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MODIFYING THE SPLIT-STEP θ-METHOD WITH

HARMONIC-MEAN TERM FOR STOCHASTIC DIFFERENTIAL

EQUATIONS

KAZEM NOURI, HASSAN RANJBAR AND JUAN CARLOS CORTÉS LÓPEZ

Abstract. In this paper, we design a class of general split-step methods for solving Itô sto-
chastic differential systems, in which the drift or deterministic increment function can be taken
from special ordinary differential equations solver, based on the harmonic-mean. This method is
justified to have a strong convergence order of 1

2
. Further, we investigate mean-square stability

of the proposed method for linear scalar stochastic differential equation. Finally, some examples
are included to demonstrate the validity and efficiency of the introduced scheme.
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strong convergence, mean-square stability.

1. Introduction

Many phenomena in various branches of science like physics, chemistry and en-
gineering can be modeled more efficiently by the stochastic differential equations
(SDEs) [3,5,6,15]. Since analytical solutions of SDEs are generally not available, we
are forced to use numerical methods that give approximated solutions [8,9,13,15,21,
25,29,40]. First attempt in this direction was made by Maruyama [17], who estab-
lished the well-known Euler-Maruyama (EM) method, then Milstein [18] presented
an important numerical scheme with faster convergence than EM method [9,10,35].
Based on EM and Milstein methods, many numerical schemes have been presented
and developed later, see for example [2, 11, 12, 19, 22, 23, 30, 36, 37].
In [24], Platen and Wagner proposed a stochastic generalization of the Taylor for-
mula for Itô diffusions. This generalization, called the Itô-Taylor expansions, was
based upon the use of multiple stochastic integrals. The Itô-Taylor expansions are
characterized by the choice of multiple integrals which appear in them. Many nu-
merical methods based on Itô-Taylor expansions have been presented for simulating
the approximate solutions to SDEs [15,20]. In this paper we will consider numerical
methods for strong solution of Itô stochastic differential systems of the form

(1) dX(t) = f(X(t))dt+

m
∑

j=1

gj(X(t))dBj(t), X(t0) = X0, t ∈ [t0, T ],

where X ∈ Rd, f : Rd → Rd, is a drift vector, g = (g1, . . . , gm) : Rd → Rd×m is
a diffusion matrix and B = (B1, . . . , Bm)T is an m–dimensional Brownian motion
process. Similarly to contributions [8, 25, 34], we design and analyze the strong
convergence of a class of general split-step methods for solving the Itô stochastic
differential system (1).
Nowadays, stability is judged better to account the efficiency of numerical methods
for solving SDEs. Several kinds of these stabilities have been proposed in [13,14,16].
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Throughout this paper the so-called mean-square (MS) stability will be considered.
This kind of stability, which is based on the second statistical moment of the (exact
or numerical) solution, has been considered in the literature so far [4, 7, 26, 33, 39].
In order to discuss mean-square stability properties of our proposed method, we
will focus on the special linear scalar Itô test equation

(2) dX(t) = aX(t)dt+ bX(t)dB(t), t ≥ t0, X(t0) = X0,

where a, b ∈ C and X0 6= 0 are constants. For numerical step size h and a, b ∈ R,
Saito and Mitsui [26] plot MS-stability region in the (h, k)-plane, with h = ah,

k = − b2

a . Then, Higham [11] performed the analysis in the (x, y)-plane with x = ah,

y = b2h, which has been accepted by researchers for presenting MS-stability domain
of numerical stochastic methods [4,7,11,33]. Moreover, some MS-stability domains

have been plotted with x = ah, y = b
√
h and a, b ∈ R (see [8, 30, 34, 37, 39]).

The paper is organized as follows. Section 2 is devoted to introducing the proposed
method. Convergence properties of the method are discussed in Section 3. Mean-
square stability properties and numerical results of the method are reported in
Sections 4 and 5, respectively.

2. General split-step method

For solving stochastic differential system (1), thereupon we present general split-
step methods, based on EM numerical scheme, of the form











Y k = Yk + hϕ(Yk, Y k),

Yk+1 = Y k +

m
∑

j=1

gj(Y k)∆B
j
k,

(3)

where ϕ(Yk, Y k) is an increment function of the deterministic ordinary differential
equation (ODE) solver. This idea was first presented by Higham in [12], as a
modification of the classical EM method, which is usually referred to as split-step
methods. This approach is a class of fully implicit methods which allows us the
incorporation of implicitness in the stochastic part of the system with relatively
little additional cost. Then, Wang and Li in [36] presented two types of split-step
methods, drifting split-step Euler and diffused split-step Euler methods, for SDEs
by a single noise term. Ding et al. [4] have analysed the split-step θ-methods for
solving nonlinear non-autonomous SDEs. Guo et al. in [7] improved split-step θ-
methods for solving SDEs systems by a single noise term. Recently, error corrected
EM method, which is constructed by adding an error correction term to the EM
method, was introduced in [39].
Instead of using the above methods on the increment function, we replace them
by a method based on different means to solve ODEs. In this paper, based on the
concept of averaging the harmonic-mean functional [27, 38], we consider the ODE
solver in the form,

(4) ϕ(Yk, Y k) = (1− θ)f(Y k) + 2θ
(

f−1(Yk) + f−1(Y k)
)−1

, θ ∈ [0, 1].

Here f−1(·) = 1
f(·) and we assume that f(Yk) + f(Y k) 6= 0. The choice θ = 0

and m = 1 becomes the method introduced in [12]. Note that by inserting ODEs
solver harmonic-mean θ (HMT) (4) into general split-step method (3), we have the
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following split-step harmonic-mean θ–method (SSHMT method)

Y k = Yk + h
(

(1− θ)f(Y k) + 2θ
(

f−1(Yk) + f−1(Y k)
)−1
)

,(5a)

Yk+1 = Y k +

m
∑

j=1

gj(Y k)∆B
j
k,(5b)

where k = 0, 1, 2, . . . , N , θ ∈ [0, 1], Y0 = X0, Yk ≈ X(tk), and for k = 1, 2, . . . , N

the constant step size h is defined as h = tk − tk−1, and each ∆Bj
k = Bj

tk − Bj
tk−1

are independent N (0, h)–distributed Gaussian random variables of zero mean and
variance h > 0.

Analogously to [4,7,8,12,25,34,37], numerical method (5) is implicit. Then, Y k

needs to be computed in order to determine the intermediate approximation Yk.
The zero of nonlinear equation (5a) in each time step is computed by the Newton’s
iterative method, approximately.

In the following, we introduce an assumption that will be used throughout our
discussion.

Assumption 2.1. The functions f and gj, j = 1, . . . ,m, in stochastic differential
system (1) satisfy the Lipschitz condition

(6) |f(x)− f(y)|2 ∨
m
∑

j=1

|gj(x)− gj(y)|2 ≤ K1|x− y|2,

and linear growth bounds

(7) |f(x)|2 ∨
m
∑

j=1

|gj(x)|2 ≤ K2(1 + |x|2),

for all real x, y ∈ Rd. Here, K1 and K2 are positive constants, and ∨ is the maximal
operator.

Theorem 2.2. ( [1]) Suppose that G : Rd → R
d is continuous and there exists a

positive constant C such that

〈G(x1)−G(x2), x1 − x2〉 ≥ C|x1 − x2|2,

for all x1, x2 ∈ Rd. Then G is a homeomorphism with Lipschitz continuous inverse,
in particular

∣

∣G−1(y1)−G−1(y2)
∣

∣ ≤ 1
C |y1 − y2|,

for all y1, y2 ∈ Rd.

Similar to [4, 12], for study on the existence and uniqueness of SSHMT method
(5), we prove the following lemma.

Lemma 2.3. Let us assume that Assumption 2.1 and Theorem 2.2 hold, and sup-

pose that for 0 ≤ θ ≤ 1, h <
(

(1− θ)
√K1 +

2θ
C

)−1
. Then for every x, y ∈ Rd,

implicit equation (5a) admits a unique solution.

Proof. Writing (5a) as

x = F (x)

= y + h
(

(1− θ)f(x) + 2θ
(

f−1(x) + f−1(y)
)−1
)

.
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Observing that for u, v ∈ Rd,

|F (u)− F (v)| ≤ h

(

(1− θ)|f(u)− f(v)|

+2θ
∣

∣

∣

(

f−1(u) + f−1(y)
)−1 −

(

f−1(v) + f−1(y)
)−1
∣

∣

∣

)

≤ h
(

(1− θ)
√K1 +

2θ
C

)

|u− v|,

to obtain the above relation, we set G(y1) = f−1(u) + f−1(y) and G(y2) =
f−1(v) + f−1(y) in Theorem 2.2. Then the result follows from the classical Ba-
nach contraction mapping theorem [31]. �

3. Convergence properties

In this section, we discuss the convergence analysis of the SSHMT method (5),
under the Assumption 2.1 on f and gj, j = 1, . . . ,m. We shall prove that this
method has strong convergence of order 1

2 . To measure the strong convergence
order of the SSHMT method derived in this paper, we introduce the following
convergence lemma established in [19, 20] for the global error.

Lemma 3.1. Assume that for a one-step discrete time approximation Y, the local
mean error and mean-square error for all N = 1, 2, . . . , and k = 0, 1, . . . , N − 1
satisfy, respectively, the estimates

(8) |E [Yk+1 −X(tk+1)|Yk = X(tk)]| ≤ K(1 + |Yk|2)1/2hp1 ,

and

(9)
∣

∣

∣
E

[

|Yk+1 −X(tk+1)|2 |Yk = X(tk)
]∣

∣

∣

1/2

≤ K(1 + |Yk|2)1/2hp2 ,

where p2 ≥ 1
2 and p1 ≥ p2 +

1
2 . Then

∣

∣

∣E

[

|Yn −X(tn)|2 |Y0 = X(t0)
]∣

∣

∣

1/2

≤ K(1 + |Y0|2)1/2hp2−1/2,

holds for each n = 0, 1, . . . , N . Here, K is independent of h but dependent on the
length of the time interval T − t0.

The following theorem shows that, under Assumption 2.1, the strong convergence
order of SSHMT method is equal to 1

2 , similar to SST (split-step θ–method) [4] and
SSCT (split-step composite θ-method) [7].

Theorem 3.2. Assume that Lemma 2.3 holds. Also let Yn be the numerical ap-
proximation of X(tn) at time T after n steps with step size h = (T − t0)/N . Under
Assumption 2.1, for a sufficiently small step size,

h < min

{

(

(1 + θ)K
√

2K1

)−1

,

(

(1− θ)
√

K1 +
2θ

C

)−1
}

.

Then, applying the SSHMT method (5) to the stochastic differential system (1), for
all n = 0, 1, 2, . . . , N , one gets

∣

∣

∣E

[

∣

∣Yn −X(tn)
∣

∣

2
∣

∣

∣Y0 = X(t0)
] ∣

∣

∣

1/2

= O(h
1

2 ).
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Proof. A similar proof can be found in [7]. We use the Lipschitz condition (6) and
linear growth bounds (7) of the drift and diffusion functions. At first, we show
that the estimate (8) holds for the SSHMT method with p1 = 2. For the local EM
approximation step

(10) Y EM
k+1 = Y EM

k + hf(Y EM
k ) +

m
∑

j=1

gj(Y
EM
k )∆Bj

k,

one can show that [20],
∣

∣

∣E

[

(

Y EM
k+1 −X(tk+1)

)

∣

∣

∣Y EM
k = X(tk)

] ∣

∣

∣ = O(h2),(11a)
∣

∣

∣E

[

(

Y EM
k+1 −X(tk+1)

)2
∣

∣

∣Y EM
k = X(tk)

] ∣

∣

∣ = O(h2).(11b)

From (11a), we arrive at

(12)

H1 =
∣

∣

∣E

[

(Yk+1 −X(tk+1))
∣

∣

∣Yk = X(tk)
]∣

∣

∣

≤
∣

∣

∣E

[

(

Y EM
k+1 −X(tk+1)

)

∣

∣

∣Y EM
k = X(tk)

]∣

∣

∣

+
∣

∣

∣E

[

(

Yk+1 − Y EM
k+1

)

∣

∣

∣Yk = Y EM
k

]∣

∣

∣

= O(h2) +H2,

being

H2 =
∣

∣

∣E

[

(Yk+1 − Y EM
k+1)

∣

∣

∣Yk = Y EM
k

]∣

∣

∣

=
∣

∣

∣E

[

Yk − Y EM
k + h(1− θ)f(Y k)

+h
(

2θ
(

f−1(Yk) + f−1(Y k)
)−1 − f(Y EM

k )
)

+
∑m

j=1 ∆B
j
k

(

gj(Y k)− gj(Y
EM
k )

)

∣

∣

∣Yk = Y EM
k

]∣

∣

∣

= h
∣

∣

∣
(1− θ)f(Y k) + 2θ

(

f−1(Yk) + f−1(Y k)
)−1 − f(Yk)

∣

∣

∣

= h
|(1− θ)f(Y k) + f(Yk)|

|f(Y k) + f(Yk)|
|f(Y k)− f(Yk)|

where we have used that E[∆Bj
k] = 0, 1 ≤ j ≤ m. For sufficiently large K > 0, we

get

H2 ≤ (1 + θ)Kh
∣

∣f(Y k)− f(Yk)
∣

∣ ,

from Lipschitz condition (6), we have

(13) H2 ≤ (1 + θ)hK
√

K1

∣

∣Y k − Yk
∣

∣ .

Furthermore, from (5a) and the previous process to obtain the bound (13) of H2,
one gets

(14)
|Y k − Yk| ≤ h

|(1− θ)f(Y k) + f(Yk)|
|f(Y k) + f(Yk)|

|f(Y k)− f(Yk)|+ h|f(Yk)|
≤ (1 + θ)Kh|f(Y k)− f(Yk)|+ h|f(Yk)|.

Now, considering (6) and (7) one follows

|Y k − Yk| ≤ (1 + θ)K
√

K1h|Y k − Yk|+ h
√

K2(1 + |Yk|2)1/2,
and thus

|Y k − Yk|
(

1− (1 + θ)K
√

K1h
)

≤ h
√

K2(1 + |Yk|2)1/2.
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Since by hypothesis 1 − 2(1 + θ)2K2K1h
2 > 0, hence 1 − (1 + θ)K

√K1h > 0, one
gets

(15) |Y k − Yk| ≤
h
√K2(1 + |Yk|2)1/2
1− (1 + θ)K

√K1h
.

Accordingly, from (13) and (15), one obtains

(16) H2 ≤ h2
(1 + θ)K

√
K1K2(1 + |Yk|2)1/2

1− (1 + θ)K
√K1h

= O(h2).

Therefore, by (12) and (16) one concludes that

H1 =
∣

∣E
[(

Yk+1 −X(tk+1))|Yk = X(tk)
]∣

∣

= O(h2).

Consequently, the estimate with p1 = 2 in Lemma 3.1 is satisfied for the SSHMT
method.
Next, we prove formula (9) for the local mean-square error to the SSHMT method
for k = 0, 1, 2, . . . , N − 1. First, let us apply inequality (a + b)2 ≤ 2a2 + 2b2 with
(11b), this leads

(17)

H3 = E

[

|Yk+1 −X(tk+1)|2
∣

∣

∣
Yk = X(tk)

]

≤ 2E
[

∣

∣Y EM
k+1 −X(tk+1)

∣

∣

2
∣

∣

∣Y EM
k = X(tk)

]

+2E
[

∣

∣Yk+1 − Y EM
k+1

∣

∣

2
∣

∣

∣Yk = Y EM
k

]

≤ O(h2) + 2H4,

being

(18)

H4 = E

[

∣

∣Yk+1 − Y EM
k+1

∣

∣

2
∣

∣

∣Yk = Y EM
k

]

= E

[∣

∣

∣h(1− θ)f(Y k) + h
(

2θ
(

f−1(Yk) + f−1(Y k)
)−1 − f(Yk)

)

+

m
∑

j=1

∆Bj
k

(

gj(Y k)− gj(Y
EM
k )

)

∣

∣

∣

2∣
∣

∣Yk = Y EM
k

]

= h2
∣

∣

∣(1 − θ)f(Y k) + 2θ
(

f−1(Yk) + f−1(Y k)
)−1 − f(Yk)

∣

∣

∣

2

+h

m
∑

j=1

∣

∣gj(Y k)− gj(Yk)
∣

∣

2

= h2
|(1− θ)f(Y k) + f(Yk)|2

|f(Y k) + f(Yk)|2
|f(Y k)− f(Yk)|2

+h

m
∑

j=1

∣

∣gj(Y k)− gj(Yk)
∣

∣

2

where we have used that E[∆Bj
k] = 0 and

E
[

∆Bl
k∆B

r
k

]

=

{

h, if l = r,
0, if l 6= r.
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Now, using sufficiently large K > 0 and (6) for the (18)

(19)

H4 = E

[

∣

∣Yk+1 − Y EM
k+1

∣

∣

2
∣

∣

∣Yk = Y EM
k

]

≤ (1 + θ)2K2h2|f(Y k)− f(Yk)|2 + h

m
∑

j=1

∣

∣gj(Y k)− gj(Yk)
∣

∣

2

≤ h(1 + h(1 + θ)2K2)K1

∣

∣Y k − Yk
∣

∣

2
.

Also, from (14) one gets

|Y k − Yk|2 ≤
(

(1 + θ)Kh|f(Y k)− f(Yk)|+ h|f(Yk)|
)2
,

hence applying (6) and (7) with inequality (a+ b)2 ≤ 2a2 + 2b2, one follows that

|Y k − Yk|2 ≤ 2(1 + θ)2K2K1h
2
∣

∣Y k − Yk
∣

∣

2
+ 2h2|f(Yk)|2

≤ 2(1 + θ)2K2K1h
2|Y k − Yk|2 + 2h2K2(1 + |Yk|2),

or equivalently
(

1− 2(1 + θ)2K2K1h
2
)

|Y k − Yk|2 ≤ 2h2K2(1 + |Yk|2),

(20) |Y k − Yk|2 ≤ 2h2K2(1 + |Yk|2)
1− 2(1 + θ)2K2K1h2

,

where in the last step we have used the hypothesis 1 − 2(1 + θ)2K2K1h
2 > 0.

Substituting this inequality into (19), one obtains

H4 ≤ 2h3(1 + h(1 + θ)2K2)K1K2(1 + |Yk|2)
1− 2(1 + θ)2K2K1h2

= O(h3).(21)

Finally, applying (21) in (17) means that

H3 = E

[

|Yk+1 −X(tk+1)|2
∣

∣

∣Yk = X(tk)
]

= O(h2).

We choose in Lemma 3.1 the exponent p2 = 1 together with p1 = 2 and apply it to
finally prove the strong order p = p2 − 1

2 = 1
2 of the SSHMT method. �

4. Mean-square stability analysis

The exact solution of (2) is given by

(22) X(t) = X0 exp
((

a− 1
2b

2
)

t+ bB(t)
)

.

This solution is said to be mean-square stable if limt→∞ E
[

|X(t)|2
]

= 0. It is
known that the mean-square stability for (22) is equivalent to [11, 26, 28],

(23) <(a) + 1
2 |b|2 < 0,

where <(a) denotes the real part of the complex number a. In the following we
assume a ∈ R, hence <(a) = a and from (23), a < 0 [26]. When the numerical
method is applied to the test equation (2) with f(Y, t) = aY , g(Y, t) = bY , the one
step difference equation

(24) Yk+1 = RSSHMT (a, b, h, ξk)Yk,
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is obtained, where for k = 0, 1, . . . , N , ξk = ∆Bk√
h

∼ N (0, 1). For this purpose, from

(5a), we have

Y k = Yk + h
(

(1− θ)aY k + 2θ (aYk)(aY k)

aYk+aY k

)

.

By multiplying a(Yk + Y k) 6= 0 in both sides of the above equation, we obtain

(1− (1− θ)ah)Y
2

k − (1 + θ)ahYkY k − Y 2
k = 0,

and thus

Y k =
(1+θ)ah±

√
(1+θ)2a2h2+4(1−(1−θ)ah)

2(1−(1−θ)ah) Yk.

Also, from (5b) we can write

Yk+1 = Y k + bY k

√
hξk

= (1 + b
√
hξk)

(1+θ)ah±
√

(1+θ)2a2h2+4(1−(1−θ)ah)

2(1−(1−θ)ah) Yk,

accordingly, we achieve

(25) RSSHMT±(a, b, h, ξk) =
(1+θ)ah±

√
((1+θ)h)2a2+4(1−(1−θ)ah)

2(1−(1−θ)ah) (1 + b
√
hξk).

Definition 4.1. ( [26]) The numerical method is said to be MS-stable if

Rmethod(a, b, h) = E[R2
method(a, b, h, ξk)] < 1.

In the above definition, Rmethod(a, b, h) is called MS-stability function and the
set DMS = {(a, b) ∈ C×C : Rmethod(a, b, h) < 1} is called the MS-stability domain
of the numerical method [33].
Now, by using relation (25) and Definition 4.1, we obtain stability domain of the
SSHMT method by restricting our attention on b ∈ R and a < 0, i.e. condition

(26)
RSSHMT±(a, b, h) = E[R2

SSHMT±(a, b, h, ξk)]

=

(

(1+θ)ah±
√

(1+θ)2h2a2+4(1−(1−θ)ah)
)

2

(b2h+1)
4(1−(1−θ)ah)2 < 1,

where we have used that E[ξk] = 0 and E[ξ2k] = 1.

Theorem 4.2. Let us assume that condition (23) holds, 0 ≤ θ ≤ 1 and step size
h > 0, then the SSHMT method (5) for the SDE (22) is MS-stable, if positive sense
of condition (26) holds (i.e. RSSHMT+(a, b, h) < 1).

Proof. Let us introduce the notation

(27) α = (1 + θ)ah, β = 1− (1− θ)ah,

then relation (26) can be written, after some algebraic manipulations, as

(α±
√

α2 + 4β)2(b2h+ 1)

4β2
=

(α ±
√

α2 + 4β)2(α∓
√

α2 + 4β)2(b2h+ 1)

4β2(α∓
√

α2 + 4β)2

=
4(b2h+ 1)

(α ∓
√

α2 + 4β)2
.

As a consequence, by (26) we have to prove

RSSHMT±(a, b, h) =
4(b2h+1)

(

α∓
√

α2+4β
)

2 < 1,

which is equivalent to

(28) ψ±(a, b, h) = 4hb2 − 2α2 + 4(1− θ)ah± 2α
√

α2 + 4β < 0.
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Since a, α < 0, β ≥ 1 and 0 ≤ θ ≤ 1,

α+ 2 ≤
√

α2 + 4β,

and so

(29) 2α
√

α2 + 4β ≤ 2α2 + 4α.

On the other hand, taking into account that 0 ≤ θ ≤ 1, (27) and inequality
√

x2 + y2 ≤ |x|+ |y|, we have

√

α2 + 4β =
√

α2 + 4(1− (1 − θ)ah)

=

√

(

α− 2 1−θ
1+θ

)2

+ 4− 4 (1−θ)2

(1+θ)2

=

√

(

α− 2 1−θ
1+θ

)2

+ 16θ
(1+θ)2

≤
∣

∣

∣α− 2 1−θ
1+θ

∣

∣

∣+ 4
√
θ

1+θ

= −α+ 2 1−θ+2
√
θ

1+θ

≤ −α+ 2 3−θ
1+θ .

Hence, by multiplying by −2α > 0 one gets

(30) −2α
√

α2 + 4β ≤ 2α2 − 4(3− θ)ah.

Eventually, by (27) and substituting (29) and (30) as the positive and negative
senses respectively into (28), we obtain

ψ+(a, b, h) ≤ 4hb2 + 4(1− θ)ah+ 4(1 + θ)ah
= 4h(b2 + 2a)

and

ψ−(a, b, h) ≤ 4hb2 + 4(1− θ)ah− 4(3− θ)ah
= 4h(b2 − 2a).

Finally, by (23), since b2+2a < 0 concludes ψ+(a, b, h) < 0, but 2a−b2 ≤ b2+2a < 0
yields ψ−(a, b, h) ≥ 0, and the proof is complete. �

Corollary 4.3. Given b ∈ R and a < 0 and let x = ah, y = b2h, then using 26 the
SSHMT method is mean-square stable if

y <
4(1− (1− θ)x)2

(

(1 + θ)x+
√

((1 + θ)x)2 + 4(1− (1− θ)x)
)2 − 1.

For the test equation (2), Figure 1 displays the MS-stable regions y < −2x (areas
below dashed borders), and the MS-stable regions of the SSHMT method (areas
below solid borders), with θ = 0, 0.25, 0.5, 0.75, 1.0 and h > 0. It is noted that
the MS-stable regions of the SSHMT method have covered the regions obtained
by condition (23), and the region is wider for the greater value of θ. While, SST
method is MS-stable for θ = 1.0 and h > 0, see Theorem 4.1 in [4] for more details.
Also, from Theorem 4 in [7], we can found that SSCT method is MS-stable for
1
2 ≤ θ = λ ≤ 1 and h > 0.
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2

Figure 1. The MS-stability regions (areas below dashed bor-
ders), and the MS-stability regions of the SSHMT method for
θ = 0.0, 0.25, 0.5, 0.75, 1.0 (from lighter to darker areas) of the test
equation (2).

5. Numerical results

In this section numerical results are reported to confirm the efficiency and supe-
riority of the SSHMT method against other available methods that will be specified

in the subsequent discussion. If Y
(i)
N and X

(i)
tN denote the numerical solutions and

the exact solution at step point tN in the i-th simulation, respectively, then accu-
racy and convergence properties of the EM, SSHMT, SST and SSCT methods will
be measured by mean absolute and mean square errors defined by

(31) εMA =
1

K

K
∑

i=1

|Y (i)
N −X

(i)
tN |,

(32) εMS =

(

1

K

K
∑

i=1

(

Y
(i)
N −X

(i)
tN

)2
)

1

2

,

respectively. In simulations of examples 5.2–5.4, we assume that K = 5000.

Example 5.1. Consider the following scalar test equation

(33) dX(t) = aX(t)dt+

m
∑

j=1

bjX(t)dBj(t), X0 = 1.

with exact solution

X(t) = X0 exp







a− 1
2

m
∑

j=1

b2j



 t+

m
∑

j=1

bjB
j(t)



 .

We use two groups of parameters, as follows

• Case I: a = −b1 = − 1
2 (hence m = 1 in (33)), [4, 34]

• Case II: a = −1.5, b1 = 1, b2 = b3 = 0.1, b4 = b5 = −0.5 (hence m = 5 in
(33)),

to demonstrate the strong convergence rates of the SSHMT and SST [4] methods
with θ = 0.1, and SSCT method [7] with θ = λ = 0.1 at the terminal time T =

Nh = 1. Figure 2 shows a log-log plot of the sample average approximation |Y (i)
N −
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X
(i)
tN | against h, based on the 1000 different discretized Brownian paths over [0, 1]

with the step size δt = 2−9. For each realization, we have applied the SSHMT,
SST and SSCT methods with five different step sizes h = 2j−1δt for 1 ≤ j ≤ 5.
A reference line of slope 1

2 is added in a dashed line type. We can see that this is

consistent with the result that strong error is arbitrarily close to order 1
2 .
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(b) Case II

Figure 2. The convergence rates of the SSHMT and SST methods
with θ = 0.1, and the SSCT method with θ = λ = 0.1, for linear
test system (33).

Example 5.2. Consider the SDE [32],

(34) dX(t) =

(

1

3
X

1

3 (t) + 6X
2

3 (t)

)

dt+X
2

3 (t)dW (t),

for initial value X0 = 1, whose exact solution is given by

X(t) =

(

1 + 2t+
W (t)

3

)3

.

In Figure 3 shows the results of the simulations for EM, SST, SSCT and SSHMT
methods at various different parameters θ and λ in the interval t ∈ [0, 1]. From
them, we observe that SSHMT method improves approximations provided by EM,
SST and SSCT methods for different values of θ and λ parameters when parameter
θ tends to 1. Note that SSCT method is SST method if λ = 1 and SST method for
θ = 0 equal EM method. In addition, for h fixed both errors εMA (left of Figure 3)
and εMS (right of Figure 3) decrease as θ tends to 1.

Example 5.3. We apply the SSHMT, SST and SSCT methods to the nonlinear
SDE

(35) dX(t) =
(

α sin(x) − 1
4 sin(2X(t))

)

dt+ cos(X(t))dW (t), X0 = 1,

with exact solution

X(t) = arcsin

(

1− 2
(

1 + exp
(

2
(

αt+W (t) + 1
2 ln

(

1+sin(X0)
1−sin(X0)

))))−1
)

.

Figure 4, shows mean square errors (εMS) of SSHMT, SST and SSCT methods for
α = 0.0, 0.25. As SST method for θ = 0.25, 0.75 and SSCT method for θ = λ =
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Figure 3. Value of the Mean of absolute errors εMA (left) and
mean square errors, εMS (right) of the EM, SST, SSCT and SSHMT
methods applied to the nonlinear SDE (34).
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Figure 4. Value of the mean square error, εMS of the SSHMT,
SST and SSCT methods applied to the nonlinear SDE (35).

0.25, 0.75, the results indicate that the SSHMT method for θ = 0.25, 0.75 has a rate
of convergence of order approximately equal to 1

2 .

Example 5.4. Now we consider the following 2-dimensional linear system [15]

(36)

{

dX(t) = M1X(t)dt+M2X(t)dW (t),
X(0) = (1, 0)T , t ∈ [0, 1],
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Figure 5. Value of the mean square error, εMS of the SSHMT,
SST and SSCT methods applied to the 2-dimensional linear system
(36).
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Figure 6. Numerical simulations of the system (37) by the
SSHMT method (first row) and the EM method (second row).

where M1 =

(

− 1
2 0
0 − 1

2

)

and M2 =

(

0 −1
1 0

)

.

The exact solution of (36) is given by X(t) =
(

cos(W (t)), sin(W (t))
)T

. In Figure

4 we plot mean square error, εMS (32) for SSHMT, SST methods with θ = 0.25, 0.75
and SSCT methods with θ = λ = 0.25, 0.75. As SST and SSCT methods, it is seen
that the strong convergence order of SSHMT method is 1

2 , which is agreement with
the results in Theorem 3.2.
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Figure 7. Numerical simulations of the system (37) by the SST method.

Example 5.5. Finally, we consider the following two-dimensional linear SDE [29],

(37)
dX1(t) = −12X1(t)dt+ 4X2(t)dB(t),
dX2(t) = −12X2(t)dt+ 4X1(t)dB(t),

}

t ∈ [0, 5],
X1(0) = 1,
X2(0) = 1.

For linear system (37), Figures 6-8 illustrate the numerical simulations of the EM,
SSHMT SST and SSCT methods when h = 1

2 . As it can be seen from Figure 6-8,
the SSHMT method gives the stable solution for the system (37), while the EM
method and SST, SSCT method for some parameter θ and λ become the unstable
solutions.

6. Conclusions

In this paper, we introduce a class of general split-step method for solving Itô
stochastic differential systems. The methods of this class are obtained by changing
the drift increment function ϕ(Yk, Y k) which can be taken from special ODE solver,
namely the harmonic-mean θ-method. Also, we have established strong order con-
vergence and mean-square stability properties for presented method. Meantime,
we compared MS-stability region of our method against MS-stability regions of
SST [4] and SSCT [7] methods and showed that SSHMT method is MS-stable for
any θ ∈ [0, 1]. Finally we have shown, through several illustrative examples that
consider one and two-dimensional SDEs, that the proposed methods are valid for
linear and nonlinear SDEs.
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Figure 8. Numerical simulations of the system (37) by the SSCT method.
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