
INTERNATIONAL JOURNAL OF c© 2020 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 17, Number 5, Pages 679–694

LOCALLY CONSERVATIVE FINITE ELEMENT SOLUTIONS FOR

PARABOLIC EQUATIONS

WENBO GONG AND QINGSONG ZOU

Abstract. In this paper, we post-process the finite element solutions for parabolic equations to
meet discrete conservation laws in element-level. The post-processing procedure are implemented
by two different approaches : one is by computing a globally continuous flux function and the
other is by computing the so-called finite-volume-element-like solution. Both approaches only
require to solve a small linear system on each element of the underlying mesh. The post-processed
flux converges to the exact flux with optimal convergence rates. Numerical computations verify
our theoretical findings.
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1. Introduction.

We consider numerical solutions of the following spatially-two-dimensional par-
abolic equations :

(1)





ut −∇ · (κ(x)∇u) = f(x, t), (x, t) ∈ Ω× (0, T ],

u = 0, x ∈ ∂Ω× (0, T ],

u(x, 0) = u0(x), x ∈ Ω,

where Ω is a convex bounded polygonal domain in R
2 with boundary ∂Ω. We

assume that f(x, t) ∈ L2(Ω) for t ∈ [0, T ] and the coefficient function κ is Lipschitz
continuous, there exits two positive constants κ∗ and κ∗ such that κ∗ 6 κ(x) 6
κ∗ for almost all x ∈ Ω. The above parabolic equations are widely used in the
modelling of physical phenomena such as that from hydrological, biological and
biogeochemical disciplines [6, 10, 19, 30]. Due to the lack of analytical solution and
the expensive cost of physical experiments, numerical simulations received a great
deal of attention in the study of parabolic problems. Among all numerical methods,
those who guarantee locally conservation laws received a great deal of attention.

The finite volume method (FVM, see e.g.,[3, 11, 13, 17, 16])) is an important
numerical method which preserves the conservation law in element level, it is very
popular in computational fluid dynamics(CFD, see e.g., [24]). However, the linear
algebraic system resulting from the FVM is generally non-symmetric, its implemen-
tation and analysis is challenging, especially for high order schemes(c.f., [2, 12, 18,
25, 26, 29]). The linear system derived from the finite element method(FEM) is
symmetric and thus can be computed with many fast solvers. The FEM solutions,
however, do not satisfy the local conservation laws. Therefore, many efforts have
been made to post-process FEM solutions to derive solutions which satisfy local
conservation laws during the past several decades. To the best of our knowledge,
the first work on post-processing of the FEM solutions to derive locally conser-
vative fluxes can be traced back to Douglas, Dupont and Wheeler([9]), which is
designed in 1974 for elliptic equations. Thereafter a lot of works along this direc-
tion are reported in the literature. For instances, in 2006, Bochev and Gunzburger
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develop a flux-correction procedure for the Darcy flow equation based on the least-
squares method, their derived solution guarantees local conservation law without
compromising its L2 accuracy ([5]). In 2007, Cockburn et al. present a two-step
post-processing algorithm to generate a conservative flux([8]). In 2013, Pouliot et
al. post-process the FEM solutions based on the flux superconvergent-points([21]).
In [28] , Zhang et al. develop elemenwisely conservative flux by correcting the FEM
solution element-by-element. In [32], Zou et al. derive volume-wisely conservative
flux by solving a small linear system in each element of the underlying mesh.

In the present paper, we apply the post-processing techniques in [32] to parabolic
equations. As that in [32], our post procedure here can be implemented element-
wisely. Moreover, our post processing techniques share almost all advantages pos-
sessed by the techniques in [32]. For instances, the post-precessed numerical flux
satisfies the local conservation law and converges to the exact flux with optimal
orders, etc. However, since the parabolic equation is related to the time evolution,
our post-processing procedure here is significantly different from that for elliptic
equations by solving an ordinary differential equation system in each element of
the underlying mesh instead of solving a static linear system in each element of the
underlying mesh which is done in [32].

The rest of the paper is organized as below. In Section 2, we present semi-
discrete FEM and FVM solutions and their related properties. In Section 3, we
post-process the semi-discrete FEM solution to obtain a globally continuous flux
function and a finite-volume-element-like solution, both locally conservative. The
approximation property of the post-processed solution will be also discussed. In
Section 4, we illustrate how to implement our post-processing techniques in practical
algorithms associated with a certain temporal discretization. In Section 5, several
numerical experiments are made to demonstrate the efficiency and accuracy of our
post-processing algorithms.

We close the section by an introduction of some notation. Let D ⊂ R
2 be an

open bounded domain with Lipschitz continuous boundary. We adopt standard
notations for Sobolev spaces such as Wm,p(D) on sub-domain D ⊂ Ω equipped
with the norm ‖ · ‖m,p,D and semi-norm | · |m,p,D. When D = Ω, we omit the
index D; and if p = 2, we set Wm,p(D) = Hm(D), ‖ · ‖m,p,D = ‖ · ‖m,D, and
| · |m,p,D = | · |m,D. Notation A . B implies that A can be bounded by B multiplied
by a constant independent of the mesh size h. A ' B means that both A . B and
B . A.

2. Semi-discrete finite element and finite volume solutions.

To illustrate our basic idea on post-processing, we only present the semi-discrete
schemes instead of fully-discrete schemes for (1) in this section. We begin our
presentation with an introduction on the spatial discretization. Let Th = {τ} be a
family of quasi-uniform and shape-regular triangulation on Ω. We denote by Nh,
N̊h, Eh, E̊h the set of all vertices, the set of internal vertices, the set of all edges,
and the set of internal edges, respectively. Let the standard linear finite element
space be

Vh = {v ∈ C(Ω) : v|τ ∈ P1, ∀τ ∈ Th, v|∂Ω = 0},

where P1 is the space of all first-order polynomials. It’s known that Vh ⊂ H1
0 (Ω)

and it has a standard Lagrange basis Sh(T ) = span{φP , P ∈ N̊h}, where φP ∈ Vh
is nodal basis function satisfying φP (P

′) = δPP ′ .
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The semi-discrete finite element method for (1) is to find a function uh(·, t) ∈
Vh, t ∈ [0, T ], such that

(2)

{
(uh,t(·, t), vh) + a(uh(·, t), vh) = (f(·, t), vh), ∀vh ∈ Vh,

uh(x, 0) = u0h(x), x ∈ Ω,

where for all v, w ∈ H1(Ω)

a(v, w) =

∫

Ω

κ∇v · ∇wdx, (v, w) =

∫

Ω

vwdx,

and u0h is the Lagrange interpolation u(x, 0) in space Vh. It is known (cf.,e.g. [23])
that we have the approximate properties

‖u− uh‖0 . h2|||u|||2,Ω, ‖∇u−∇uh‖0 . h|||u|||2,Ω.(3)

where |||u|||2,Ω = ‖u0‖H2(Ω) + ‖u‖L∞([0,T ],H2(Ω)) + ‖ut‖L2([0,T ],H2(Ω)).
Next we present the semi-discrete finite volume element method for (1). For

this purpose, we first define the so-called dual mesh of Ω. For P ∈ Nh, let the
so-called control volume VP be some polygon surrounding P such that all control
volumes VP , P ∈ Nh, construct another partition T ∗

h of Ω. For instance, when Th is
a triangular mesh, for all P ∈ Nh, the control volume Vp is a polygon surrounding
P by successively connecting the midpoints of an edge in EP = {e ∈ Eh : P ∈ ē}
and the barycenter of τ ⊂ ωP =

⋃
{τ ′ ∈ Th : P ∈ τ̄ ′}, see Figure 1 for the dual

mesh T ∗
h . Associated with T ∗

h , we define a test space

V ∗
h = {χVP

: P ∈ N̊h},

where for any subset S ⊂ Ω, the characteristic function χS = 1 in S and χS = 0 in
Ω \ S. Since dimVh = dimV ∗

h = #N̊h, there exists a linear bijection Π : Vh → V ∗
h

P

Vp

Figure 1. A dual mesh T ∗
h of a triangular mesh : each control

volume is a polygon surrounding P which is depicted with dotted
line.

which maps vh =
∑

P∈Nh
vh(P ) ∈ Vh to v∗h = Πvh =

∑
P∈Nh

vh(P )χVP
∈ V ∗

h .

The semi-discrete finite volume scheme for (1) is to find uh,v(·, t) ∈ Vh, t ∈ [0, T ],
such that

(4)

{
(uh,v,t(·, t), v∗h) + av(uh,v(·, t), v∗h) = (f(·, t), v∗h), ∀v∗h ∈ V ∗

h ,

uh,v(x, 0) = u0h,v(x), x ∈ Ω,
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where for all v ∈ H1
0 (Ω) ∩H

2(Ω) ,v∗h ∈ V ∗
h ,

av(v, v
∗
h) = −

∑

P∈Nh

∫

∂VP

κ∇v · nv∗hdx,

where n is the outward unit normal vector at the boundary ∂VP . For this finite
volume solution, we have the following error estimates (cf.,e.g. [17, 27])

‖u− uh,v‖0 . h2(‖u0‖H3(Ω) + ‖ut‖L2([0,T ],H3(Ω))),

‖∇u−∇uh,v‖0 . h|||u|||2,Ω.
(5)

Let us compare these two semi-discrete schemes. On one hand, since the mass
matrix M = [(φj , φi)] and the stiffness matrix K = [a(φj , φi)] are symmetric, there
are many fast solvers (such as the conjugate gradient method (CG)) for the linear
algebraic system derived from the the finite element scheme (2). While for the FVM
scheme, the stiffness matrix Kv = [av(φj , ψi)] is usually non-symmetric, one has to
seek other fast solver such as the generalized minimal residual method (GMRES)
to solve the corresponding linear system. Moreover, if the exact solution of (1) is
sufficiently regular, both schemes have optimal convergence order both under the
H1 and L2 norm. However, to guarantee the optimal convergence order under the
L2 norm, the regularity-condition on the solution is often more strict for the FVM
than that for the FEM. On the other hand, letting v∗h = φ∗P in (4), we find that
uh,v satisfy the following semi-discrete local conservation law

(6)

∫

VP

uh,v,tdx−

∫

∂VP

κ∇uh,v · ndl =

∫

VP

fdx,

on each control volume VP , P ∈ N̊h. However, in general the finite element solution
uh does not satisfy the above local conservation law, namely,

∫

VP

uh,tdx−

∫

∂VP

κ∇uh · ndl 6=

∫

VP

fdx, ∀P ∈ Nh.

Of course, by a similar argument in [32], it is not difficult to find the FEM solution
satisfies the following almost local conservation property :

(7)
∑

P∈Nh

∣∣∣∣
∫

VP

uh,tdx−

∫

∂VP

κ∇uh · ndl −

∫

VP

fdx

∣∣∣∣ . h, t ∈ (0, T ].

where the hidden constant depends only on the shape-regularity of Th.
In summary, both the FEM and the FVM are nice numerical schemes for (1).

The FEM has some (weak) advantages in the computational speed and accuracy.
The FVM has the advantage of preserving local conservation laws which are highly
desired by physicists. For this reason and for the fact that the FEM solution also
satisfies the almost local conservation property (7), one natural idea is to post-
process the FEM solution so that its numerical flux satisfy the local conservation
law. Note that this post-processing idea has been applied to the elliptic equations
in many papers([4, 5, 7, 14, 15, 22, 28, 32]), during the past several decades. How-
ever, to the best of our knowledge, this idea has not been applied to the parabolic
problems yet. The goal of the following sections of this paper is to apply this
post-processing technique to parabolic problems.

We end this section by introducing two elliptic projection operators as below.
Firstly, let the finite element projector Ph : v ∈ H1

0 (Ω) → Phvh ∈ Vh be defined by

a(Phv, vh) = a(v, vh), ∀vh ∈ Vh.
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Secondly, let the finite volume projector

P ∗
h : v ∈ H2(Ω) ∩H1

0 (Ω) → P ∗
hv ∈ Vh

be defined by

av(P
∗
h v, v

∗
h) = av(v, v

∗
h), ∀v

∗
h ∈ V ∗

h .

Note that when v ∈ H2(Ω) and κ ∈ W 2,∞(Ω), we have the following superconver-
gence property(cf.,[26])

‖∇P ∗
hv −∇Phv‖0 . h2‖v‖H2(Ω).(8)

3. Post-processing of semi-discrete schemes

In this section, we present two approaches to post-process the semi-discrete finite
element solution uh which has been already computed by the scheme (2). This two
approaches were first introduced in [32] for elliptic equations, here we apply them
to parabolic problems.

3.1. Continuous locally conservative flux. The goal of this subsection is to
derive a continuous flux function which satisfies the conservation law in each control
volume of the dual mesh T ∗

h . Namely, we will derive a continuous flux function p̃h
to approximate the the exact flux p = p(x, t) = −κ∇u(x, t) which satisfies the
conservation laws

(9)

∫

VP

uh,tdx+

∫

∂VP

p̃h · ndl =

∫

VP

fdx, ∀P ∈ Nh.

To this end we post-process the existed discrete flux ph = −κ∇uh which can
be computed directly after the obtain of the semi-discrete finite element solution
uh. We observe that ph is usually discontinuous across each edge of Th due to
the discontinuity of ∇uh across the edge. To obtain a continuous flux, we use the
popular gradient recovery technique (see e.g. [31, 20]). Let Gh: Vh → Vh × Vh be
a gradient recover operator which satisfies the boundedness

(10) ‖Ghvh‖0,τ . ‖∇vh‖0,Kτ
, ∀vh ∈ Vh,

where Kτ =
⋃
{ωP : P is the vertex of τ}, and the approximation property

‖∇u−Ghuh‖0,Ω . h‖u‖2,Ω, ∀u ∈ H2(Ω).(11)

Since Ghuh is continuous across each edge, −κGhuh does either. However, the
flux −κGhuh does not satisfy the local conservation law (9). To derive a locally
conservative flux, we update −κGhuh by adding some appropriate bubble in each
triangle τ = 4P1P2P3 ∈ Th as below. Let λi, i = 1, 2, 3, be the barycentric
coordinates corresponding to the vertices Pi, i = 1, 2, 3. Moreover, we define the
residual of uh on the element τ as a functional valued on functions in Vh which is
given for all vh ∈ Vh by

R(vh, τ) =

∫

τ

[(uh,t − f)(vh − v∗h)− ph · ∇vh]dx(12)

+

∫

∂τ

κGhuh · n(v∗h − vh)dl.

We are now ready to present our locally conservative flux p̃h. In each τ ∈ Th, let

(13) p̃h = −κGhuh + λ1λ2λ3

(
c1
c2

)
,
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where c1, c2 are two parameters determined by

(14)

∫

(∂VPi
)∩τ

p̃h · ndl = R(λi, τ), i = 1, 2, 3.

Note that here, we have only two parameters but three constrains. Since

3∑

i=1

R(λi, τ) = R(
3∑

i=1

λi, τ) = R(1, τ) = 0

and
3∑

i=1

∫

(∂VPi
)∩τ

p̃h · ndl =
3∑

i=1

∫

ei

[p̃h] · nei
= 0,

where ei, i = 1, 2, 3 are the three edges of the dual mesh T ∗
h in τ , only two of

three equations in (14) are linear independent. Namely the equations in (14) can
be reduced to a 2 × 2 linear system. Following the same arguments in [32] on
the existence and uniqueness of p̃h for elliptic equations and noting that the only
difference of the linear system here from that in [32] is that f is replaced by f−uh,t,
we are easy to show that (14) admits a unique solution p̃h.

On the other hand, noticing κGhuh is continuous across each edge in Th and uh
is the solution of (2), we have

∫

∂VP

p̃h · ndl =
∑

τ⊂ωP

R(φP , τ)

=

∫

ωP

[(f − uh,t)(φ
∗
P − φP )− ph · ∇φP ]dx

=

∫

ωP

(f − uh,t)φ
∗
P dx =

∫

VP

(f − uh,t)dx,

where for all P ∈ Nh, φP is the corresponding nodal basis, ωP = Suppφp and VP
is the volume associated with the vertex P . Namely, the flux p̃h satisfies the local
conservation law (9) in each Vp.

We close this subsection with a discussion on the approximation property of p̃h.
We claim that

‖p̃h − p‖0 . h|||u|||2,Ω.(15)

In fact, it is easy to deduce from the definition (13) and (14) that

|cj | . h−1Rτ , (j = 1, 2),

where Rτ = max16i63 |Ri,τ |, and Ri,τ = R(λi, τ) +
∫
(∂VPi

)∩τ
κGhuh · ndl. Then,

‖p̃h − p‖0,τ . Rτ .

Noticing that
∫

τ∩VPi

(f − ut)dx =

∫

τ∩VPi

−∇ · (κ∇u)dx =

∫

∂(VPi
∩τ)

p · ndl,

and ∫

τ

(f − ut)λidx =

∫

∂τ

p · nλidl −

∫

τ

p · ∇λidx,
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we have

Ri,τ =

∫

τ

[(uh,t − f)λi − ph · ∇λi]dx−

∫

∂τ

κGhuh · nλidl

+

∫

τ

(f − uh,t)λ
∗
i dx+

∫

∂τ

κGhuh · nλ∗i +

∫

(∂VPi
)∩τ

κGhuh · ndl

=

∫

τ

[(uh,t − uh,v,t)λi + (ph,v − ph) · ∇λi]dx−

∫

∂τ

(ph,v + κGhuh) · nλidl

+

∫

τ∩VPi

(uh,v,t − uh,t)dx+

∫

∂(τ∩VPi
)

(ph,v + κGhuh) · ndl,

where ph,v = −κ∇uh,v · n is the finite volume flux. For t ∈ (0, T ], by the trace
theorem,

|Rτ | .‖uh,t − uh,v,t‖0,τ + ‖ph,v − ph‖0,τ

+ ‖ph,v + κGhuh‖0,Kτ
+ hτ |ph,v + κGhuh|1,Kτ

.‖uh,t − uh,v,t‖0,τ + ‖∇uh,v −∇uh‖0,τ

+ ‖∇uh,v −Ghuh‖0,Kτ
+ hτ |∇uv −Ghuh|1,Kτ

.

Summing τ for all τ ∈ Th, we obtain

‖p− p̃h‖0 .‖uh,t − uv,t‖0 + ‖∇uh,v −∇uh‖0

+ ‖∇uh,v −Ghuh‖0 + h|∇u −Ghuh|1.

By (3), (5), (11), the inverse inequality and the supercloseness property (8), we
obtain the estimate (15).

In summary, by the post-processing techniques in this subsection, we obtain a
continuous locally conservative numerical flux function which converges to the exact
flux with optimal convergence order.

3.2. Finite-volume-element-like solutions. In this subsection, we post-process
the finite element solution uh to derive a function ûh which satisfies the following
properties. First, ûh is globally continuous in Ω and is a polynomial in each element
τ ∈ Th. Secondly, ûh satisfies the conservation law in each control volume VP , P ∈
N̊h. Thirdly, ûh converges to the exact solution u with optimal convergence rates
both in H1 and L2 space. Note that the finite volume element solution uh,v defined
in (4) also satisfies the above three properties, we call ûh a finite-volume-element-

like solution.
Next we present our post-processing method to derive ûh. For this purpose, we

first enlarge the finite element space Vh to V̂h by adding bubbles defined on elements.
That is, in each element τ = 4P1P2P3 ∈ Th, we enlarge the finite element space

Vh|τ to V̂h|τ by letting

V̂h|τ = Vh|τ ⊕ span{λ21λ2λ3, λ1λ
2
2λ3, λ1λ2λ

2
3}.

Now we let

ûh = uh + λ1λ2λ3

3∑

j=1

cj(t)λj ∈ V̂h,(16)

with the three functions c1(t), c1(t) and c3(t) determined by the constrains
∫

VPi
∩τ

ûh,tdx−

∫

(∂VPi
)∩τ

κ∇ûh · ndl = S(φPi
, τ), (i = 1, 2, 3).(17)
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with the residual functional defined for all vh ∈ Vh by

S(vh, τ) =

∫

τ

[uh,tvh − ph∇vh + f(v∗h − vh)]dx−

∫

∂τ

{ph} · n(v
∗
h − vh)dl.

In the above equality, {·} is an averaging operator defined on an internal edge or
part of the internal edge sharing by two elements τ1 and τ2 for vector v as

{v} =
v|τ1 + v|τ2

2
.

In particular, the initial û0h = ûh(·, 0) = u0h + λ1λ2λ3
∑3

j=1 cj(0)λj ∈ V̂h are
determined by letting

−

∫

(∂VPi
)∩τ

κ∇û0h · ndl = S0(φPi
, τ), (i = 1, 2, 3),(18)

where

S0(vh, τ) =

∫

∂τ

{κ∇u0h} · n(v
∗
h − vh)dl +

∫

τ

[∇u0h∇vh + f(0)(v∗h − vh)]dx.

The existence and uniqueness of the initial value û0h has been proved in [32]. The
following theorem shows the existence and uniqueness of ûh(·, t) for all t ∈ [0, T ].

Theorem 3.1. For all t ∈ (0, T ] and all τ ∈ Th, there exists a unique ûh satisfying

(16) and (17).

Proof. By (17), we obtain a 3× 3 linear algebra system

Aτc
′

τ (t) +Dτcτ (t) = bτ (t),(19)

where Aτ = (aij)(i, j = 1, 2, 3) with

aij =

∫

VPi
∩τ

λ1λ2λ3λjdx,(20)

Dτ = (dij)(i, j = 1, 2, 3) with

dij =

∫

(∂VPi
)∩τ

κ∇λ1λ2λ3λj · ndl,(21)

and bτ (t) = (b1, b2, b3)
T with

bi = S(λi, τ)− (

∫

VPi
∩τ

uh,tdx+

∫

(∂VPi
)∩τ

ph · ndl), (i = 1, 2, 3).(22)

Let |τ | be the measur of the element τ , it is easy to obtain that

det(Aτ ) =
289|τ |3

18329090580
,

which is always positive, thus matrix Aτ is invertible. Then we can rewrite the
linear algebra system (19) of ordinary differential equations as

c
′

τ (t) +A−1
τ Dτcτ (t) = A−1

τ bτ (t).(23)

From the ordinary differential equation theory we known that (23) has a unique
solution with initial value cτ (0) (see e.g. [1]). This completes the proof. �
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Next we verify that ûh satisfies the three aforementioned properties shared by
the FVM solution uh,v. First, it is easy to see that ûh is globally continuous and is
a polynomial of degree 4 in each element τ ∈ Th. Secondly, ûh satisfies the semi-
discrete conservation law (6). In fact for all vertex P ∈ Nh, by letting vh = φP in
(17), we have

∫

VP

∂tû
n
hdx−

∫

∂VP

κ∇ûnh · ndl =
∑

τ⊂ωP

S(φP , τ)

=

∫

ωP

[f(φ∗P − φP ) + uh,tφP − ph · ∇φP ]dx

=

∫

ωP

fφ∗Pdx =

∫

VP

fdx,

where the average {ph} is continuous cross each edge e ∈ Eh is used in the second
equality and the identity (uh,t, φP ) − (ph,∇φP ) = (f, φP ) is used in the third
equality. In the end, we prove that ûh converges with optimal convergence rates.
Namely, we will show the following estimates.

‖u− ûh‖0 . h2|||u|||2,Ω, ‖∇u−∇ûh‖0 . h|||u|||2,Ω.(24)

In fact, by (18) and (22), we have

bi =

∫

τ

(uh,t − ut)(λi − λ∗i )dx+

∫

τ

(p− ph)∇λidx

+

∫

(∂VPi
)∩τ

(p− ph) · ndl +

∫

∂τ

(p− {ph}) · n(λ
∗
i − λi)dl,

then for t ∈ (0, T ],

|bi| . ‖uh,t − ut‖0,τ + ‖∇u−∇uh‖0,τ + hτ |∇u −∇uh|1,τ (i = 1, 2, 3).

On the other hand, noting that A−1
τ and Dτ is independent of time variable t, Th is

a quasi-uniform and shape-regular partition and κ is uniformly bounded, thus A−1
τ

and Dτ are uniformly bounded. That is, ‖A−1
τ ‖0 . 1 and ‖Dτ‖0 . 1. Therefore,

we obtain that for t ∈ (0, T ],

|ci| . ‖uh,t − ut‖0,τ + ‖∇u−∇uh‖0,τ + hτ |∇u−∇uh|1,τ (i = 1, 2, 3).

Consequently, by the triangle inequality and the error estimates (3), we obtain (24).

4. Post-processing of fully-discrete schemes.

In this section, we implement the two aforementioned post-processing approaches
by taking the backward Euler scheme as an example of temporal discretization. Let
∆t be the time step size and tn = n∆t, n = 0, 1, 2, . . . , be the time levels. The
fully-discrete FEM solution unh ∈ Vh, which is an approximations of u(·, tn), satisfies
following backward Euler-finite element scheme

(25)

{
(∂̄tu

n
h, vh) + a(unh, vh) = (f(·, tn), vh), ∀vh ∈ Vh,

uh(x, 0) = u0h(x), x ∈ Ω,

where ∂̄tu
n
h = (unh −u

n−1
h )/∆t is the backward Euler difference operator. Similarly,

the backward Euler-finite volume element scheme is to find solution unh,v ∈ Vh such
that

(26)

{
(∂̄tu

n
h,v, v

∗
h) + av(u

n
h,v, v

∗
h) = (f(·, tn), v∗h), ∀v∗h ∈ V ∗

h ,

uh,v(x, 0) = u0h(x), x ∈ Ω.
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Then we introduce the fully discrete conservation law: find a pair (Un
P ;F

n
P ) to

approximate the average value of u(·, tn) and the average flux over the control
volume VP , such that

Un
P − Un−1

P

∆t
+ Fn

P = Fn
P , ∀P ∈ Nh,(27)

where

(28) Fn
P =

1

|VP |

∫

VP

f(·, tn)dx

is the average value of f(·, tn) over the control volume VP . Notice that if we choose
v∗h = χVP

in (26) and then dividing by |VP |, the measure of VP , we find that the pair
(Un

Pv
;Fn

Pv
) obtained from the FVM solution unh,v satisfies the discrete conservation

law (27), where

(29) Un
Pv

=
1

|VP |

∫

VP

unh,vdx,

and

(30) Fn
Pv

= −
1

|VP |

∫

∂VP

κ∇unh,v · ndl.

However, similarly, the pair (Un
P ;F

n
P ) obtained from the FEM solution unh does not

satisfy the conservation law (27), so we want to post-process it.
Next we explain how to implement the two post-processing techniques in the

previous section. This can be reduced to solving linear system (14) and (17). Then
we will discuss how to solve these two linear systems respectively. First, applying
the post-processing technique presented in subsection 3.1, we only need to modify

the average flux Fn
P = 1

|VP |

∫
∂VP

pnh·ndl to F̃
n
P = 1

|VP |

∫
∂VP

p̃nh·ndl such that (Un
P ; F̃

n
P )

satisfies (27). That is, at t = tn, we post-process unh to construct a continuous flux

p̃nh = −κGhu
n
h + λ1λ2λ3

(
cn1
cn2

)
,(31)

where cn1 and cn2 are constants to be determined, such that satisfies
∫

(∂VPi
)∩τ

p̃nh · ndl = R̄(τ, λi), (i = 1, 2, 3),(32)

where

R̄(τ, λi) =

∫

τ

[(∂̄tu
n
h − f(x, tn))(λi − λ∗i )− pnh∇λi]dx.(33)

In (33), we have replaced the differential operator in (12) with the difference oper-
ator. Let (xi, yi) be the coordinates of Pi and let xi+3 = xi, yi+3 = yi, i = 1, 2, 3.
Then we derive the following linear system from (32),

(
y1 − y2 x2 − x1
y3 − y2 x2 − x3

)(
cn1
cn2

)
=

864

11

(
RHS1

RHS2

)
,(34)

where RHSj = R̄(τ, λj) +
∫
∂τ
κGhu

n
h · ndl, j = 1, 2. Since P1, P2 and P3 are three

different vertices of τ = 4P1P2P3, linear system (34) admits a unique solution.
Noting that the coefficient matrix of (34) is time independent, so we can calculate it
independently and only once. After these preparations, the implementation process
can be summarized as the following algorithm.

Algorithm 4.1. Suppose unh has computed by the scheme (25), we design the con-

tinuous local-conserving flux by the following steps.
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Step 1. Compute the continuous gradient Ghu
n
h by the gradient recovery technique.

Step 2. For all τ ∈ Th, compute the coefficient matrix of (34).
Step 3. For all τ ∈ Th and for all t = tn, compute RHS1 and RHS2 in (34).
Step 4. Solve the linear system (34).
Step 5. Calculate p̂nh by (31).

Since the time accuracy of the backward Euler scheme is O(∆t), p̃nh satisfies the
following convergence property

‖p(·, tn)− p̃nh‖0 . ∆t+ h.(35)

We note that the implementation of Algorithm 4.1 does not depend on time
levels or element numbers, so we can compute in parallel for both time levels and
elements. In summary, the implementation of Algorithm 4.1 only needs to solve a
2 × 2 linear system in each element and can be embedded into the existing finite
element solver. And Algorithm 4.1 can be implemented in parallel on a mainframe
computer with very little computation time.

Then to implement the post-processing technique presented in subsection 3.2,

we post-process unh to ûnh such that the associated (Ûn
P ; F̂

n
P ) satisfies (27). That

is, we will show how to solve the ordinary differential equations (23). After time
discretization, this can be reduced to solve the discrete form of (23). In details, in
each element, we construct the finite-volume-element-like solution

ûnh = unh + λ1λ2λ3

3∑

j=1

cnj λj ,(36)

where cn1 , c
n
2 and cn3 are constants satisfiying

∫

VPi
∩τ

∂̄tû
n
hdx−

∫

(∂VPi
)∩τ

κ∇ûnh · ndl = S̄(τ, λi),(37)

where

S̄(τ, λi) =

∫

τ

[∂̄tu
n
hλi − pnh∇λi + f(tn)(λ

∗
i − λi)]dx−

∫

∂τ

{pnh} · n(λ
∗
i − λi)dl.

From (37), we obtain the discrete form of (23)

(Aτ +∆tDτ )c
n
τ = ∆tbn

τ +Aτc
n−1
τ ,(38)

where cnτ = (cn1 , c
n
2 , c

n
3 )

T and bn
τ = (bn1 , b

n
2 , b

n
3 )

T with

bni = S̄(τ, λi)− (

∫

VPi
∩τ

∂̄tu
n
hdx+

∫

(∂VPi
)∩τ

pnh · ndl), i = 1, 2, 3.

It can be seen from (20) that Aτ is a positive definite matrix, thus the eigenvalues
of Aτ are positive. When the time step ∆t is small enough, the eigenvalues of
Aτ + ∆tDτ are also positive. Therefore the coefficient matrix of (38) is positive
definite and the linear system (38) admits a unique solution. From (20) and (21),
we note that the matrix Aτ and ∆tDτ are independent of time levels, so we only
need to calculate the coefficient matrix of (38) once.

The post-processing process can be summarize by the following algorithm.

Algorithm 4.2. Suppose unh has computed by the scheme (25), we design the finite-

volume-element-like solution by the following steps.

Step 1. At t = 0, compute the initial value cτ (0) by (18).
Step 2. For all τ ∈ Th, compute the coefficient matrix of (38).
Step 3. At t = tn, for all τ ∈ Th, compute the vector bn

τ .
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Step 4. Solve the linear system (38).
Step 5. Calculate ûnh by (36).

Notice that, in Algorithm 4.2, at t = tn, we only need to solve a 3 × 3 linear
system in each element. We also note that the linear system (38) of each element
are independent of each other, so we can solve them in parallel to save computing
time, which is similar to Algorithm 4.1. Thus both Algorithm 4.1 and 4.2 can be
implemented in a parallel environment and require very little computation cost.
And the computation complex of Algorithm 4.1 and 4.2 is proportional to the time
steps and the number of elements.

To close this section, we would also like to mention that our parallel programs do
not depend on the discrete scheme selection. Algorithm 4.1 and 4.2 can be easily
extended to other fully-discrete schemes. For example, Crank-Nicolson scheme, we
only need to replace Fn

P and Fn
P in (27) by (Fn

P + Fn−1
P )/2 and (Fn

P + Fn−1
P )/2,

respectively. That is, we post-process the Crank-Nicolson FEM solution such that
satisfies the following conservation law

Un
P − Un−1

P

∆t
+

Fn
P + Fn−1

P

2
=
Fn
P + Fn−1

P

2
, ∀P ∈ N̊h.(39)

Since the time accuracy of the Crank-Nicolson scheme is O(∆t2), the corresponding
conservative flux p̂nh satisfies the following convergence propery

‖p(·, tn)− p̂nh‖0 . ∆t2 + h.(40)

5. Numerical Experiments

In the section, we will demonstrate the efficiency of our post-processing ap-
proaches proposed in Section 4 with a problem. Here we consider (1) with Ω =
[0, 1]× [0, 1], κ(x) = x1 + x2 + 1 and

f = e(−log2)t{[2π2(x1 + x2 + 1)− log2] sinπx1 sinπx2

−π(cos πx1 sinπx2 + sinπx1 cosπx2)},

which admits an exact solution u = e(−log2)t sinπx1 sinπx2. The domain Ω is
uniformly divided by triangles.

To present the experimental results, we introduce the following notations:

L2
uh

= ‖u(·, tn)− unh‖0, H1
uh

= ‖u(·, tn)− unh‖1,

to represent errors of unh under L2 norm and H1 norm, respectively.
First, we implement Algorithm 4.1. In this case, we choose ∆t = h2 and T = 1

is the final time. In fact, we can take a larger time step. And we choose such a
small time step is to make sure that time errors do not affect convergence orders
of spatial errors. In the Table 1, we list the errors and convergence orders of ∇unh,
Ghu

n
h and p̃nh under L2 norm, respectively. In the seventh column of Table 1, we

find that the convergence order of L2
p̃h

is 1, which confirms (35) in the theory.

Secondly, we implement Algorithm 4.2. In this case, we choose ∆t = 0.05h2

and T = 0.1 is the final time. We first compare the errors of the post-processed
finite-volume-element-like solution with the FEM solution. From the numerical
results presented in the Table 2, we find that both the errors under L2 norm and
H1 norm of the post-processed finite-volume-element-like solution are comparable
to the finite element solution’s and both have optimal convergence rates.

Then we verify that the post-processed finite-volume-element-like solution satis-
fies conservation law (27) and the finite element solution satisfies the almost local
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Table 1. Numerical results of Algorithm 4.1.

1/h L2
∇uh

Order L2
Ghuh

Order L2
p̃h

Order

2 0.8932 0.8725 1.2090
4 0.4401 1.02 0.3813 1.19 0.5704 1.08
8 0.2188 1.01 0.1083 1.82 0.2015 1.50
16 0.1091 1.00 0.0276 1.97 0.0844 1.26
32 0.0545 1.00 0.0069 2.00 0.0400 1.08
64 0.0273 1.00 0.0017 2.02 0.0197 1.02
128 0.0136 1.01 4.26e-4 2.00 0.0098 1.01

Table 2. Numerical results of Algorithm 4.2.

1/h L2
uh

Order L2
ûh

Order H1
uh

Order H1
ûh

Order

2 0.2182 0.2160 1.5192 1.5279
4 0.0642 1.77 0.0640 1.75 0.8375 0.86 0.8475 0.85
8 0.0167 1.94 0.0167 1.94 0.4295 0.96 0.4309 0.98
16 0.0042 1.99 0.0042 1.99 0.2161 0.99 0.2163 0.99
32 0.0011 1.93 0.0011 1.93 0.1082 1.00 0.1083 1.00
64 2.65e-4 2.05 2.65e-4 2.05 0.0541 1.00 0.0541 1.00
128 6.54e-5 2.02 6.54e-5 2.02 0.0271 1.00 0.0271 1.00
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Figure 2. Errors of conservation law: Figure 2(a) is correspond-
ing to the FEM solution, Figure 2(b) is corresponding to the post-
processed finite-volume-element-like solution.

conservation property (7). For the control volume VP , the error of conservation law
is defined as

EVP
(wn

h ) =

∫

VP

f(tn)dx−

∫

VP

∂̄tw
n
hdx+

∫

∂VP

κ∇wn
h · ndl, wn

h ∈ Vh,

the summation of these errors is

ES(w
n
h) =

∑

P∈N̊h

|EVP
(wn

h)|.
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The Figure 2(a) and 2(b) show errors of conservation law of the FEM solution and
the post-processed finite-volume-element-like solution, respectively. The Figure 3
depict the summation of errors of conservation law of the FEM solution. The
corresponding mesh size is h = 1/32. We note that local conservation errors of the
FEM solution are generally not 0. And the summation of these errors converges
with order 1.80, which is much better than the order 1 in theory. The order of
magnitude of the local conservation error of the post-processed solution is 10−15,
very close to 0, which can be attributed to the errors of numerical integrations and
machine accuracy. Therefore, the error of conservation law of the post-processed
finite-volume-element-like solution can be view as 0 and the post-processed finite-
volume-element-like solution dose satisfy local conservation law.

2 4 8 16 32 64 128
1/h

10-4

10-3

10-2

10-1

100

E
rr

or
s

Figure 3. Summation of errors of conservation law.

Thirdly, we post-process the Crank-Nicolson FEM solution unh to derive the
global continuous flux satisfying the conservation law (39). Due to the Crank-
Nicolson scheme has 2-order time accuracy, we choose ∆t = 0.1h. The final time
is T = 1. From the numerical results presented in Table 3, we find that the
convergence order of L2

p̃h
is 1, which is also consistent with (40) in the theory.

Table 3. Numerical results of global continuous fluxes for post-
processing Crank-Nicolson FEM solutions.

1/h L2
∇uh

Order L2
Ghuh

Order L2
p̃h

Order

2 0.7779 0.7667 1.2896
4 0.4268 0.87 0.3847 0.99 0.7071 0.87
8 0.2179 0.97 0.1148 1.74 0.2698 1.39
16 0.1093 1.00 0.0304 1.92 0.1178 1.20
32 0.0546 1.00 0.0082 1.89 0.0565 1.06
64 0.0273 1.00 0.0023 1.83 0.0279 1.02
128 0.0136 1.01 6.23e-4 1.91 0.0139 1.01

From the numerical results presented in the figures and the tables above, we
have verified the theoretical results in the previous sections numerically.

6. Concluding remarks

We extend two kinds of post-processing techniques to parabolic equations to
derive globally continuous flux fields and finite-volume-element-like solutions. The
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post-processing is performed by adding appropriate bubble functions to the post-
processed PPR-type gradient or the FEM solution. The procedures are indepen-
dently on each element and so it can be calculated in parallel. Through these
post-processing procedures, the derived flux fields and the finite-volume-element-
like solutions both satisfy the local conservation law and have optimal convergence
rates. The techniques presented here provid a better option to produce local con-
servation flux with high accuracy and small computational cost.

In future, we expect to extend our post-processing techniques to other types of
dual mesh, such as primal meshes and nested dual meshes, and to other problems
such as 3-dimensional parabolic equations.
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