e™ in (25) and ¢ = €" in (26), we have
(36) |0:™||? + a(e™, Dse™)
= —(0m",d1€") — (01p", 0s€") — (uj — Opu", dse™),

where using the fact b(e"~1,e") = 0.

From the backward Euler form, the definition of || - || and Young’s inequality, we
obtain
n _ on—1
(37) a(e",Bie") = afe", )
1 n o .n 1 n n—1
- ;a’(e € ) Ta(e , € )7
o _ 1 -
(38) —(@m",0e™) < 0" + 1||3ten||2»
_ _ 1 -
(39) —(@p",00e™) < |00 + ZHatenHQ’
and
n I A ) 1 n T 4472 1= n|2
(uf —Opu", dre") < §||ut — 0" +§H3te [

Combining all these estimate forms and repeating application yields

le”ll < lle" "l + CT(RY + Ry + R)

< e’ + C7 Y (R} + R + RY).
i=1
From the estimates of RY, R and R}, we get (33).
Then, we have the fact

_ _ 1 _
(40) (uf — dpu™,8pe") < [uy — dpu”||* + leﬁtenllz-

Combining (36)-(40), we arrive at
n
10e”| < el +C7 Y (R + R + RY).
i=1
We get (34) from (33) and the estimates of Ri, R} and R.

Finally, from (25), inf-sup condition, and full-discrete estimates (32)-(34), we
have (35). O
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5. Numerical Experiments

In this section, we provide some numerical experiments to illustrate the weak
Galerkin finite element method for the time-dependent Stokes flow in this paper.

The numerical experiments are based on the weak Galerkin finite element space
for the velocity function u

Vi = {v = {vo,vs},vo € [Pe(T)]%, vy € Plx_1(e)]%, VT € Tp,,Ve € OT'}.
The weak Galerkin finite element space for the pressure function p
Wi, ={q € L§(Q),q|r € Pe_1(T),VT € Tp}.

Denote by (u;p) be the exact solution of the Stokes problem (1)-(4) and (un,pp) be
the numerical solution of the full-discrete weak Galerkin scheme (10)-(12), respec-
tively. The errors between the exact solution and numerical solution are defined
by e" = Epu” —u} and €" = &,p" — pj, where Epu and &,p are the elliptical
projection of the exact solution u and p onto V0 and W), respectively. Define three
norms of the error for the weak Galerkin finite element solution as follows

tn tn
el < HeOII+C(T/0 [[aze | dt+hk“/0 (laellx+1 + [lpllx) ),

n

tn t
N +C(r [ el dt + 25T [ ([l + lIplli) dt),
0 0

IA

lle™ I

in

tn
Il < [l + O / ]| dt + B+ / (ruellies + pll) do).

5.1. Example 1. Consider the time dependent Stokes problem (1)-(4) in the
square domain Q = (0,1)? with the Dirichlet boundary condition. We use the
uniform triangle mesh with the mesh size h and time step 7. The weak Galerkin
finite element space with k£ = 2 is employed in the numerical discretization. The
analytic solution is

[ sin(27z) cos(2my)e

o <— cos(2mx) Sin(Qﬂ'y)e_t) and p = e~ (27 cos(2mx) cos(2my)).

The right-hand side function f in the equation (1) is computed to match the exact
solution.

Table 5.1 shows the errors and convergence rates with respect to different h,
when the time step is fixed 7 = 1/512 and k = 2. It is obvious that the convergence
rates for the velocity function in H' norm and the pressure function in L? norm
are of order O(h?). The convergence rates for the velocity function in L? norm is
of order O(h?), which coincides with the theoretical analysis.

Table 5.2 shows the errors and convergence rates with respect to different 7,
when the the mesh size is fixed h = 1/64 and k = 2. The convergence rates for
the velocity function u and the pressure function p are of order O(h') both in H'*
norm and L? norm.

5.2. Example 2. Consider the time dependent Stokes problem (1)-(4) in the
square domain Q = (0,1)? with space interval h and time step 7. For convenience,
we also study the Dirichlet boundary condition in the uniform triangle mesh with
the weak Galerkin finite element space k = 2. It has the exact solution

u— ( 27 sin(mz) sin(mz) cos(my) sin(mwy) cos(t)

—2m sin(7x) sin(wy) cos(wz) sin(my) cos(t)> and p = cos(mz) cos(my) cos(t).

The right-hand side function f is computed to match the exact solution.
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TABLE 1. Example 1. Error and convergence rate for £ = 2 with
T=1/512.

‘ h ‘ Error Rate ‘ Error Rate ‘ Error Rate ‘
1/2 2.2206E-02 2.0231E-02 2.0484E-02

1/4 | 5.5369E-03 2.0038 | 2.5043E-03 3.0141 | 4.4565E-03 2.2005
1/8 | 1.3892E-03 1.9948 | 3.1338E-04 2.9984 | 1.0572E-03 2.0756
1/16 | 3.4832E-04 1.9958 | 3.9255E-05 2.9970 | 2.5815E-04 2.0340
1/32 | 8.7326E-05 1.9959 | 4.9204E-06 2.9960 | 6.3942E-05 2.0134
1/64 | 2.2248E-05 1.9727 | 6.5744E-07 2.9039 | 1.8048E-05 1.8249

TABLE 2. Example 1. Error and convergence rate for £ = 2 with
h=1/64.

‘ T ‘ Error Rate ‘ Error Rate ‘ Error Rate ‘
1/2 | 1.3176E-03 7.1020E-05 2.9119E-03

1/4 6.0335E-04 1.1268 | 3.2514E-05 1.1272 | 1.3318E-03 1.1286
1/8 | 2.8928E-04 1.0605 | 1.5563E-05 1.0629 | 6.3728E-04 1.0633
1/16 | 1.4280E-04 1.0185 | 7.6331E-06 1.0278 | 3.1156E-04 1.0324
1/32 | 7.3129E-05 0.9655 | 3.8134E-06 1.0012 | 1.5407E-04 1.0159
1/64 | 4.0995E-05 0.8350 | 1.9703E-06 0.9527 | 7.7191E-05 0.9971

TABLE 3. Example 2. Error and convergence rate for £ = 2 with
T =1/512.

‘ h ‘ Error Rate ‘ Error Rate ‘ Error Rate ‘
1/2 | 6.3415E+00 9.8662E+00 1.0214E+00

1/4 | 2.0165E+00 1.6530 | 1.02056E400 3.2732 | 4.8445E-01 1.0761
1/8 | 5.2254E-01 1.9482 | 1.0045E-01 3.3449 | 1.2297E-01 1.9780
1/16 | 1.3190E-01 1.9861 | 1.1441E-02 3.1341 | 3.0382E-02 2.0171
1/32 | 3.3066E-02 1.9961 | 1.3941E-03 3.0368 | 7.5424E-03 2.0101
1/64 | 8.2744E-03 1.9986 | 1.7282E-04 3.0120 | 1.8800E-03 2.0043

TABLE 4. Example 2. Error and convergence rate for £ = 2 with
h =1/300.

T Error Rate Error Rate Error Rate
1/2 | 4.4933E-02 2.5384E-03 4.4145E-03
1/4 | 2.0618E-02 1.1238 | 1.1646E-03 1.1240 | 2.0272E-03 1.1227
1/8 | 9.7942E-03 1.0739 | 5.5289E-04 1.0748 | 9.6574E-04 1.0698
1/16 | 4.7726E-03 1.0371 | 2.6876E-04 1.0407 | 4.7591E-04 1.0210
1/32 | 2.3744E-03 1.0073 | 1.3242E-04 1.0212 | 2.4680E-04 0.9473
1/64 | 1.2229E-03 0.9573 | 6.5711E-05 1.0109 | 1.4333E-04 0.7840
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Table 5.3 presents the errors and convergence rates with respect to different h,
when the time step is fixed 7 = 1/512 and k = 2. Table 5.4 presents the errors
and the convergence rates with respect to different 7, when the mesh size is fixed
h = 1/300 and k = 2. From the two tables, the optimal convergence orders are
obtained both for the velocity function u and the pressure function p in different
norms, which coincide with the theoretical analysis.
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