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INTERIOR-EXTERIOR PENALTY APPROACH FOR SOLVING

ELASTO-HYDRODYNAMIC LUBRICATION PROBLEM: PART I

PEEYUSH SINGH AND PRAWAL SINHA

Abstract. A new interior-exterior penalty method for solving quasi-variational inequality and

pseudo-monotone operator arising in two-dimensional point contact problem is analyzed and de-
veloped in discontinuous Galerkin finite volume (DG-FVEM) framework. We derive a discrete
DG-FVEM formulation of the problem and prove existence and uniqueness results for it. Optimal

error estimates in H1 and L2 norm are derived under a light load parameter assumptions. In
addition, the article provides a complete algorithm to tackle all numerical complexities appear in
the solution procedure. Numerical outcomes are presented for light, moderate and relative high
load conditions. The variations of load parameter and its effect on the evolution of deformations

and pressure profile are evaluated and described. This method is well suited for solving elasto-
ehydrodynamic lubrication point contact problems and can probably be treated as commercial
software. Furthermore, the results give a hope for the further development of the scheme for
extreme load condition, observes in a more realistic operating situation which will be discussed in

part II.

Key words. Elasto-hydrodynamic lubrication, discontinuous finite volume method, interior-
exterior penalty method, pseudo-monotone operators, variational inequality.

1. Introduction

In the last century, a various attempts have been devoted by a large scien-
tific community in shaping a more solid mathematical foundation, modeling and
developing a robust scientific tool in the area of lubrication theory (study of thin-
film flows). In particular, elasto-hydrodynamic lubrication (EHL) has picked up
a notable innovation pace since its acceptance as the essential physical phenom-
enon behind the flourishing operation of many important industrial devices such
as journal bearings, rolling contact bearings, gears etc. An extensive list of con-
tributions of EHL model and theoretical development can be found mainly in
[6, 29, 37, 12, 11, 24, 25].

EHL is indispensable mechanism of thin fluid-film lubrication characterized by
high contact pressure. As a consequence an exceptional elastic deformation and
piezo-viscous increase in lubricant viscosity. The mechanical action (squeezing,
shearing etc) changes the lubricants film thickness, viscosity and density which
account for the variation of bearing performance characteristics. Therefore, a qual-
itative and precise prediction of the elasto-hydrodynamic lubrication model requires
consideration of the constitutive equation for the lubricant. In literature, numer-
ous models [21, 29] have been introduced to describe the basic aspects of the EHL
theory, where the three main attributes of this kind problems are quoted; the fluid
hydrodynamic displacement (govern by Reynolds equation), the solid elastic defor-
mation and the cavitation generation. Typical lubricated devices consist of a thin
flow of lubricant between two contacting geometries in relative movement. Classi-
cally, this equation (known as Reynolds equation) is described by making heuristic
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rational argument (see [35], for example) and later by deducing from Stokes equa-
tion with the help of asymptotic techniques (see Bayada and Chambat [15]).

In the current study, two important features of the lubricating fluid are density
and viscosity. We consider density of lubricant as function of applied pressure (that
is non-homogeneous fluid) and it is governed by the empirical relation proposed by
Dowson and Higginson [14] (see eqn (6)). We examine piezoviscous property of
lubricant into account, ie. the viscosity is no longer constant and it obeys the
Barus law [5] (see eqn (5)). The piezoviscous regimes has led to many outcomes
based on mathematical analysis that describe the existence and uniqueness of the
solution (see [12, 37, 24, 25], for example), as well as to design precise numerical
methods for approximating the corresponding solutions, which have no analytical
illustrations. An alternate pressure-viscosity relation also has been considered by
many authors in literature (see [38, 21], for example).

It is well known that cavitation is one of the crucial phenomenon in EHL prob-
lems and it is interpreted as the rupture of the continuous fluid film due to formation
of air bubbles inside the region. This phenomenon has been experimentally observed
in many lubricated devices such as journal-bearings, ball-bearings, etc. Different
cavitation models have been suggested for physical and mathematical analysis (e.g.,
see [6, 29]). One common ingredient of most of these models is the decomposition
of the EHL region into two parts a lubricated part where Reynolds equation is gov-
erned and a cavitation region where the lubricant pressure is constant and equal to
the saturation pressure. Consequently, the boundary splitting both regions is also
priori not known in the problem, therefore modeling of the cavitation was used to
impose a free boundary based on the following condition,

uc = ∇u.n = 0,

where uc stands for the cavitation pressure and n stands for the unit normal vector
to the free boundary. This condition leads to a formulations in terms of a comple-
mentarity problem associated with the corresponding nonlinear Reynolds equation,
or equivalently to a variational inequality ( see eqns (1)–(3)).

Over last few decades, renowned interest has been paid to study Elastohydrody-
namic lubrication (EHL) model problems in terms of theoretical as well as practical
points of view. A significant amount of numerical techniques are available in litera-
ture for the EHL model problems [30, 21, 20, 19, 23, 36, 1, 32, 42, 43, 22, 11, 40, 31,
24, 45, 41]. Recently, theoretical study of finite volume element method (FVEM)
[28] and discontinuous Galerkin finite volume element method (DG-FVEM) such
as optimal error analysis is gaining momentum. In particular, these methods can
be derived from a firm theoretical foundation and understanding similar to finite
element, see for example [25, 7, 8, 9, 27, 17, 18]. Formulation of these methods is
derived by integrating the partial differential equation (PDE) model over a control
volume element. Due to its natural conservation characteristic feature, adaptiv-
ity and parallelizability, DG-FVEM gained popularity in development of scientific
computing software for many real life complex phenomenon such as fluid mechanics,
contact problems in mechanics, mathematical finance and hyperbolic conservation
laws (traffic flow etc.) where analytical solution has minimum regularity of in na-
ture. In many cases, implementing high order methods is not straight forward and
it requires huge computational storage and time. On the other hand, using low
order scheme we pay the price in the form of low accuracy when discretization grid
are not small. To achieve the numerical accuracy one choice we have is, refine
the mesh and use the parallelization. Hence, it is quite reasonable to demand the
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advantage of nonconforming or Discontinuous Galerkin finite element method (DG-
FEM) (see for example [2, 34, 4, 44, 13, 3] ) can be incorporated into DG-FVEM
(see for example [46, 39, 26, 7]). However, there is hardly any numerical results
available on DG-FVEM for solving nonlinear variational inequalities or for solving
EHL problems. Even though numerical study of EHL model problems have been
largely available in many papers, a very little attention have been drawn in ana-
lyzing the optimal error estimate study using DG-FVEM. Therefore, the present
article has been devoted to investigated convergence and optimal error estimates
for DG-FVEM for solving EHL model problem with the help of interior-exterior
penalty procedure. This approach is quite natural and reduces the ambiguity in
connecting the exterior penalty in DG-FVEM setting to capture free boundary and
helps us to prove convergence and optimal error estimate of penalized problems
not only EHL problems but also general variational inequality. However, in this
paper, we do focus our attention in devising and in analyzing DG-FVEM (more
about in theoretical perspective) for the EHL problems only. More practical results
discussion will be given in the second part of this paper.

Upper body

Lower body

Cavitation 
Region

Lubricants

Figure 1. Undeformed surface body.

1.1. Model Problem. Let two contacting elastic bodies separated by a lubricant
(like oil, liquid etc.), having film thickness size hd, (assume that hd << R, where
R is equivalent radius of both ball and defined as R−1 = R−1

1 + R−1
2 .) rolling in

positive x-direction give rise well known EHL model. Mathematical model of such
model is described in the form of strongly non-linear variational inequality (VI) as

∂

∂x

(
ϵ∗
∂u

∂x

)
+

∂

∂y

(
ϵ∗
∂u

∂y

)
≤ ∂(ρhd)

∂x
(1)

u ≥ 0(2)

u.
[ ∂
∂x

(
ϵ∗
∂u

∂x

)
+

∂

∂y

(
ϵ∗
∂u

∂y

)
− ∂(ρhd)

∂x

]
= 0,(3)

here term ϵ∗ is defined as

ϵ∗ =
ρh3d
ηλ

,

where u denote the dimensionless pressure of lubricant, ρ is dimensionless density
of lubrication, η is dimensionless viscosity of lubrication and speed parameter

λ =
6η0vsR

2

a3pH
,(4)
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Deformed upper surface

Deformed lower surface

Cavitation
region

Lubricants

Figure 2. Deformed surface body.

where η0 ambient pressure viscosity, vs sum of contact velocity, pH maximum
Hertzian pressure and a is radius of Hertzian contact. The detail of its specific
value used in computation are described in appendix (B). The non-dimensionless
viscosity η is defined according to [5]

η(u) = exp
(
αpHu

)
,(5)

where α (1 × 10−8 w 2 × 10−8) is pressure viscosity coefficient. Dimensionless
density ρ is given by [14]

ρ(u) =
0.59× 109 + 1.34upH
0.59× 109 + upH

.(6)

We consider above non linear VI in a bounded, but large domain 1

Ω = Ωc ∪ Ω0 ⊂ R2,

here Ωc denotes the contact domain (lubricated domain like liquid, oil etc.) where
u > 0, Ω0 denotes the non contact domain where u = 0 and Ωc ∩ Ω0 denotes the
free boundary. Since lubricant pressure u is sufficiently small on the boundary ∂Ω
( as it is almost equal to the atmospheric pressure). We take

u = 0 on ∂Ω.(7)

The film thickness equation is in dimensionless form is written as follows

(8) hd(x, y) = h00 +
x2

2
+

y2

2
+

2

π2

∫
Ω

u(x
′
, y

′
)dx

′
dy

′√
(x− x′)2 + (y − y′)2

,

where h00 is an integration constant.
The dimensionless force balance equation is defined as follows∫ ∞

−∞

∫ ∞

−∞
u(x′, y′)dx′dy′ =

3π

2
.(9)

Then system (1)–(9) forms an Elasto-hydrodynamic Lubrication. Schematic dia-
grams of EHL model is given in (1) and (2) in the form of undeformed and deformed
contacting body structure respectively.
The rest of the article is organized in following way. In section (2) variational
inequality and some notation is presented; Furthermore, existence results are ex-
plained for our model problem; In section. (3) DG-FVEM formulation, existence

1Ω = [−3, 3]× [−3, 3] works fine in our numerical computation.
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and uniqueness results are stablished; In section. (4) error estimates are derived in
L2 and H1 norm; In section. (5) numerical experiments are performed; Section. (6)
conclusion and future directions are mentioned.

2. Variational Inequality

We consider space V = H1
0 (Ω) and its dual space as V ∗ = (H1

0 (Ω))
∗ = H−1(Ω).

Also define notion ⟨., .⟩ as duality pairing on V ∗×V . Furthermore, we assume that
C is closed convex subset of V defined by

C =
{
v ∈ V : v ≥ 0 a.e. ∈ Ω

}
.(10)

Additionally, we define the operator T as

T : u→ −
[ ∂
∂x

(
ϵ∗
∂u

∂x

)
+

∂

∂y

(
ϵ∗
∂u

∂y

)]
+
∂(ρhd)

∂x
.(11)

Then, for a given f ∈ V ∗, the problem of finding an element u ∈ C such that

⟨T (u)− f, v − u⟩ ≥ 0, ∀v ∈ C .(12)

Throughout this article, we shall assume that there exists ϵ1,M∗ ∈ R+ such that

0 < ϵ1 ≤ ϵ(u) ≤M∗ ∀ς ∈ Ω and u ∈ R.(13)

Remark 1. Under light load parameter assumption we also assume that minimum
range of ϵ1 should not go below beyond ≈ 1.0 × 10−6. Below the range non local
effect of film thickness term dominates and allow to blow the iterated solution after
few iterations.

Definition 2.1. Operator T : C ⊂ V → V ∗ is said to be pseudo-monotone if T
is a bounded operator and whenever uk ⇀ u in V as k → ∞ and

lim
k→∞

sup⟨T (uk), uk − u⟩ ≤ 0,(14)

then it follows that

lim
k→∞

inf⟨T (uk), uk − v⟩ ≥ ⟨T (u), u− v⟩ ∀v ∈ C .(15)

Definition 2.2. Operator T : V → V ∗ is said to be hemi-continuous if and only
if the function ϕ : t 7−→ ⟨T (tx+(1− t)y), x− y⟩ is continuous on [0, 1] ∀x, y ∈ V .

In 1985, Oden and Wu [25] has proved an existence theorem for the above EHL
model by assuming constant density and constant viscosity of the lubricant. Later
in 1993, Rodrigues et. al. [37] has proved an independent existence result to
the model using an a priori L∞-estimate which holds true for a wider class of
problems, including those arising from the linear Hertzian theory, and yields new
existence results for a pressure viscosity dependent case or the inclusion of a load
constraint case. In 2011, Ciuperca and Tello (see [12], for example) have given
a first theoretical results on the range of admissible displacements for this EHL
model with load constraint. Recently, Bayada and Vazquez (see [6], for example)
have presented a novel EHL cavitation model with load constraint and have proved
its existence and uniqueness. However, above ideas of existence result are easily
extendable for more realistic operating condition in which density and viscosity of
the lubricant depend on its applied pressure. A straight forward modification of
the analysis of [25] yields the theorem below and so we will omit the proof.
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Figure 3. Rectangular partition Rh denoted by bold line and its
dual partition denoted by dotted line.

Theorem 2. [25] Let C (̸= ∅) be a closed, convex subset of a reflexive Banach space
V and let T : C ⊂ V → V ∗ be a pseudo-monotone, bounded, and coercive operator
from C into the dual V ∗ of V , in the sense that there exists y ∈ C such that

lim||x||→∞
⟨T (x), x− y⟩

||x||
= ∞.(16)

Let f be given in V ∗ then there exists at least one u ∈ C such that

⟨T (x)− f, y − x⟩ ≥ 0 ∀y ∈ C .(17)

In the next section, we derive a weak formulation and proof for existence of
discrete DG-FVEM solution for the EHL model problem.

3. Discrete Formulation of DG-FVEM

Let Rh = {Ki : 1 ≤ i ≤ Nh} is a triangulations of domain Ω with h =
max1≤i≤Nh

{hi}, where hi denotes the diameter of Ki. We assume that Rh is shape
regular, quasi-uniform and it satisfies bounded local variation (i.e. hi/hj ≤ κ, for
all pairs of neighboring elements). We construct the dual partition Mh of Rh by
dividing each Ki ∈ Rh into four triangles by connecting the barycenter and the
four corners of the rectangle as shown in Figure 3. We define the finite dimensional
space associated with Rh for trial functions as

(18) Vh = {v ∈ L2(Ω) : v|Ki ∈ P1(Ki), v|∂Ω = 0 Ki ∈ Rh ∀i}.
We define the finite dimensional space Wh for test functions associated with the
dual partition Mh as

(19) Wh = {q ∈ L2(Ω) : q|Tj ∈ P0(Tj), q|∂Ω = 0 Tj ∈ Mh ∀j},
where Pl(Tj) consist of all the polynomials with degree less than or equal to l
defined on Tj . Let V (h) = Vh +H2(Ω) ∩H1

0 (Ω). Define a mapping

γ : V (h) 7−→ Wh γv|Tj
=

1

hek

∫
ek

v|Tj
ds, Tj ∈ Mh,(20)

where ek is an edge in Ki, Tj is the dual element in Mh containing ek, and hek
is the length of the edge ek (see Fig. 3). Let eii′ be an interior edge shared by
two elements Ki and Ki′ in Rh and let ni and ni′ be unit normal vectors on eii′



INTERIOR-EXTERIOR PENALTY APPROACH 701

pointing exterior to Ki and Ki′ respectively. We define average {.} and jump [.] on
eii′ for scalar q and vector w, respectively, as ([2])

{q} =
1

2
(q|∂Ki + q|∂Ki′ ), [q] = (q|∂Kini + q|∂Ki′ni′)

{w} =
1

2
(w|∂Ki + w|∂Ki′ ), [w] = (w|∂Kini + w|∂Ki′ni′)

If eii′ is a edge on the boundary of Ω, we define q = q, [w] = w.n. Let Γ denote
the union of the boundaries of the triangle Ki of Rh and Γ0 := Γ�∂Ω.

3.1. Weak Formulation. Reconsider the problem of the type

∂

∂x

(
ϵ∗
∂u

∂x

)
+

∂

∂y

(
ϵ∗
∂u

∂y

)
− ∂(ρhd)

∂x
= 0 in Ω(21)

u = 0 on ∂Ω,(22)

where all notation has their previously defined meaning.
Let Tj ∈ Mh(j = 1, 2, 3, 4) be four triangles in Ki ∈ Rh. Multiply above equation
(21) by γv ∈ Wh, where v ∈ Vh. Integrating over the control volume Tj ∈ Mh,
applying Gauss’s divergence theorem, summing up over all the control volume ele-
ments and using similar relation (2.3) and identity (2.5) as explained in [26, 46], we
define bilinear form in following way. For given u, v ∈ H2(Ω) and for fixed function
wu ∈ H2(Ω), define bilinear form as

BX(wu;u, v) =
∑

Ki∈R

4∑
j=1

∫
Aj+1CAj

ϵ(wu)∇u.nγvds

+
∑
ek∈Γ

∫
ek

[γv]{ϵ(wu)∇u}ds+ α1

∑
ek∈Γ

[γu]ek [γv]ek

−
∑

Ki∈Rh

4∑
j=1

∫
Aj+1CAj

(ρ(wu)hd(u))(β⃗.n)γvds

−
∑
ek∈Γ

∫
ek

[γv]{β⃗ρ(wu)hd(x)}ds,(23)

where β⃗ = (1, 0)T , A5 = A1 and n denotes unit outward normal vector to the
boundary.
We define the following mesh dependent norm |||.||| and |||.|||ν as

|||v|||2 :=|v|21,h +
∑
ek

[γv]2ek(24)

|||v|||2ν :=|v|21,h +
∑
ek

hek

∫
ek

{∂v
∂ν

}2

ds+
∑
ek

[γv]2ek ,(25)

where |v|21,h :=
∑

Ki
|v|21,Ki

. Now we will state few lemmas and inequalities without
proof which will be later helpful in our subsequent analysis.

Lemma 3. For u ∈ Hs(Ki), there exist a positive constant CA and an interpolation
value uI ∈ Vh, such that

||u− uI ||s,Ki
≤ CAh

2−s|u|2,Ki
, s = 0, 1.(26)

Proof. See [10]. �
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Trace inequality.[2] We state without proof the following trace inequality. Let
ϕ ∈ H2(Ki) and for an edge ek of Ki,

||ϕ||2ek ≤ C(h−1
ek

|ϕ|2Ki
+ hek |ϕ|21,Ki

).(27)

Lemma 4. Let for any u, v ∈ Vh, then we have following relation

⟨h3dρe−au∇hu,∇hv⟩ ≤ ⟨T1(u;uh), v⟩+ C1h|||u||||||v|||,(28)

where

⟨T1(u;uh), v⟩ =
∑

Ki∈R

4∑
j=1

∫
Aj+1CAj

h3dρe
−au∇u.nγvds

Proof. Proof of lemma follows using similar argument as mentioned in [46],lemma
2.1. �

Next lemma provides us a bound of film thickness term and later helpful in
proving coercivity and error analysis.

Lemma 5. For hd defined in equation (8), 0 < β∗ < 1, s = 2 − β∗/(1 − β∗) > 2
there exist C1 and C2 > 0 such that

max
x,y∈Ω

|hd(u)| ≤ C1 + C2∥u∥Ls 0 < β∗ < 1, ∀(x, y) ∈ Ω̄.(29)

Proof. Proof follows by straightforward modification of the proof as mentioned in
[25, Lemma 1]. �

Lemma 6. The bilinear operator BX defined in equation (23) is bounded under
the norm defined in equation (24) and (25).

Lemma 7. The bilinear operator BX , defined in equation (23) is hemi-continuous,
that is ∀u, v, w1, w2 ∈ Vh,

lim
t→0+

BX(u+ tv, w1, w2) = BX(u,w1, w2).

Lemma 8. The bilinear operator defined on equation (23) is coercive under the
norm defined in equation (24) i.e. there is a constant C independent of h such that
for α1 large enough and h is small enough

⟨BX(u;uh, uh)⟩ ≥ C|||uh|||2 ∀uh ∈ Vh.(30)

Proof. Proof follows from lemma (3.2), lemma (3.3) and using similar argument as
explained in [26]. �

3.2. Exterior penalty solution approximation. In this section, we introduce
an exterior penalty term to regularize the inequality constraint (1)–(9). We define
a exterior penalty operator ξσ : H1

0 (Ω) → H−1 as

ξσ(u) = u−/σ with σ > 0,(31)

where u− = u−max(u, 0) =
u− |u|

2
. Let us define exterior penalty problem, (Uσ):

for σ > 0, find uσ ∈ Vh such that

⟨T (uσ), v⟩+ ⟨ξσ(uσ), v⟩ = ⟨f, v⟩ ∀v ∈ Vh,(32)

This approach can be used in our DG-FVEM case and modified discrete weak
formulation is rewritten as

(33) ⟨T1(u), γv⟩+
1

σ

Nh∑
i=1

4∑
j=1

∫
Tj⊂Ki

u−γvdx− ⟨T2(u), γv⟩ = 0, ∀v ∈ Vh,
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where T1 and T2 correspond the diffusion and convection term of Reynolds equation
(21). Here σ is an arbitrary small positive number (σ = 1.0× 10−6).

Lemma 9. Under suitable choice of quadrature rule, penalty operator ξσ : Vh 7−→
Vh is monotone, coercive and bounded under the norm defined in (24) and (24).

Proof. Now define domains Ω1 = {x ∈ Ω1 : u1 > 0} and Ω2 = {x ∈ Ω2 : u2 > 0}
and their compliments as Ωc

1 and Ωc
2 respectively. Also consider

u−i =

ui ∈ Ωc
i ∀i = 1, 2

0 ∈ Ωi ∀i = 1, 2.
(34)

For proving monotonicity we consider

⟨ξσ(u1)− ξσ(u2), u1 − u2⟩ =
∑

Ki∈Rh

∫
Ki

u−1 (γ(u1 − u2))− u−2 (γ(u1 − u2))dx

=
∑

Ki∈Rh

∫
Ki

u−1 (γ(u1 − u2)− (u1 − u2) + (u1 − u2))dx

−
∑

Ki∈Rh

∫
Ki

u−2 (γ(u1 − u2)− (u1 − u2) + (u1 − u2))dx

=
∑

Ki∈Rh

∫
Ki∩Ωc

1

u−1 (u1 − u2)dx−
∫
K∩Ωc

2

u−2 (u1 − u2)dx

+
∑

Ki∈Rh

∫
Ki∩Ωc

1∩Ωc
2

u−1 (u1 − u2)− u−2 (u1 − u2)dx

+
∑

Ki∈Rh

∫
Ki∩Ω1∩Ω2

u−1 (u1 − u2)− u−2 (u1 − u2)dx

=
∑

Ki∈Rh

∫
Ki∩Ωc

1

u−1 (u1 − u2)− u−2 (u1 − u2)dx

−
∑

Ki∈Rh

∫
Ki∩Ωc

2

u−1 (u1 − u2)− u−2 (u1 − u2)dx

+
∑

Ki∈Rh

∫
Ki∩Ωc

1∩Ωc
2

(u1 − u2)
2dx ≥ 0

Hence, operator is monotone. Also, coercivity follows from the fact that

⟨ξσ(u), u⟩ =⟨u−, u⟩ =
∑

Ki∈Rh

∫
Ki(u≤0)

u−γudx

=
∑

Ki∈Rh

∫
Ki(u≤0)

u−(γu− u+ u)dx

=
∑

Ki∈Rh

∫
Ki(u≤0)

(u−)2dx = |∥(u−)∥|2 ≥ 0.(35)

Furthermore, since

|⟨ξσ(u), v⟩| = |u−γv| ≤ |∥u∥||∥v∥|.(36)

This implies that ξσ is bounded. �
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Remark 10. The equality in above proof of lemma 3.7 is proved using the fact as
explained below.

Lemma 11. Under the suitable choice of quadrature rule, the following results hold
true for u1, u2 ∈ Vh and ∀Ki ∈ Rh then∫

Ki

u−1 (γ(u1 − u2)− (u1 − u2))dx = 0

and ∫
Ki

u−2 (γ(u1 − u2)− (u1 − u2))dx = 0.

In particular, it is can be shown that if u ∈ Vh and ∀Ki ∈ Rh then∫
Ki

u−(γu− u)dx = 0.

Proof. Take quadrature rule as mentioned in [26, Eqn 2.12] and use [26, lemma 2.1]
for the proof. It is interesting to note that u− is treated as weight function here. �
3.3. Linearizion. Let us consider a fix function of wu ∈ H2(Ω) and also take
w, v ∈ H2(Ω). Furthermore, consider bilinear form B(wu;w, v) solving EHL prob-
lem defined in (1)–(9) as

B(wu;w, v) :=
∑

Ki∈Rh

4∑
j=1

∫
Aj+1CAj

ϵ(wu)∇w.nγvds

+
∑
ek∈Γ

∫
ek

[γv]{ϵ(wu)∇w}ds+ α1

∑
ek∈Γ

[γv]ek [γw]ek + σ−1⟨w−, v⟩

−
∑

Ki∈Rh

4∑
j=1

∫
Aj+1CAj

(ρ(wu)hd(x))(β⃗.n)γvds

−
∑
ek∈Γ

∫
ek

[γv]{(ρ(wu)hd(x))β⃗}ds(37)

Remark 12. Note that bilinear form B and BX are related here as

B(wu;w, v) = BX(wu;w, v) + σ−1⟨w−, v⟩,
here σ stands for exterior penalty parameter.

Now define weak formulation for solving DG-FVEM for solving problem (1)–(9)
as find u ∈ H2(Ω,Rh) such that

B(u;u, v) = 0.(38)

and corresponding DG-FVEM approximation of u is to find uh ∈ Vh such that

B(uh;uh, vh) = 0,

here B(uh;uh, vh) is the discrete representation of bilinear form ((37)).
Also uh ∈ Vh ⊂ H2(Ω,Rh) so we have

B(u;u, vh) = B(uh;uh, vh) ∀vh ∈ Vh,(39)

Since we are solving non-linear type of operator and so an appropriate linearizion is
required for further analysis. We use following Taylor series expansion to linearize
the problem as

ϵ(w) = ϵ(u) + ϵ̃u(w)(w − u),(40)
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where ϵ̃u(w) =
∫ 1

0
ϵu(w + τ [w − u])dτ and

ϵ(w) = ϵ(u) + ϵu(w)(w − u) + ϵ̃uu(w)(w − u)2,(41)

where ϵ̃uu(w) =
∫ 1

0
(1−τ)ϵuu(w+τ [w−u])dτ . It is easy to check that ϵ̃u ∈ C1

b (Ω̄,R)

and ϵ̃uu ∈ C0
b (Ω̄,R).

Now consider the following bilinear form B̄(:, .) as

B̄(wu, w, v) =B(wu, w, v) +
∑

Ki∈Rh

4∑
j=1

∫
Aj+1CAj

(ϵu(wu)∇wu)w.nγvds

+
∑
ek∈Γ

∫
ek

[γv]
{
ϵu(wu)∇wuw

}
ds

+
∑

Ki∈Rh

4∑
j=1

∫
Aj+1CAj

ρuhdwβ⃗.nγvds+
∑
ek∈Γ

∫
ek

[γv]
{
ρuhdβ⃗w

}
ds.(42)

It is easy to check that B̄ is linear in w and v and for fixed value of wu ∈ H2(Ω).
Also as ϵ(wu) ∈ C2

b (Ω̄,R) and u ∈ C2(Ω̄), there is a unique solution wu ∈ H2(Ω)
to the following elliptic problem

∇.(ϵ(u)∇φ+ ϵuφ∇u)−∇(β⃗(ρhd + ρuhdφ)) = ψh in Ω

φ = 0 on ∂Ω,(43)

where ψh = −ξσ(u) = −u−/σ.
Also from well known elliptic regularity property [16] we have

∥φ∥H2(Ω) ≤ C∥ψh∥.(44)

Now for showing existence, uniqueness and for analyzing intermediate stage error
analysis of discrete DG-FVEM solution we linearize weak formulation of equation
(39) around Πhu, where interpolation map Πh : V 7−→ Vh. Let e = u − uh be an
error term for exact and approximated DG-FVEM solution. Now by subtracting
B(u;uh, vh) from both side of equation (39), we get

B(u; e, vh) =
∑

Ki∈Rh

4∑
j=1

∫
Aj+1CAj

(ϵ(uh)− ϵ(u))∇uh.nγvhds

+
∑
ek∈Γ

∫
ek

[γvh](ϵ(uh)− ϵ(u))∇uhds

−
∑

Ki∈Rh

4∑
j=1

∫
Aj+1CAj

(ρ(uh)hd(x)− ρ(u)hd(x))β⃗.nγvhds

−
∑
ek∈Γ

∫
ek

[γvh]
{
ρ(uh)hd(x)− ρ(u)hd(x)β⃗

}
ds(45)
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Now adding both side in above equation following term

∑
Ki∈Rh

4∑
j=1

∫
Aj+1CAj

ϵu(uh)(uh − u)∇u.nγvhds

+
∑
ek∈Γ

∫
ek

[γvh]
{
ϵu(uh)(uh − u)∇u

}
ds

−
∑

Ki∈Rh

4∑
j=1

∫
Aj+1CAj

(ρhd)u(uh)(uh − u)β⃗.nγvhds

−
∑
ek∈Γ

∫
ek

[γvh]{(ρhd)u(uh)(uh − u)β⃗}ds.(46)

Now we split error term as

e = u− uh = u−Πhu+Πhu− uh

and using Taylor’s formula for linearizion given in (40)–(41), we rewrite equation
(45) as

B̄(u; Πhu− uh, vh) = B̄(u; Πhu− u, vh) + F (uh;uh − u, vh),(47)

where

F (uh;uh − u, vh) =
∑

Ki∈Rh

4∑
j=1

∫
Aj+1CAj

ϵ̃u(uh)e∇e.nγvhds

+
∑
ek∈Γ

∫
ek

[γvh]
{
ϵu(uh)e∇e

}
ds

+
∑

Ki∈Rh

4∑
j=1

∫
Aj+1CAj

ϵ̃uu(uh)e
2∇u.nγvhds

−
∑

Ki∈Rh

4∑
j=1

∫
Aj+1CAj

(̃ρhd)uu(uh)e
2β⃗.nγvhds

−
∑
ek∈Γ

∫
ek

[γvh]
{
(̃ρhd)uu(uh)e

2β⃗
}
ds.(48)

Note that solving (39) is equivalent to solve equation (47). Now for showing there
exist at least one uh ∈ Vh solution to the above equation (47) we consider a map

S : Vh → Vh

defined as S(uφ) = φ ∈ Vh, ∀uφ ∈ Vh such that

B̄(u; Πhu− φ, vh) = B̄(u; Πhu− u, vh) + F (uφ;uφ − u, vh)(49)

holds. Consider the closed neighborhood Qδ(Πhu) of the diameter δ > 0.

Qδ(Πhu) =
{
uφ ∈ Vh : |||uφ −Πhu||| ≤ δ

}
.

Now we first show that S map closed neighborhood Qδ(Πhu) into itself and then
prove existence of DG-FVEM solution by exploiting Browder’s fixed point theorem.
The proof can be break using following lemmas.
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Lemma 13. Let uφ, vh ∈ Vh also set χ = uφ −Πhu and η = u−Πhu. Then there
exists a constant C ≥ 0 (independent of h) such that

|F (uφ;uφ − u, vh)| ≤Cϵ

[
|||χ|||2 + Cu(h

5/3 + h1/2 + h+ h2/3 + h3/2)|||χ|||

+ Cu(h
2 + h+ h3/2)|||η|||

]
|||vh|||+ Cρhd

[
|||χ|||2

+ Cu(h
5/3 + h3/2)|||χ|||+ Cu(h

3/2 + h)|||η|||
]
|||vh|||.(50)

Proof. Let uφ ∈ Vh and take ζ = uφ − u in equation (48) we write uφ in place of
uh and ζ = uφ − u to get

F (uφ; ζ, vh) =
∑

K∈Rh

4∑
j=1

∫
Aj+1CAj

ϵ̃u(uφ)ζ∇ζ.nγvhds

+
∑
ek∈Γ

∫
ek

[γvh]
{
ϵu(uφ)ζ∇ζ

}
ds

+
∑

K∈Rh

4∑
j=1

∫
Aj+1CAj

ϵ̃uu(uφ)ζ
2∇u.nγvhds

−
∑

K∈Rh

4∑
j=1

∫
Aj+1CAj

(̃ρhd)uu(uφ)ζ
2β⃗.nγvhds

−
∑
ek∈Γ

∫
ek

[γvh]
{
(̃ρhd)uu(uφ)ζ

2
}
ds.(51)

Now split ζ = χ− η where χ = uφ − Πhu and η = u− Πhu. Then right hand side
is estimated in following way. The right hand side of First term of equation (51) is
estimated as

∣∣∣ ∑
K∈Rh

4∑
j=1

∫
Aj+1CAj

ϵ̃u(uφ)ζ∇ζ.nγvhds
∣∣∣

≤
∣∣∣ ∑
K∈Rh

4∑
j=1

∫
Aj+1CAj

ϵ̃u(uφ)χ∇χ.nγvhds
∣∣∣

+
∣∣∣ ∑
K∈Rh

4∑
j=1

∫
Aj+1CAj

ϵ̃u(uφ)χ∇η.nγvhds
∣∣∣

+
∣∣∣ ∑
K∈Rh

4∑
j=1

∫
Aj+1CAj

ϵ̃u(uφ)η∇χ.nγvhds
∣∣∣

+
∣∣∣ ∑
K∈Rh

4∑
j=1

∫
Aj+1CAj

ϵ̃u(uφ)η∇η.nγvhds
∣∣∣.(52)
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Right hand side of second term of equation (51) is estimated as∣∣∣ ∑
ek∈Γ

∫
ek

[γvh]
{
ϵu(uφ)ζ∇ζ

}
ds
∣∣∣ ≤∣∣∣ ∑

ek∈Γ

∫
ek

[γvh]
{
ϵu(uφ)χ∇χ

}
ds
∣∣∣

+
∣∣∣ ∑
ek∈Γ

∫
ek

[γvh]
{
ϵu(uφ)η∇χ

}
ds
∣∣∣

+
∣∣∣ ∑
ek∈Γ

∫
ek

[γvh]
{
ϵu(uφ)χ∇η

}
ds
∣∣∣

+
∣∣∣ ∑
ek∈Γ

∫
ek

[γvh]
{
ϵu(uφ)η∇η

}
ds
∣∣∣.(53)

Right hand side of third term of equation (51) is estimated as∣∣∣ ∑
K∈Rh

4∑
j=1

∫
Aj+1CAj

ϵ̃uu(uφ)ζ
2∇u.nγvhds

∣∣∣
≤
∣∣∣ ∑
K∈Rh

4∑
j=1

∫
Aj+1CAj

ϵ̃uu(uφ)η
2∇u.nγvhds

∣∣∣
+ 2

∣∣∣ ∑
K∈Rh

4∑
j=1

∫
Aj+1CAj

ϵ̃uu(uφ)η.χ∇u.nγvhds
∣∣∣

+
∣∣∣ ∑
K∈Rh

4∑
j=1

∫
Aj+1CAj

ϵ̃uu(uφ)χ
2∇u.nγvhds

∣∣∣.(54)

Right hand side of fourth term of equation (51) is estimated as∣∣∣ ∑
K∈Rh

4∑
j=1

∫
Aj+1CAj

(̃ρhd)uu(uφ)ζ
2β⃗.nγvhds

∣∣∣
≤
∣∣∣ ∑
K∈Rh

4∑
j=1

∫
Aj+1CAj

(̃ρhd)uu(uφ)χ
2β⃗.nγvhds

∣∣∣
+ 2

∣∣∣ ∑
K∈Rh

4∑
j=1

∫
Aj+1CAj

(̃ρhd)uu(uφ)η.χβ⃗.nγvhds
∣∣∣

+
∣∣∣ ∑
K∈Rh

4∑
j=1

∫
Aj+1CAj

(̃ρhd)uu(uφ)η
2β⃗.nγvhds

∣∣∣.(55)

Right hand side of fifth term of equation (51) is estimated as∣∣∣ ∑
ek∈Γ

∫
ek

[γvh]
{
(ρhd)uu(uφ)ζ

2
}
ds
∣∣∣

≤
∣∣∣ ∑
ek∈Γ

∫
ek

[γvh]
{
(ρhd)uu(uφ)χ

2
}
ds
∣∣∣

+ 2
∣∣∣ ∑
ek∈Γ

∫
ek

[γvh]
{
(ρhd)uu(uφ)η.χ

}
ds
∣∣∣

+
∣∣∣ ∑
ek∈Γ

∫
ek

[γvh]
{
(ρhd)uu(uφ)η

2
}
ds
∣∣∣.(56)
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In equation (52), right hand side of first term is estimated as∣∣∣ ∑
K∈Rh

4∑
j=1

∫
Aj+1CAj

ϵ̃u(uφ)χ∇χ.nγvhds
∣∣∣

≤
∣∣∣∑

K

⟨ϵu(uφ)χ∇χ,∇vh⟩
∣∣∣+ ∣∣∣∑

K

∫
∂K

[γvh − vh]
{
ϵu(uφ)χ∇χ.n

}
ds
∣∣∣

+
∣∣∣∑

K

⟨∇
(
ϵu(uφ)χ∇χ

)
, vh − γvh⟩

∣∣∣.(57)

Right hand side of first part of equation (57) is estimated as∣∣∣∑
K

⟨ϵu(uφ)χ∇χ,∇vh⟩
∣∣∣ ≤ Cϵ

∑
K

∫
K

|χ.∇χ.∇vh|dx.

Now using Holder’s inequality we get

Cϵ

∑
K

∫
K

|χ.∇χ.∇vh|dx ≤Cϵ

∑
K

∥χ∥L6(K)∥χ∥L3(K)∥∇vh∥L2(K)

≤Cϵ|||χ||||||χ||||||vh|||.(58)

Now right hand side of second part of equation (57) is estimated using Holder’s
inequality and trace inequality∣∣∣∑

K

∫
∂K

[γvh − vh]
{
ϵu(uφ)χ∇χ.n

}
ds
∣∣∣

≤Cϵ

∑
K

(∫
∂K

[γvh − vh]
2
)1/2

∥χ∥L4(∂K)∥∇χ∥L4(∂K).

Now using trace inequality defined as

∥∇χ∥L4(∂K) ≤ Ch

(
h−1∥∇χ∥4L4(K) + ∥∇χ∥3L6(K)∥∇.∇χ∥L2(K)

)
(59)

and

∥χ∥L4(∂K) ≤ Ch

(
h−1∥χ∥4L4(K) + ∥χ∥3L6(K)∥χ∥L2(K)

)
.(60)

We get that

≤ Cϵ

(
h−1|γvh − vh|2L2(K) + h|γvh − vh|2H1(K)

)1/2

×
(
h−1∥χ∥4L4(K) + ∥χ∥3L6(K)∥χ∥L2(K)

)1/4

×
(
h−1∥∇χ∥4L4(K) + ∥∇χ∥3L6(K)∥∇.∇χ∥L2(K)

)1/4

≤ Cϵ|||χ||||||χ||||||vh|||(61)

Right hand side of third term of equation (57) is estimated in similar way and it is
written as ∣∣∣∑

K

⟨∇
(
ϵu(uφ)χ∇χ

)
, vh − γvh⟩

∣∣∣ ≤ Cϵ|||χ||||||χ||||||vh|||.(62)
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Now right hand side of second term equation (52) is estimated as

∣∣∣ ∑
K∈Rh

4∑
j=1

∫
Aj+1CAj

ϵ̃u(uφ)χ∇η.nγvhds
∣∣∣

≤
∣∣∣∑

K

⟨ϵu(uφ)χ∇η,∇vh⟩
∣∣∣+ ∣∣∣∑

K

∫
∂K

[γvh − vh]
{
ϵu(uφ)χ∇η.n

}
ds
∣∣∣

+
∣∣∣∑

K

⟨∇
(
ϵu(uφ)χ∇η

)
, vh − γvh⟩

∣∣∣.(63)

Now right hand side of first term of equation (63) is estimated using Holder’s
inequality as∣∣∣∑

K

⟨ϵu(uφ)χ∇η,∇vh⟩
∣∣∣ ≤Cϵ

∑
K

∫
K

|χ.∇η.∇vh|dx

≤Cϵ

∑
K

∥χ∥L6(K)∥∇η∥L3(K)∥∇vh∥L2(K)(64)

Now using inverse inequality defined as

∥vh∥Lr(K) ≤ Ch2/r−1∥vh∥L2(K) ∀r ≥ 2.(65)

and also using approximation property we get

≤ CϵCuh
−1/3∥∇η∥L2(K)|||χ||||||vh|||

≤ CϵCuh
2/3∥u∥H2(Ω)|||χ||||||vh|||.(66)

Right hand side of second term of equation (63) is estimated as using Holder’s
inequality and trace inequality∣∣∣∑

K

∫
∂K

[γvh − vh]
{
ϵu(uφ)χ∇η.n

}
ds
∣∣∣

≤Cϵ

∑
K

(∫
∂K

[γvh − vh]
2
)1/2

∥χ∥L4(∂K)∥∇η∥L4(∂K)

≤Cϵh
−1

∑
K

(
|γvh − vh|2L2(K) + h2|γvh − vh|2H1(K)

)1/2

×
(
∥χ∥4L4(K) + h∥χ∥3L6(K)∥∇χ∥L2(K)

)1/4

×
(
∥∇η∥4L4(K) + h∥∇η∥3L6(K)∥∇.∇η∥L2(K)

)1/4

≤Cϵh
1/2∥u∥H2(Ω)|||vh||||||χ|||.(67)

Right hand side of third term of equation (63) is estimated as∣∣∣∑
K

⟨∇
(
ϵu(uφ)χ∇η

)
, vh − γvh⟩

∣∣∣
≤CϵCu(h

2/3∥u∥H2(K)|||χ||||||vh|||+ h1/2∥u∥H2(Ω)|||vh||||||χ|||).(68)
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Now right hand side of third term of equation (52) is estimated as

∣∣∣ ∑
K∈Rh

4∑
j=1

∫
Aj+1CAj

ϵ̃u(uφ)η∇χ.nγvhds
∣∣∣

≤
∣∣∣∑

K

⟨ϵu(uφ)η∇χ,∇vh⟩
∣∣∣+ ∣∣∣∑

K

∫
∂K

[γvh − vh]
{
ϵu(uφ)η∇χ.n

}
ds
∣∣∣

+
∣∣∣∑

K

⟨∇
(
ϵu(uφ)η∇χ

)
, vh − γvh⟩

∣∣∣.(69)

Right hand side of first part of equation (69) is estimated by using Holder’s in-
equality as∣∣∣∑

K

⟨ϵu(uφ)η∇χ,∇vh⟩
∣∣∣ ≤Cϵ

∑
K

∥η∥L6(K)∥∇χ∥L3(K)∥∇vh∥L2(K)

≤Cϵ

∑
K

h2/6−1∥η∥L2(K)h
2/3−1∥∇χ∥L2(K)∥∇vh∥L2(K)

≤CϵCuh∥u∥H2(Ω)|||χ||||||vh|||.(70)

Right hand side of second part of equation (69) is estimated using trace inequality
we have ∣∣∣∑

K

∫
∂K

[γvh − vh]
{
ϵu(uφ)η∇χ.n

}
ds
∣∣∣

≤Cϵ

∑
K

(∫
∂K

[γvh − vh]
2ds

)1/2

∥η∥L4(∂K)∥∇χ∥L4(∂K)

≤Cϵh
3/2∥u∥H2(Ω)|||χ||||||vh|||.(71)

Right hand side of third part of equation (69) is estimated as∣∣∣∑
K

⟨∇
(
ϵu(uφ)η∇χ

)
, vh − γvh⟩

∣∣∣
≤CϵCuh∥u∥H2(Ω)|||χ||||||vh|||+ Cϵh

3/2∥u∥H2(Ω)|||χ||||||vh|||.(72)

Right hand side of fourth term of equation (52) is estimated as

∣∣∣ ∑
K∈Rh

4∑
j=1

∫
Aj+1CAj

ϵ̃u(uφ)η∇η.nγvhds
∣∣∣

≤
∣∣∣∑

K

⟨ϵu(uφ)η∇η,∇vh⟩
∣∣∣+ ∣∣∣∑

K

∫
∂K

[γvh − vh]
{
ϵu(uφ)η∇η.n

}
ds
∣∣∣

+
∣∣∣∑

K

⟨∇
(
ϵu(uφ)η∇η

)
, vh − γvh⟩

∣∣∣.(73)

Right hand side of first part of equation (73) is estimated using Holder’s inequality
as ∣∣∣∑

K

⟨ϵu(uφ)η∇η,∇vh⟩
∣∣∣ ≤Cϵ

∑
K

∥η∥L6(K)∥∇η∥L3(K)∥∇vh∥L2(K)

≤CϵCuh∥u∥H2(Ω)|||η||||||vh|||(74)
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Right hand side of second part of equation (73) is estimated as∣∣∣∑
K

∫
∂K

[γvh − vh]
{
ϵu(uφ)η∇η.n

}
ds
∣∣∣

≤Cϵ

∑
K

(∫
∂K

[γvh − vh]
2ds

)1/2

∥η∥L4(∂K)∥∇η∥L4(∂K)

≤Cϵh
3/2∥u∥H2(Ω)|||η||||||vh|||(75)

Right hand side of third part of equation (73) is estimated as∣∣∣∑
K

⟨∇
(
ϵu(uφ)η∇η

)
, vh − γvh⟩

∣∣∣
≤CϵCuh∥u∥H2(Ω)|||η||||||vh|||+ Cϵh

3/2∥u∥H2(Ω)|||η||||||vh|||.(76)

Now right hand side of first part of equation (53) is estimated as∣∣∣ ∑
ek∈Γ

∫
ek

[γvh]
{
ϵu(uφ)χ∇χ

}
ds
∣∣∣

≤Cϵ

∑
K

(
[γvh]

2
)1/2

∥χ∥L4(∂K)∥∇χ∥L4(∂K)

≤Cϵ

∑
K

(
[γvh]

2
)1/2(

∥χ∥4L4(K) + h∥χ∥3L6(K)∥∇χ∥L2(K)

)1/4

×
(
∥∇χ∥4L4(K) + h∥∇χ∥3L6(K)∥∇.∇χ∥L2(K)

)1/4

≤Cϵ|||vh||||||χ||||||χ|||(77)

In similar way we can show that right hand side of second, third and fourth part
of equation (53) is estimated as∣∣∣ ∑

ek∈Γ

∫
ek

[γvh]
{
ϵu(uφ)χ∇η

}
ds
∣∣∣ ≤ CϵCuh

1/2∥u∥H2(Ω)|||vh||||||χ|||(78)

∣∣∣ ∑
ek∈Γ

∫
ek

[γvh]
{
ϵu(uφ)η∇χ

}
ds
∣∣∣ ≤ CϵCuh

3/2∥u∥H2(Ω)|||vh||||||χ|||(79)

∣∣∣ ∑
ek∈Γ

∫
ek

[γvh]
{
ϵu(uφ)η∇η

}
ds
∣∣∣ ≤ CϵCuh

3/2∥u∥H2(Ω)|||vh||||||η|||.(80)

Right hand side of first part of equation (54) is estimated using similar argument
as ∣∣∣ ∑

K∈Rh

4∑
j=1

∫
Aj+1CAj

ϵ̃uu(uφ)χ
2∇u.nγvhds

∣∣∣ ≤ CϵCu|||χ|||2|||vh|||(81)

Right hand side of second part of equation (54) is estimated using similar argument
as ∣∣∣ ∑

K∈Rh

4∑
j=1

∫
Aj+1CAj

ϵ̃uu(uφ)χ.η∇u.nγvhds
∣∣∣

≤CϵCu

(
h5/3∥u∥H2(Ω)|||χ||||||vh|||+ h3/2∥u∥H2(Ω)|||χ||||||vh|||

)
(82)
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Right hand side of third part of equation (54) is estimated using similar argument
as ∣∣∣ ∑

K∈Rh

4∑
j=1

∫
Aj+1CAj

ϵ̃uu(uφ)η
2∇u.nγvhds

∣∣∣
≤CϵCu

(
h2∥u∥H2(Ω)|||η||||||vh|||+ h3/2∥u∥H2(Ω)|||η||||||vh|||

)
.(83)

Right hand side of first part of equation (55) is estimated as∣∣∣ ∑
K∈Rh

4∑
j=1

∫
Aj+1CAj

(̃ρhd)uu(uφ)χ
2β⃗.nγvhds

∣∣∣ ≤ Cρhd
|||vh||||||χ|||2.(84)

Right hand side of second part of equation (55) is estimated as∣∣∣ ∑
K∈Rh

4∑
j=1

∫
Aj+1CAj

(̃ρhd)uu(uφ)η.χβ⃗.nγvhds
∣∣∣

≤Cρhd

(
h5/3∥u∥H2(Ω)|||χ||||||vh|||+ h3/2∥u∥H2(Ω)|||χ||||||vh|||

)
.(85)

Right hand side of third part of equation (55) is estimated as∣∣∣ ∑
K∈Rh

4∑
j=1

∫
Aj+1CAj

(̃ρhd)uu(uφ)η
2β⃗.nγvhds

∣∣∣
≤Cρhd

h∥u∥H2(Ω)|||η||||||vh|||+ Cρhd
h3/2∥u∥H2(Ω)|||η||||||vh|||(86)

Now equation (56) is estimated using similar argument as∣∣∣ ∑
ek∈Γ

∫
ek

[γvh]
{
(ρhd)uu(uφ)ζ

2
}
ds
∣∣∣

≤
∣∣∣ ∑
ek∈Γ

∫
ek

[γvh]
{
(ρhd)uu(uφ)χ

2
}
ds
∣∣∣

+ 2
∣∣∣ ∑
ek∈Γ

∫
ek

[γvh]
{
(ρhd)uu(uφ)η.χ

}
ds
∣∣∣+ ∣∣∣ ∑

ek∈Γ

∫
ek

[γvh]
{
(ρhd)uu(uφ)η

2
}
ds
∣∣∣

≤Cρhd

(
|||vh||||||χ|||2 + h3/2∥u∥H2(Ω)|||χ||||||vh|||+ h3/2∥u∥H2(Ω)|||η||||||vh|||

)
.

(87)

Now combining the right hand side of equation (51) we get the desire results. �

Now we are interested in deriving upper bound of |||Πhu− φ||| and it is explained
in next lemma.

Lemma 14. Let uφ ∈ Vh and take φ = Suφ.Then there exist a positive constant
C (independent of h) such that

|||Πhu− φ||| ≤Cϵ

[
|||Πhu− uφ|||2 + Cu

(
h5/3 + h1/2 + h2/3 + h(1 + h1/2)

)
|||Πhu− uφ|||

+ Cu(h
2 + h+ h3/2)|||η|||

]
+ Cρhd

[
|||Πhu− uφ|||2

+ Cu(h
5/3 + h3/2)|||Πhu− uφ|||+ Cu(h

3/2 + h)|||η|||
]
+ C|||η|||.(88)

holds.
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Proof. In equation (47) we redefine the term χ = Πhu − uφ, η = Πhu − u , and
ϑ = Πhu − φ. Now consider the first term in the right hand side of equation (47)
and replace vh = ϑ and use the boundedness property of the operator to get∣∣∣B̄(u; η, ϑ)

∣∣∣ ≤ C|||η||||||ϑ|||(89)

Also by replacing vh = ϑ in previous lemma 3.10 we obtain∣∣∣F (uφ;uφ − u, ϑ)
∣∣∣ ≤Cϵ

[
|||χ|||2 + Cu

(
h5/3 + h1/2 + h2/3 + h(1 + h1/2)

)
|||χ|||

+ Cu(h
2 + h+ h3/2)|||η|||

]
|||ϑ|||

+ Cρhd

[
|||χ|||2 + Cu(h

5/3 + h3/2)|||χ|||+ Cu(h
3/2 + h)|||η|||

]
|||ϑ|||.(90)

Now putting the value of equation (89) and (90) in equation (47) we get

B̄(u;ϑ, ϑ) ≤Cϵ

[
|||χ|||2 + Cu

(
h5/3 + h1/2 + h2/3 + h(1 + h1/2)

)
|||χ|||

+ Cu(h
2 + h+ h3/2)|||η|||

]
|||ϑ|||+ Cρhd

[
|||χ|||2 + Cu(h

5/3 + h3/2)|||χ|||

+ Cu(h
3/2 + h)|||η|||

]
|||ϑ|||+ C|||η||||||ϑ|||.(91)

Now using coercive property we obtain

|||ϑ|||2 ≤Cϵ

[
|||χ|||2 + Cu

(
h5/3 + h1/2 + h2/3 + h(1 + h1/2)

)
|||χ|||

+ Cu(h
2 + h+ h3/2)|||η|||

]
|||ϑ|||+ Cρhd

[
|||χ|||2 + Cu(h

5/3 + h3/2)|||χ|||

+ Cu(h
3/2 + h)|||η|||

]
|||ϑ|||+ C|||η||||||ϑ|||.(92)

Now eliminating ϑ from both sides we get the desire result. �
Theorem 15. For sufficiently small h there is a δ > 0 such that the map S maps
Qδ(Πhu) into itself.

Proof. Let uφ ∈ Q(Πhu) and consider an element y such that y = Suφ. Further-
more, choose δ = h−δ0 |||Πhu− u|||, where 0 < δ0 ≤ 1/4. Then we get

|||Πhu− uφ|||2 ≤δ2

|||Πhu− uφ|||2 ≤h−δ0 |||Πhu− u|||δ

|||Πhu− uφ|||2 ≤h1−δ0C∥u∥H2(Ω)δ

|||Πhu− uφ|||2 ≤h1−δ0C ′
uC1δ.(93)

From lemma 3.11 and equation (93) we get

|||Πhu− φ||| ≤
[
(Cϵ + Cρhd

)h1−δ0C ′
uC1δ +

(
CϵCu(h

1/2 + h2/3 + h)

+ Cu(Cρhd
+ Cϵ)(h

5/3 + h3/2)
)
hδ0δ

+
(
Cu(Cρhd

+ Cϵ)(h+ h3/2) + CϵCuh
2 + C

)
hδ0δ

]
.(94)

Now choosing h small enough so that[
(Cϵ + Cρhd

)h1−δ0C ′
uC1 +

(
CϵCu(h

1/2 + h2/3 + h) + Cu(Cρhd
+ Cϵ)(h

5/3

+ h3/2)
)
hδ0 +

(
Cu(Cρhd

+ Cϵ)(h+ h3/2) + CϵCuh
2 + C

)
hδ0

]
< 1(95)

and so S maps Qδ(Πhu) into itself. �
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Theorem 16. Let δ > 0 and assume that uφ1 , uφ2 ∈ Qδ(Πhu), then there exists a
positive constant C such that the following condition holds for given 0 ≤ δ0 ≤ 1/4

|||Suφ1 − Suφ2 ||| ≤ CuCh
δ0 |||uφ1 − uφ2 |||.(96)

Proof. Consider δ = h−δ0 |||η||| for some 0 ≤ δ0 ≤ 1/4, where η = Πhu − u. Take
φ1 = Suφ1 and φ2 = Suφ2 . Then, we have

B̄(u;φ1 − φ2, vh) = F (uφ1 ;uφ1 − u, vh)− F (uφ2 ;uφ2 − u, vh).(97)

For proving condition (96), we first evaluate an upper bound of equation (97) as∣∣∣F (uφ1 ;uφ1 − u, vh)− F (uφ2 ;uφ2 − u, vh)
∣∣∣

≤
∣∣∣ ∑
K∈Rh

4∑
j=1

∫
Aj+1CAj

(ϵ̃u(uφ1)ζ1∇ζ1 − ϵ̃u(uφ2)ζ2∇ζ2).nγvhds
∣∣∣

+
∣∣∣ ∑
ek∈Γ

∫
ek

[γvh]
{
ϵu(uφ1)ζ1∇ζ1 − ϵu(uφ2)ζ2∇ζ2

}
ds
∣∣∣

+
∣∣∣ ∑
K∈Rh

4∑
j=1

∫
Aj+1CAj

ϵ̃uu(uφ1)ζ
2
1 − ϵ̃uu(uφ2)ζ

2
2∇u.nγvhds

∣∣∣
+
∣∣∣ ∑
K∈Rh

4∑
j=1

∫
Aj+1CAj

˜(ρhd)uu(uφ1)ζ
2
1 − ˜(ρhd)uu(uφ2)ζ

2
2 β⃗.nγvhds

∣∣∣
+
∣∣∣ ∑
ek∈Γ

∫
ek

[γvh]
{
(ρhd)uu(uφ1)ζ

2
1 − (ρhd)uu(uφ2)ζ

2
2

}
ds
∣∣∣.(98)

Now by using Taylor’s formula we obtain

ϵu(uφ1
)(uφ1

− u)− ϵu(uφ2
)(uφ2

− u) =ϵ(uφ1
)− ϵ(uφ2

)

=R̃ϵ1(uφ1 , uφ2)(uφ1 − uφ2)(99)

and

ϵ̃uu(uφ1)(uφ1 − u)2 − ϵ̃uu(uφ2)(uφ2 − u)2

=R̃ϵ2(uφ1 , uφ2)(uφ1 − uφ2)
2 + ϵ̃uu(uφ2)(uφ2 − u)(uφ1 − uφ2).(100)

Now using (99) and (100) property and using similar argument of lemma 3.10 we
can bound equation (98) as

B̄(u;φ1 − φ2, vh)

≤Cϵ

[
|||χ|||2 + Cu

(
h5/3 + h1/2 + h2/3 + h(1 + h1/2)

)
|||χ||||||uφ1 −Πhu|||

+ Cu(h
2 + h+ h3/2)|||χ||||||uφ2 −Πhu|||

]
|||vh|||

+ Cρhd

[
|||χ|||2 + Cu(h

5/3 + h3/2)|||χ||||||uφ1 −Πhu|||

+ Cu(h
3/2 + h)|||χ||||||uφ2 −Πhu|||

]
|||vh|||

≤CCuh
δ0 |||χ||||||vh|||.

Now taking vh = φ1−φ2 and using coercive property we have the desire result. �

Now we apply Browder’s fixed point theorem to get unique DG-FVEM solution
to the problem (39).
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4. Error Estimates

In this section, we prove that under light load operating condition optimal order
estimate in H1 can be achieved in the defined norm |∥.∥|. Let Πhu ∈ Vh be an
interpolant of u, for which the following well known approximation property holds

|u−Πhu|l,K ≤ Ch2−l|u|2,K ∀K ∈ Rh, l = 0, 1.(101)

where C depends only on the angle K. The following theorem provide H1-norm
estimate.

Theorem 17. Suppose u ∈ H2(Ω) ∩ H1
0 (Ω) and uh ∈ Vh be the solution of (43)

and (38) respectively. Then there exists a constant C (independent of h but may be
dependent on α1 ) such that

|∥u− uh∥| ≤ Ch|u|2(102)

Proof. By definition of norm define in equation (24) we get

|∥u−Πhu∥|2 = |u−Πhu|21,h +
∑
ek

[γu− γΠhu]
2
ek

≤ C
(
|u−Πhu|21,h +

∑
ek

∫
ek

h−1
ek

[u−Πhu]
2
ek
ds
)
.

Now using trace inequality we have

|∥u−Πhu∥|2 ≤ C
(
|u−Πhu|21,h +

∑
K

h−2∥u−Πhu∥2K
)

Now by using equation (101) we obtain

|∥u−Πhu∥|2 ≤ Ch2|u|22,K(103)

Now as u − uh = u − Πhu + Πhu − uh and also using triangle inequality we have
the following

|∥u− uh∥| ≤ |∥u−Πhu∥|+ |∥Πhu− uh∥|
It is important to note that operator as defined in (42) is coercive, bounded and
monotone under the norm define in equation (24) So for h sufficiently small, there
exist a positive constant C = C(α1) (independent of h but may be dependent on
α1) such that following condition holds

|∥Πhu− uh∥|2 ≤ C|⟨B̄(uh;uh −Πhu, uh −Πhu)|

≤C
{
|∥uh −Πhu∥|+

( ∑
K∈Rh

h2|u−Πhu|22,K
)1/2}

|∥uh −Πhu∥|

≤Ch∥u∥2.

So we have the desire result. �

4.1. L2-Error Estimates. In this section, L2-error estimate is evaluated for the
light load parameter case by exploiting the Aubin-Nitsche “trick”.

Theorem 18. Let u ∈ H2(Ω)∩H1
0 (Ω) and uh ∈ Vh be the solution of problem (43)

and (39) respectively. Then there exists a positive constant C independent of h but
may be dependent on α1 such that

∥u− uh∥ ≤ Ch2∥u∥2(104)
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Proof. Consider ϕ ∈ H2(Ω) and for fix value of u and hd ∈ H2(Ω) we write the
adjoint problem of (1.1) as

∇
(
ϵ(u)∇ϕ− ϕϵu∇u

)
+ β⃗

(
ρhd + (ρhd)u

)
∇ϕ = e in Ω(105)

ϕ = 0 on ∂Ω.(106)

also we have

∥e∥2 =B(u; e, ϕ)−
∑

K∈Rh

4∑
j=1

∫
Aj+1CAj

ϵue∇.nγϕds−
∑
ek∈Γ

∫
ek

[γϕ]
{
ϵue∇u

}
ds

+
∑

K∈Rh

4∑
j=1

∫
Aj+1CAj

(ρhd)ueβ⃗.nγϕds+
∑
ek∈Γ

∫
ek

[γϕ]
{
(ρhd)ueβ⃗

}
ds(107)

First term of equation (107) is rewritten as

B(u; e, ϕ) =B(u;u, ϕ)− B(uh;uh, ϕ) + B(uh;uh, ϕ)− B(u;uh, ϕ)

=B(u;u, ϕ− ϑ)− B(uh;uh, ϕ− ϑ)︸ ︷︷ ︸
I

+B(uh;uh, ϕ)− B(u;uh, ϕ)︸ ︷︷ ︸
II

,

where ϑ = Ik
hϕ such that ϑ|∂Ω = 0 (Here Ik

hu ∈ Vh ∩H2(Ω) ∩ C0(Ω)). We notice
that

I =B(u;u, ϕ− ϑ)− B(uh;u, ϕ− ϑ) + B(uh;u, ϕ− ϑ)− B(uh;uh, ϕ− ϑ)

=
∑

K∈Rh

4∑
j=1

∫
Aj+1CAj

(ϵ(u)− ϵ(uh))∇u.nγ(ϕ− ϑ)ds

+
∑
ek∈Γ

∫
ek

[γ(ϕ− ϑ)]
{
(ϵ(u)− ϵ(uh))∇u

}
ds

−
∑

K∈Rh

4∑
j=1

∫
Aj+1CAj

(ρ(u)hd(x)− ρ(uh)hd(x))β⃗.nγ(ϕ− ϑ)ds

−
∑
ek∈Γ

∫
ek

[γ(ϕ− ϑ)]
{
(ρ(u)hd(x)− ρ(uh)hd(x))β⃗

}
ds

+
∑

K∈Rh

4∑
j=1

∫
Aj+1CAj

ϵ(uh)∇(u− uh).nγ(ϕ− ϑ)ds

+
∑
ek∈Γ

∫
ek

[γ(ϕ− ϑ)]
{
ϵ(uh)∇(u− uh)

}
ds

=JI1 + JI2 + JI3 + JI4 + JI5 + JI6 .(108)

First term, JI1 of equation (108) is approximated as

|JI1 | ≤
∣∣∣∑

K

⟨ϵ(u)− ϵ(uh)∇u,∇(ϕ− ϑ)⟩
∣∣∣

+
∣∣∣∑

K

∫
∂K

[γ(ϕ− ϑ)− (ϕ− ϑ)](ϵ(u)− ϵ(uh))∇u.nds
∣∣∣

+
∣∣∣∑

K

⟨∇(ϵ(u)− ϵ(uh))∇u, (ϕ− ϑ)− γ(ϕ− ϑ)⟩
∣∣∣

=J01 + J02 + J03.(109)
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We bound first term, J01 of equation (109) as

∑
K

∣∣∣ ∫
K

ϵ(u)− ϵ(uh)∇u.∇(ϕ− ϑ)dx
∣∣∣ ≤ CuCϵ|||e|||∥ϕ− ϑ∥.(110)

Second term, J02 of equation (109) is approximated bounded above as

J02 ≤CuCϵ

∑
K

(
h−1∥γ(ϕ− ϑ)− (ϕ− ϑ)∥2K + h∥γ(ϕ− ϑ)− (ϕ− ϑ)∥21,K

)1/2

× ∥e∥

≤CuCϵ∥ϕ− ϑ∥H1(Ω)|||e|||.
(111)

Similarly, third term J03 of equation (109) is estimated as

J03 ≤ CϵCu|||e|||∥ϕ− ϑ∥+ CϵCu∥ϕ− ϑ∥H1(Ω)|||e|||.(112)

Using Holder’s inequality and trace inequality we estimate second term, JI2 of
equation (108) as

JI2 ≤Cϵ

∑
ek∈Γ

(∫
ek

[γ(ϕ− ϑ)]2ds
)1/2(∫

ek

|e|4ds
)1/4(∫

ek

|∇u|4ds
)1/4

≤Cϵ

∑
ek∈Γ

(∫
ek

h−1
ek

[γ(ϕ− ϑ)]2ds
)1/2(

∥e∥4L4(K) + h∥e∥3L6(K)∥∇e∥L2(K)

)1/4

×
(
∥∇u∥4L4(K) + h∥∇u∥3L6(K)∥∇.∇u∥L2(K)

)1/4

≤CuCϵ|||e|||2|||ϕ− ϑ|||.(113)

By using Similar argument we bound the following terms as

|JI3 | ≤ Cu|||e||||||ϕ− ϑ|||,(114)

|JI4 | ≤ Cu|||e||||||ϕ− ϑ|||,(115)

|JI5 | ≤ Cu|||e||||||ϕ− ϑ|||,(116)

|JI6 | ≤ Cu|||e||||||ϕ− ϑ|||.(117)
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We note that

II =
∑

K∈Rh

4∑
j=1

∫
Aj+1CAj

(ϵ(uh)− ϵ(u))∇uh.nγϕds+
∑
ek∈Γ

∫
ek

[γϕ]
{
(ϵ(uh)

− ϵ(u))∇uh
}
ds−

∑
K∈Rh

4∑
j=1

∫
Aj+1CAj

(ρ(uh)hd(x)− ρ(u)hd(x))β⃗.nγϕds

−
∑
ek∈Γ

∫
ek

[γϕ]
{(
ρ(uh)hd(x)− ρ(u)hd(x)

)
β⃗
}
ds

=
∑

K∈Rh

4∑
j=1

∫
Aj+1CAj

(ϵ(uh)− ϵ(u))∇(uh − u).nγϕds

+
∑
ek∈Γ

∫
ek

[γϕ]
{
(ϵ(uh)− ϵ(u))∇(uh − u)

}
ds

+
∑

K∈Rh

4∑
j=1

∫
Aj+1CAj

(ϵ(uh)− ϵ(u))∇u.nγϕds

+
∑
ek∈Γ

∫
ek

[γϕ]
{
(ϵ(uh)− ϵ(u))∇u

}
ds

−
∑

K∈Rh

4∑
j=1

∫
Aj+1CAj

(ρ(uh)hd(x)− ρ(u)hd(x))β⃗.nγϕds

−
∑
ek∈Γ

∫
ek

[γϕ]
{(
ρ(uh)hd(x)− ρ(u)hd(x)

)
β⃗
}
ds

=JII1 + JII2 + JII3 + JII4 + JII5 + JII6(118)

First term JII1 of equation (118) is approximated as

JII1 ≤
∣∣∣∑

K

⟨ϵ(uh)− ϵ(u)∇(uh − u),∇ϕ⟩
∣∣∣+ ∣∣∣∑

e∈Γ

∫
∂K

[γϕ− ϕ]
{
(ϵ(uh)

− ϵ(u))∇(uh − u)
}
ds
∣∣∣+ ∣∣∣∑

K

⟨∇(ϵ(uh)− ϵ(u))∇(uh − u), ϕ− γϕ⟩
∣∣∣

=J1
II1 + J2

II1 + J3
II1 .(119)

First term J1
II1

of equation (119) is estimated by using Holder’s inequality

J1
II1 ≤Cu

(∑
K

∫
K

|e|3dx
)1/3(∑

K

∫
K

|∇e|2dx
)1/2(∑

K

∫
K

|∇ϕ|6dx
)1/6

≤CuC|||e|||2∥ϕ∥H2(Ω)(120)

Using trace inequality second term J2
II1

of equation (119) is estimated as

J2
II1 ≤Cu

(∫
∂K

[γϕ− ϕ]2ds
)1/2(∫

∂K

|e|4ds
)1/4(∫

∂K

|∇e|4ds
)1/4

≤CuC|||e|||2∥ϕ∥H2(Ω)(121)
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Third term, J3
II1

of equation (119) is bounded using Holder’s and trace inequality
as

J3
II1 ≤Cu

(∑
K

∫
K

|e|3dx
)1/3(∑

K

∫
K

|∇e|2dx
)1/2(∑

K

∫
K

|∇(ϕ− γϕ)|6dx
)1/6

+ Cu

(∫
∂K

|γϕ− ϕ|2ds
)1/2(∫

∂K

|e|4ds
)1/4(∫

∂K

|∇e|4ds
)1/4

≤CuC|||e|||2∥ϕ∥H2(Ω)(122)

We bound the second term JII2 of equation (118) by using trace as well as Holder’s
inequality to obtain

JII2 ≤ CuC|||e|||2∥ϕ∥H2(Ω).(123)

Now consider the third term JII3 of equation (118) and take second term of equation
(107) and using Taylor’s formula get∣∣∣ ∑

K∈Rh

4∑
j=1

∫
Aj+1CAj

ϵ̃uu(uh)e
2∇u.nγϕds

∣∣∣ ≤ CuCϵ|||e|||2∥ϕ∥H2(Ω).(124)

Take fourth term JII4 of equation (118) and third term of equation (107) and use
Taylor’s formula to obtain∣∣∣ ∑

ek∈Γ

∫
ek

[γϕ]
{
ϵ̃uu(uh)e

2∇u
}
ds
∣∣∣ =∣∣∣ ∑

ek∈Γ

∫
ek

[γϕ− ϕ]
{
ϵ̃uu(uh)e

2∇u
}
ds
∣∣∣

≤CuCϵ|||e|||2∥ϕ∥H2(Ω).(125)

We take fifth term JII5 of equation (118) and fourth term of equation (107) and
use Taylor’s formula to get∣∣∣ ∑

K∈Rh

4∑
j=1

∫
Aj+1CAj

˜ρhduue
2β⃗.nγϕds

∣∣∣ ≤ CuCρhd
|||e|||2∥ϕ∥H2(Ω)(126)

Finally, taking sixth term JII6 of equation (118), using the fact [ϕ] = 0 and fifth
term of equation (107) and by using Taylor’s formula we get bound as∣∣∣ ∑

ek∈Γ

∫
ek

[γϕ]
{

˜ρhduu(uh)e
2
}
ds
∣∣∣ =∣∣∣ ∑

ek∈Γ

∫
ek

[γϕ− ϕ]
{

˜ρhduu(uh)e
2
}
ds
∣∣∣

≤Cρhd
|||e|||2∥ϕ∥H2(Ω).(127)

Now using elliptic regularity of ϕ and combining right hand side of estimated results,
we get the desire result. �

5. Numerical test of Discontinuous Galerkin finite volume method

In this section, numerical experiments are performed for EHL point contact cases.
Numerical solution of EHL problems is obtained here using relaxation procedure
explained in appendix. (A). Optimal error estimates for pressure (u − uh) are
achieved in broken H1 norm |∥.∥| and L2 norm which are plotted in Fig. (4) with
the red line and the blue line respectively.

Remark 19. Note that we have taken a very fine mesh(≈ 1025×1025) and then solve
the problem by linearizing DG-FVEM formulation (discrete version of eqn.(37)).
We start relaxation upto appropriate tolernece (tolerence critera (|||Ui+1 − Ui|||)/|||Ui||| ≈
10−4 to terminate the relaxation process in our case) using initial Hertzian pressure
guess as mentioned below. Then we have treated this solution as our exact solution
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u for penalized problem for plotting error estimates in Fig. (4) by interpolating this
exact solution on coarse grid.

For all test cases, we fix the parameter α = 1.7×10−8 over computational domain
Ω = [−2.5, 2.5] × [−2.5, 2.5]. The following Hertzian initial guess is taken here for
computation

u(x, y) =

{√
1− x2 − y2, x2 + y2 ≤ 1

0, otherwise.

We have taken interior penalty parameter α1 = 10 in our numerical study. Numer-
ical results confirm the theoretical order of convergence derived in Theorem (16)
and Theorem (17) which are almost equal to 1 and 2 respectively.
In the present analysis, we have taken Moes ([33, 32, 42, 43]) dimensionless pa-

rameters (M = W (2U)−
3
4 and L = G(2U)

1
4 , where W is load parameter and

U = 1.0× 10−11 speed parameter (fixed value) see appendix. ((B)) for parameters
detail) to measure the variation effect on film thickness and pressure profile. The
load variationW is measured by keeping fixed L and varyingM . In our case study,
we take L = 10 and M varies from 7 to 100. The contour plot plot for pressure are
shown graphically for light (see Fig. ((12)), for example) , moderate (see Fig. ((13)),
for example) and high load case (see Fig. ((14)), for example). The deformation of
film thickness contour plots are represented for light ( Fig. ((15)), see for example
), moderate ( Fig. ((16)), see for example) and high load case (see in Fig. ((17)),
for example). It is clearly observed from figures that as M increases from 7 to 100
pressure contour starts converging toward Hertzian pressure. It is also observed
that height of the pressure peak starts decreasing as we increase load W . It is
also noted that film thickness contour plot almost getting flat when load increases
from low to high. Graphical figures of pressure u for the case M = 7, 20, 100 are
represented in Fig. ((5)), Fig. ((7)) and Fig. ((9)). Inverted form of film thickness
profile H plots for case M = 7, 20, 100 are described in Fig. ((6)) – Fig. ((8)) and
Fig. ((10)).

...

..

101

.

102

.

10−5

.

10−4

.

10−3

.

10−2

.

10−1

.

N

.

E
rr
or

.

. ..L2-error

. ..H1-error

Figure 4. L2 (in blue line) and H1 (in red line) error ∥u− uh∥ plot.
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Figure 5. Pressure profile for light load case M = 7 and L = 10
(Moe’s parameter).

Figure 6. Film thickness profile in inverted form for M = 7 and
L = 10.

5.1. Film thickness calculation. Accurate film thickness hd computation is very
important for stable relaxation procedure and require extra care in its computation.
Film thickness is calculated as follows

hd(x, y) =h0 +
x2 + y2

2
+

2

π2

∫ x+

x−

∫ y+

y−

u(x′, y′)dx′dy′√
(x− x′)2 + (y − y′)2

=h0 +
x2 + y2

2
+

2

π2

N∑
e=1

∫
e

∑pe+1
i=0 Ue

i N e
i (x′, y′)√

(x− y′)2 + (y − y′)2
dx′dy′

=h0 +
x2 + y2

2
+

2

π2

N∑
e=1

pe+1∑
i=0

∫
e

Ue
i N e

i (x′, y′)dx′dy′√
(x− y′)2 + (y − y′)2

=h0 +
x2 + y2

2
+

2

π2

N∑
e=1

pe+1∑
i=0

G e
i (x, y)U

e
i ,(128)

where Ue
i is updated solution.
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Figure 7. Pressure profile for moderately high load case M = 20
and L = 10.

Figure 8. Film thickness profile in inverted form for M = 20 and
L = 10.

5.2. Mild singular integral computation. The mild singularity appear in kernal at
(x′, y′) = (x, y) is resolved as below. We rewrite kernel G e

i (x, y) in the following form

G e
i (x, y) =

∫
Ωe

N e
i (x′, y′)dx′dy′√

(x− y′)2 + (y − y′)2

=
he
x

2

he
y

2

∫ 1

−1

∫ 1

−1

N e
i (x′(ξ, χ), y′(ξ, χ))dξdχ√

(x− x′(ξ, χ))2 + (y − y′(ξ, χ))2

≈he
x

2

he
y

2

m∑
j=1

m∑
k=1

N e
i (x′(ξj , χk), y

′(ξj , χk))wjwk√
(x− x′(ξj , χk))2 + (y − y′(ξj , χk))2

,(129)

where he
x = x2−x1 and he

y = y2−y1 are the step sizes of element e in the x direction and y
direction respectively and ξ ∈ [−1, 1] and χ ∈ [−1, 1] are the coordinate directions for the
reference element. Here we applym point quadrature in x and y direction of discretization.
Singular quadrature procedure is implemented here to resolve the singularity appeared in
term G e

i (x, y) =
1√

(x−x′)2+(y−y′)2
at the point (x, y). The key idea is divide the element

e into four subpart elements Fk, k = 1, 2, 3, 4 for calculating integrals of G Fk
i (x, y) =
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Figure 9. Pressure profile for limit case M = 100 and L = 10.

Figure 10. Limit case film thickness profile for M = 100 and L = 10.
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Figure 11. Contour plot for limit case M = 100 and L = 10.

1√
(x−x′)2+(y−y′)2

. Each four integrals have chosen in a such way that they have only one

singular point in the domain of integration. Four integrals defined above can be evaluated
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Figure 12. Light load case pressure contour.
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Figure 13. Moderate load case pressure contour.

as in general integral form:

S ∗ =

∫ 1

0

∫ 1

0

F ∗(x, y)G ∗(x, y)dxdy,(130)

where F ∗ is analytic function and G ∗ is a function having a mild singularity at only one
point.

S ≈ S ∗
n =

n∑
i=1

Ii,(131)
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Figure 14. High load case pressure contour.
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Figure 15. Light load case film thickness deformation.

where

Ii =

∫ xi−1

xi

∫ yi−1

yi

F ∗(x, y)G ∗(x, y)dxdy, (i ≥ 1).(132)

Where (x0, y0) = (1, 1) and (xn, yn) → (0, 0) as n → ∞ for the value (xn, yn) =
(θn, θn), (0 < θ < 1).

Remark 20. Adoptive integration is applied here to calculate accurate singular integration
to achieve accuracy.
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Figure 16. Moderate load case film thickness deformation.

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

y

x

Film Thickness contour Plot

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

1.8

1.8

1.8
1.8

1.8

1.8

1.8

1.8

1.8

1.8

1.8

1.8

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.4

1.4

1.4

1.4

1.3

1.3

1.3

1.3

1.2

1.2

1.2

1.2

(a) M=63,L=10

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

y

x

Film Thickness contour Plot

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

1.8

1.8

1.8

1.8

1.8

1.8

1.8

1.8

1.8

1.8

1.8

1.8

1.8

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.4

1.4

1.4

1.4

1.3

1.3

1.3

1.3

1.2

1.2

1.2

1.2

(b) M=70,L=10

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

y

x

Film Thickness contour Plot

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

1.8

1.8

1.81.8

1.8

1.8

1.8

1.8

1.8

1.8

1.8

1.8

1.8

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.4

1.4

1.4

1.4

1.3

1.3

1.3

1.3

1.2

1.2

1.2

1.2

(c) M=80,L=10

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

y

x

Film Thickness contour Plot

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

1.8

1.8

1.8

1.8
1.8

1.8

1.8

1.8

1.8

1.8
1.8

1.8

1.8

1.8

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.4

1.4

1.4

1.4

1.3

1.3

1.3

1.3

1.2

1.2

1.2

1.2

(d) M=90,L=10

Figure 17. High load case film thickness deformation.

5.3. Load balance equation calculation. The force balance equation is discretized
according to

N∑
e=1

∫
Ωe

pe+1∑
i=0

G e
i (x, y)U

e
i dxdy −

2π

3
= 0(133)

By introducing another kernel N e
i as

N e
i =

∫
Ωe

G e
i (x, y)dxdy(134)
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the discrete force balance equation can be rewritten as

N∑
e=1

pe+1∑
i=0

(N e
i )Ue

i −
2π

3
= 0(135)

Remark 21. We implement discrete force balance equation implicitly during the relaxation
procedure by updating h00 in following way

h00 ← h00 − c1
( N∑

e=1

pe+1∑
i=0

(N e
i )Ue

i −
2π

3

)
,(136)

where Ue
i is updated solution and c1 ≈ 0.01− 0.1 is positive relaxation factor.

6. Conclusion

New discontinuous Galerkin finite volume element method is investigated for solving
EHL model problem with the help of interior-exterior penalty approach. Interior penalty
comes naturally using formulation of DG-FVEM, however exterior penalty appears natu-
rally due to transformation of variational inequality into equality. This exterior penalty
formulation is obtained by regularizing the constraint u ≥ 0. The existence and uniqueness
for discrete DG-FVEM formulation is proved using Browder’s fixed point theorem. This
method is fully systematic and easily parallelized in MPI (Massage passing interface) en-
vironment. The stability estimates are achieved by showing operator as pseudo-monotone
for moderate load condition. Optimal error estimates are derive under light load condition
theoretically as well as by numerical computation in H1 and L2 norm respectively. More
implementation issues and applications will be discussed in the second part of the paper.

Appendix A. Relaxation of EHL

For finding unique solution for discrete DG-FVEM formulation explained in equation
(37), we update our nonlinear operator iterative manner by taking old and new pressure
value in the following form

Unew = Uold +
(∂Td(U)

∂U

)−1

Rs,(A.1)

where Rs is the numerical residual value of the discretized Reynolds equation and, Td is

discretized nonlinear operator. The approximation of ∂Td(U)
∂U

is evaluated in the following
way,

∂Td(U)

∂U
≈ ∂T ∗

d (U)

∂U
− ∂T ∗∗

d (U)

∂U

≈ A ∗
d (U)− ∂T ∗∗

d (U)

∂U
,(A.2)

where A ∗
d (U) and

∂T ∗∗
d (U)

∂U
denote the discrete diffusion contribution and the discrete

convection contribution respectively. In the above equation (A.2), we notice that term
∂T ∗∗

d (U)

∂U
is a full dense matrix and it is evaluated in the following way,

∂T ∗∗
d (U)

∂U

∣∣∣
I,J

=
∑

K∈Rh

3∑
j=1

∫
Aj+1CAj

(ρ
∂hd

∂Uf
j

+ hd
∂ρ

∂Uf
j

).(β⃗.n)γvds

+
∑
ek∈Γ

∫
ek

[γv]
{
(ρ

∂hd

∂Uf
j

+ hd
∂ρ

∂Uf
j

).(β⃗.n)
}
ds,

where the Ith subscript denote the row generated with the test function v = N e
i (X) and

the Jth subscript correspond to the unknown UF
j . According to the discrete equation

(128) we can evaluate the following expression

∂hd

∂Uf
j

= G f
j
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which is pre-evaluated. It is worth mentioning that, from the discrete equation
(128) the film thickness depends heavily on the local pressure and very less on the
pressure for away. The value of G F

j is rapidly decreases as the position of element
F is far away from the position of X = (x, y). From the above information we
can reduce our computation cost by considering the following approximations of
∂T ∗∗

d (U)
∂U :

• ∂hd(X)

∂Uf
j

= 0 where X ∈ ek if f ̸= ek and f is not a adjacent element of ek.

• ∂hd(X)

∂Uf
j

= 0 where X ∈ Γint and if f is not a adjacent element of Γint.

• ∂hd(X)

∂Uf
j

= 0 where X ∈ ΓD and if f is not a adjacent element of ΓD.

• ∂hd(X)

∂Uf
j

= G f
j (X), otherwise.

Appendix B. Parameters used in computation

Some frequently used notation in EHL model are denoted as below:
pH = Ea

4Rx
maximum Hertzian pressure .

η0 = 0.04 Ambient pressure viscosity.
h0 = central offset film thickness integral constant.
a = Radius of point contact circle.
α = Pressure viscosity coefficient.
us = u1 +u2, where u1 upper surface velocity and u2 lower surface velocity respec-
tively.
p0 = Constant (p0 = 1.98× 108), z is pressure viscosity index (z = 0.68).
L and M are Moe’s parameters and they are related as below.
L = G(2U)

1
4 ,M =W (2U)−

3
4 , where

2U =
(η0us)

(E′R)
,W =

F

E′R
, pH =

(3F )

(2πa2)
.

For more detail explanation of parameter we refer to see [32, page 183].
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