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WEAK GALERKIN METHOD FOR THE HELMHOLTZ

EQUATION WITH DTN BOUNDARY CONDITION

QINGJIE HU1,2, YINNIAN HE1, KUN WANG3

Abstract. In this article, we consider a weak Galerkin finite element method for the two dimen-
sional exterior Helmholtz problem. After introducing a nonlocal boundary condition by means

of the exact Dirichlet to Neumann (DtN) operator for the exterior problem, we prove that the
existence and uniqueness of the weak Galerkin finite element solution for this problem. Then,
applying some projection techniques, we establish a priori error estimate, which include the effect
of truncation of the DtN boundary condition as well as the spatial discretization. Finally, some
numerical examples are presented to confirm the theoretical predictions.
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1. Introduction

We consider the exterior Helmholtz problem:

−∆u− k2u = f inΩc,(1)

u = g onΓ0,(2)

lim
r→+∞

r1/2
(
∂u

∂r
− iku

)
= 0 r = |x|,(3)

where i denotes the imaginary unit and k ∈ R is known as the wave number.
Ω ⊂ R

2, be an open, bounded domain with smooth boundary Γ0, and let Ωc = R
2\Ω

be the unbounded exterior domain in R
2. The equation (3) is known as the standard

Sommerfeld radiation condition.
In order to solve the exterior problem in an infinite domain numerically, it is usual

to limit the computation to a finite domain by introducing an artificial boundary.
The original exterior domain problem reduced to a boundary value problem by
enforcing a boundary condition on the artificial boundary. In [5, 7, 11, 12, 13, 14,
17, 19, 21, 29, 31, 33, 43, 46, 52], the authors developed different numerical methods
for the Helmholtz equation with the lowest order absorbing boundary condition.
However, the lowest order absorbing boundary conditions will lead to large errors
caused by the reflections from the artificial boundary, unless the computational
domain is large. To decrease the errors caused by boundary reflection, several
numerical approaches have been considered. These contain high order absorbing
boundary condition [16], perfectly matched layer [3], and the Dirichlet to Neumann
(DtN) boundary condition [18, 22, 24, 25, 44] and the references therein. The DtN
boundary condition is called exact nonreflecting boundary condition because it
allows waves to propagate outward without producing any spurious reflection from
the artificial boundary. The DtN condition was derived by Keller and Givoili [23],
for the Helmholtz equation when the artificial boundary is a circle or sphere. In
[24], Koyama established a priori error estimates for the DtN finite element method,
including the effects of truncation of the DtN boundary condition and the finite
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element discretization. Hsiao et. al [18] derived for the DtN finite element method
and present numerical results that show optimal convergence in the L2 and H1

norms using conforming piecewise linear finite elements. Kapita and Monk, in [22],
considered an approximate boundary value problem with a truncated DtN series
by the plane wave discontinuous Galerkin method and derived error estimates with
respect to the truncation order of the DtN map and mesh width. In [44], Wang
et. al coupled the DG method and spectral method to solve the DtN boundary
value problem and gave DG-norm and L2 norm errors analysis explicitly with wave
number.

The numerical studies of the Helmholtz equation have been become an extraor-
dinary popular research field in recent years. Many numerical schemes have been
developed and analyzed for the Helmholtz equation, for instance, conforming fi-
nite element method [19, 21], interior penalty discontinuous Galerkin method [11],
continuous interior penalty Galerkin method [46, 52], local discontinuous Galerkin
method [12], hybridizable discontinuous Galerkin method [5, 14], plane wave dis-
continuous Galerkin method [13, 17, 22], weak Galerkin(WG) finite element method
[7, 31, 33, 43], spectral method [29], finite difference method [15, 39, 40, 41, 42],
immersed finite element method [26, 27] and the references therein. Weak Galerkin
finite element methods were first introduced byWang and Ye in [37] for second order
elliptic equations. The main idea behind weak Galerkin method lies in the classical
gradient operator replaced by a discrete weak gradient operator for weak functions
on a partition of the domain. Weak Galerkin methods have been widely used to
solve a variety of partial differential equations[34, 35, 36, 45, 47, 48, 49, 50, 51].
The methods have been applied for solving the Helmholtz equation with the lowest
order absorbing boundary condition in [7, 31, 33, 43]. In [33], due to use of the
RT and BDM elements, the WG finite element methods were limited to classical
finite element partitions. Following the stabilization technique of [38], Mu et. al
developed a new WG method that admits general finite element partitions with a
mix of arbitrary shape of polygons and polyhedrons.

In practical computations, the use of the Fourier series representation of the
DtN operator requires truncating the infinite series at a finite order to obtain an
approximation DtN operator. So in this paper, we firstly investigate the truncating
order of the series. Then, after studying the G̊arding inequality and the unique of
the weak solution, we establish a priori error estimates in the tri-norm and L2 norm
for the exterior Helmholtz problem by using weak Galerkin finite element method,
including the effect of the truncation order and the finite element discretization.
Following the stabilization approach of [38], we also add a parameter-free stabilier
in the weak Galerkin formulation. The present weak Galerkin method is more
flexible in terms of choosing approximation functions and finite element partitions.
What’s more, it is well suited to handling obstacles with complicated geometries
and is easy to handle DtN boundary condition.

An outline of the remainder of the paper follows: In Section 2, we describe the
nonlocal boundary value problem and modified nonlocal boundary value problem.
Section 3 is devoted to a description of weak Galerkin method and algorithm. We
shall design a weak Galerkin formulation for the modified nonlocal boundary value
problem given in (10)–(12) and demonstrate the well-posedness of the formulation.
We present an error equation and the error estimates in Section 4. In Section 5,
we report some numerical results in order to demonstrate the accurate and efficient
of our method. In this section, we consider the first approximation of the DtN
operator. The reason is that, the first approximation will generate a sparse linear
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Figure 1. The sketch of the boundary value problem and the
nonlocal boundary value problem.

system while the DtN operator results a density system. We end in Section 6 with
some conclusions.

2. Nonlocal Boundary Value Problem

To seek approximate solution of problem (1)–(3), we introduce an artificial do-
main ΩR with artificial boundary ΓR = {x ∈ R

2 : |x| = R} enclosing the entire
region Ω (see Figure 1). The artificial domain ΩR is the annular region between Γ0

and ΓR, and Ωc
R = R

2 \ Ω ∪ΩR is the unbounded exterior domain. The problem
(1)–(3) is reduced equivalently to the following nonlocal boundary value problem
[20]:

−∆u− k2u = f inΩR,(4)

u = g onΓ0,(5)

∂u

∂n
= Tu onΓR,(6)

where the Dirichlet to Neumann (DtN) operator T : H
1
2 (ΓR) → H− 1

2 (ΓR), is
defined as

Tϕ =

∞∑

n=0

′ kH
(1)′

n (kR)

πH
(1)
n (kR)

∫ 2π

0

ϕ(R, φ) cos(n(θ − φ))dφ ∀ϕ ∈ H
1
2 (ΓR).(7)

The prime behind the summation means that the first term in the summation is

multiplied by 1/2 and H
(1)
n (·) is the first-kind Hankel function of order n. The

following lemma show the boundedness of the DtN operator [18].

Lemma 2.1. The DtN operator T in (7) is a bounded linear operator from Hs(ΓR)
to Hs−1(ΓR) for any constants s ≥ 1

2 .

The variational formulation of the problem (4)−(6) is as follows: find u ∈
H1(ΩR) and u = g on Γ0 such that

(∇u,∇v)− k2(u, v)− 〈Tu, v〉ΓR
= (f, v) ∀v ∈ H1

0 (ΩR),(8)
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where H1
0 (ΩR) = {v ∈ H1(ΩR), v|Γ0

= 0}. Throughout the paper, we shall use
the standard Sobolev space Hs(D) for any s ≥ 0 [4, 6]. In particular, (·, ·)D and
〈·, ·〉ΓR

are used for L2–inner product on complex valued spaces L2(D) and L2(ΓR).
We use ‖ · ‖D and | · |D to denote the norm and the seminorm in L2(D). When
D = ΩR, we shall drop the subscript D in the norm and inner product notation.
The well–posedness of problem (8) addressed in the following lemma [20, 28].

Lemma 2.2. For every f ∈ L2(ΩR), problem (8) has a unique solution which is

the restriction to ΩR of the solution of problem (4)–(6).

For the practical computations, we need to truncate the infinite series of the
exact DtN operator to obtain an approximate DtN operator written as

TNϕ =

N∑

n=0

′ kH
(1)′

n (kR)

πH
(1)
n (kR)

∫ 2π

0

ϕ(R, φ) cos(n(θ − φ))dφ,(9)

for ∀ϕ ∈ H
1
2 (ΓR). Here, the non-negative integer N is called the truncation order

of the DtN operator. Accordingly, the boundary value problem (4)–(6) is replaced
by a modified nonlocal boundary value problem reads:

−∆u− k2u = f inΩR,(10)

u = g onΓ0,(11)

∂u

∂n
= TNu onΓR.(12)

Clearly, the variational formulation of the modified nonlocal boundary value prob-
lem is: find uN ∈ H1(ΩR) and uN = g on Γ0 such that

(∇uN ,∇v)− k2(uN , v)− 〈TNuN , v〉ΓR
= (f, v) ∀v ∈ H1

0 (ΩR).(13)

The well-posedness of problem (13) can be found in [18].
Next, we recall the estimate for the difference of T and TN in the next lemma

[18]. This estimate will be needed in the error estimates.

Lemma 2.3. Suppose DtN operator T and TN are defined as in (7) and (9),
respectively. Then, for given ϕ ∈ Hs(ΓR), s ∈ R, there holds, for t = 1,

‖(T − TN)ϕ‖Hs−1(ΓR) ≤ c
ε(N,ϕ)

N
‖ϕ‖Hs+1(ΓR),(14)

where c > 0 is a constant dependent on kR but independent of φ and N , and

ε(N,ϕ) =

{
∞∑

n=N+1

(1 + n2)s+1(|an|
2 + |bn|

2)

} 1
2

{
|a0|2

2 +
∞∑
n=1

(1 + n2)s+1(|an|2 + |bn|2)

} 1
2

≤ 1.(15)

is a function of the truncation order N and the function ϕ satisfying ε(N,ϕ) → 0
as N → ∞, and an, bn are Fourier coefficients of ϕ.

3. Weak Galerkin Finite Element Method

Let Th be a quasi uniform and shape regular [38] triangular of the domain ΩR.

Each E ∈ Th has at most one curved edge on ∂ΩR. Let T̂h = ∪{Ê} is a body-

fitted mesh of ΩR, where Ê is the triangle sharing vertices with E. Define Ω̂R =

interior(∪Ê∈T̂h
Ê). The mapping F : ΩR → Ω̂R is C2 smooth on each E ∈ Th and

satisfies F(E) = Ê. Therefore, the partition Th = {E = F−1(Ê) : ∀Ê ∈ T̂h}.
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Denote by Eh the set of all edges in Th, E
0
h = Eh/∂ΩR the set of all interior edges

and ER
h = Eh ∩ ΓR. For any element E ∈ Th, denote by hE the diameter of E, and

h = max
E∈Th

hE . For any e ∈ Eh, denote by he the length of e. For the simplicity of

notation, we shall use c for a generic positive constant independent of h which may
stand for different values at its different occurrences.

For each triangle E, E0 and ∂E denote the interior and boundary of E respec-
tively. For any non-negative integer l ≥ 0, denote Pl(E

0) the set of polynomials
on E0 with degree no more than l, and Pl(e) the set of polynomials on each edge
e ∈ ∂E with degree no more than l. In this paper, we only consider the case of
linear elements, i.e., l = 1. A discrete weak function vh = {v0, vb} refers to a poly-
nomial with two components. The first component v0 can be understood as the
value of vh in E0, and vb represents the value of vh on the edge e, e ∈ ∂E. Next,
we define the weak Galerkin finite element space Vh and V0,h,

Vh = {vh = {v0, vb} : v0|E ∈ P1(E
0), vb|e ∈ P1(e), e ∈ ∂E, E ∈ Th},(16)

V0,h = {vh ∈ Vh, vb|Γ0
= 0}.(17)

We would like to emphasize that any function vh ∈ Vh has a single value vb on each
edge e ∈ Eh and vb may not necessarily be related to the trace of v0 on ∂E. For
any vh ∈ Vh, we define the discrete weak gradient of vh, denote by ∇dvh ∈ [P0(E)]2

on each element E, satisfying the following equation

(∇dvh, q)E = −(v0,∇ · q)E + 〈vb, q · n〉∂E ∀q ∈ [P0(E)]2.(18)

For any uh, vh ∈ Vh, we introduce the following bilinear form:

aNh (uh, vh) =
∑

E∈Th

(∇duh,∇dvh)E + s(uh, vh) + dN (uh, vh)− k2(u0, v0),(19)

where

s(uh, vh) =
∑

E∈Th

h−1
E 〈u0 − ub, v0 − vb〉∂E ,(20)

dN (uh, vh) = −〈TNub, vb〉ΓR
.(21)

The bilinear form s(·, ·) is called stabilizer or smoother.
Then, we arrive at the weak Galerkin finite element formulation: find uh =

{u0, ub} ∈ Vh and ub = Qbg on Γ0 such that

aNh (uh, vh) = (f, v0) ∀vh = {v0, vb} ∈ V0,h,(22)

where Qb is the L2 projection operator from L2(e) onto P1(e). In particular, we
define a seminorm for vh ∈ Vh by

|||vh|||
2 =

∑

E∈Th

‖∇dvh‖
2
E +

∑

E∈Th

h−1
E ‖v0 − vb‖

2
∂E + k2‖vb‖

2
1
2
,ΓR

,(23)

where

‖vh‖
2
1
2
,ΓR

=
|a0|

2

2
+

∞∑

n=1

(1 + n2)
1
2 (|an|

2 + |bn|
2),

where an and bn are Fourier coefficients of vh.
The following lemma derive an analogy of G̊arding’s inequality.

Lemma 3.1. There exist positive constants α and β satisfying

Re{aNh (vh, vh)}+ α‖v0‖
2 ≥ β(|||vh|||

2 + ‖v0‖
2),(24)

for all vh ∈ Vh.
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Proof. Since

aNh (vh, vh) =
∑

E∈Th

(∇dvh,∇dvh)E + s(vh, vh) + dN (vh, vh)− k2(v0, v0)

=
∑

E∈Th

‖∇dvh‖
2
E +

∑

E∈Th

h−1
E ‖v0 − vb‖

2
∂E − k2‖v0‖

2 − 〈TNvb, vb〉ΓR
.(25)

Using the estimate in [18], one has

Re{−〈TNvb, vb〉ΓR
} ≥ −c‖vb‖

2
0,ΓR

.

By the Sobolev embedding theorem, we have

‖vb‖
2
0,ΓR

≤ c‖vb‖
2
1
2
,ΓR

.

Therefore, we can obtain

Re{−〈TNvb, vb〉ΓR
} ≥ −c‖vb‖

2
1
2
,ΓR

.

Substituting the above inequality into (25) yields

Re{aNh (vh, vh)} ≥
∑

E∈Th

‖∇dvh‖
2
E +

∑

E∈Th

h−1
E ‖v0 − vb‖

2
∂E − k2‖v0‖

2 − c‖vb‖
2
1
2
,ΓR

≥ c|||vh|||
2 − k2‖v0‖

2 − c
1

k2
|||vh|||

2 = c(1−
1

k2
)|||vh|||

2 − k2‖v0‖
2.

Then there exist two positive constants α and β such that

Re{aNh (vh, vh)}+ α‖v0‖
2 ≥ β(|||vh|||

2 + ‖v0‖
2).

This completes the proof. �

We end this section with the well-possedness of the weak Galerkin discretization
scheme (22).

Theorem 3.2. The weak Galerkin finite element discretization scheme (22) has a

unique solution in the finite element space Vh.

Proof. Since the weak Galerkin finite element scheme (22) is a linear system, the
well-posedness is equivalent to the uniqueness of the solution. To prove the unique-
ness, let uh,1 and uh,2 be two solutions of scheme (22), then ξ = uh,1 − uh,2 is the
solution of (22) with the condition that f = 0.

Letting vh = ξ in (22), we have

aNh (ξ, ξ) =
∑

E∈Th

‖∇dξ‖
2
E +

∑

E∈Th

h−1
E ‖ξ0 − ξb‖

2
∂E − k2‖ξ0‖

2 − 〈TNξb, ξb〉ΓR
= 0.

(26)

The above equation implies that

k2‖ξ0‖
2 =

∑

E∈Th

‖∇dξ‖
2
E +

∑

E∈Th

h−1
E ‖ξ0 − ξb‖

2
∂E − Re〈TNξb, ξb〉ΓR

,

Im〈TNξb, ξb〉ΓR
= 0.(27)

According to (see Lemma 3.3 in [30])

Re〈TNξb, ξb〉ΓR
≤ 0,(28)

and the boundness of the DtN operator

〈TNξb, ξb〉ΓR
≤ ‖TNξb‖− 1

2
,ΓR

‖ξb‖ 1
2
,ΓR

≤ c‖ξb‖
2
1
2
,ΓR

≤ c
1

k2
|||ξ|||2,
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there exists a constant c > 0 such that

‖ξ0‖
2 ≤

c(1 + 1
k2 )

k2
|||ξ|||2.(29)

Now we have from G̊arding’s inequality (24) of Lemma 3.1 that

Re{aNh (ξ, ξ)}+ α‖ξ0‖
2 ≥ β(|||ξ|||2 + ‖ξ0‖

2).(30)

Thus, it follows from the estimate (29) that

β(|||ξ|||2 + ‖ξ0‖
2) ≤ α‖ξ0‖

2 ≤
cα(1 + 1

k2 )

k2
|||ξ|||2 ≤

β

2
|||ξ|||2,(31)

In view of k > 1, it yields

cα(1 +
1

k2
) ≤

k2β

2
.

Therefore,

|||ξ|||2 + ‖ξ0‖
2 = 0,(32)

which implies that ξ0 = 0 and

|||ξ|||2 =
∑

E∈Th

‖∇dξ‖
2
E +

∑

E∈Th

h−1
E ‖ξ0 − ξb‖

2
∂E +

∑

e∈ER

h

h−1
e ‖ξb‖

2
1
2
,e = 0.

This shows that ξ is a constant and ξb = ξ0|∂E = 0. Thus, ξ = 0 and consequently,
uh,1 = uh,2. This completes the proof. �

4. Error Estimates

In this section, we will establish some error estimates for the weak Galerkin
finite element solution uh arising from (22). First, we define some local projection
operators and then derive some approximation properties which are useful in error
analysis. For each element E ∈ Th, denote by Q0 the L

2 projection from L2(E) onto
P1(E). Similarly, for each edge e ∈ Eh, let Qb be the L2 projection operator from
L2(e) onto P1(e). Denote by Rh the L2 projection onto the local discrete gradient
space [P0(E)]2. What’s more, we define a projection operator Qhv = {Q0v,Qbv} :
H1(ΩR) → Vh for any v ∈ H1(ΩR). Then, on each element E ∈ Th, we have

∇d(Qhω) = Rh∇ω ∀ω ∈ H1(ΩR).(33)

The following lemmas provide some estimates for the projection operators Qh and
Rh [32, 38].

Lemma 4.1. Let Th be a shape regular polygonal finite element partition of the

domain ΩR. Then for any φ ∈ H2(ΩR), we have

∑

E∈Th

‖φ−Q0φ‖
2
E +

∑

E∈Th

h2
E‖∇(φ−Q0φ)‖

2
E ≤ ch4‖φ‖22,(34)

∑

E∈Th

‖∇φ−Rh∇φ‖2E =
∑

E∈Th

‖∇φ−∇d(Qhφ)‖
2
E ≤ ch2‖φ‖22.(35)
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Lemma 4.2. Let Th be a shape regular polygonal finite element partition of the

domain ΩR. Then for any φ ∈ H2(ΩR) and vh = {v0, vb} ∈ Vh, we have
∣∣∣∣∣
∑

E∈Th

h−1
E 〈Q0φ−Qbφ, v0 − vb〉∂E

∣∣∣∣∣ ≤ ch‖φ‖2|||vh|||,(36)

∣∣∣∣∣
∑

E∈Th

〈(∇φ−Rh∇φ) · n, v0 − vb〉∂E

∣∣∣∣∣

=

∣∣∣∣∣
∑

E∈Th

〈(∇φ−∇d(Qhφ)) · n, v0 − vb〉∂E

∣∣∣∣∣

≤ch‖φ‖2|||vh|||.(37)

4.1. Error Equation. Define an error function eh = {e0, eb} = {Q0u−u0, Qbu−
ub} = Qhu− uh. We derive an error equation for eh in the following lemma.

Lemma 4.3. The error function eh satisfies the following equation for all vh =
{v0, vb} ∈ V0,h,

∑

E∈Th

(∇deh,∇dvh)E + s(eh, vh)− k2(e0, v0) + dN (eh, vh)

=
∑

E∈Th

〈(∇u−Rh∇u) · n, v0 − vb〉∂E + s(Qhu, vh) + dN (u, vh)− d(u, vh).(38)

Proof. Testing (4) by v0 with vh = {v0, vb} ∈ V0,h, we have
∑

E∈Th

(∇u,∇v0)E −
∑

E∈Th

〈∇u · n, v0〉∂E − k2(u, v0) = (f, v0).(39)

It follows from (6) that
∑

E∈Th

〈∇u · n, vb〉∂E = 〈∇u · n, vb〉ΓR
= 〈Tu, vb〉ΓR

.(40)

Substituting (40) into (39) gives
∑

E∈Th

(∇u,∇v0)E −
∑

E∈Th

〈∇u · n, v0 − vb〉∂E − k2(u, v0)− 〈TNu, vb〉ΓR

= (f, v0) + 〈(T − TN)u, vb〉ΓR
.(41)

By (33) and the definitions of Qh, Rh and the discrete weak gradient, we have

(∇dQhu,∇dvh)E = (Rh∇u,∇dvh)E

= −(v0,∇ · (Rh∇u))E + 〈vb, (Rh∇u) · n〉∂E

= (∇v0, Rh∇u)E − 〈v0 − vb, (Rh∇u) · n〉∂E

= (∇v0,∇u)E − 〈v0 − vb, (Rh∇u) · n〉∂E .(42)

Combining (41) and (42) yields
∑

E∈Th

(∇dQhu,∇dvh)E − k2(u, v0)− 〈TNu, vb〉ΓR

= (f, v0) +
∑

E∈Th

〈(∇u −Rh∇u) · n, v0 − vb〉∂E + 〈(T − TN)u, vb〉ΓR
.(43)
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Adding
∑

E∈Th

h−1
E 〈Q0u − Qbu, v0 − vb〉∂E on the both sides of the above equation

and using the definitions of Q0 and Qb, we arrive at
∑

E∈Th

(∇dQhu,∇dvh)E +
∑

E∈Th

h−1
E 〈Q0u−Qbu, v0 − vb〉∂E − k2(Q0u, v0)

− 〈Qb(T
Nu), vb〉ΓR

= (f, v0) +
∑

E∈Th

〈(∇u−Rh∇u) · n, v0 − vb〉∂E + 〈(T − TN)u, vb〉ΓR

+
∑

E∈Th

h−1
E 〈Q0u−Qbu, v0 − vb〉∂E .(44)

Therefore, subtracting (22) from (44) leads to
∑

E∈Th

(∇deh,∇dvh)E +
∑

E∈Th

h−1
E 〈e0 − eb, v0 − vb〉∂E − k2(e0, v0)

− 〈TNeb, vb〉ΓR

=
∑

E∈Th

〈(∇u−Rh∇u) · n, v0 − vb〉∂E + 〈(T − TN)u, vb〉ΓR

+
∑

E∈Th

h−1
E 〈Q0u−Qbu, v0 − vb〉∂E ,(45)

where TNeb , Qb(T
Nu)− TNub. This completes the proof. �

4.2. Error Analysis. Using the error equation (38), we now turn to the error
estimate for the weak Galerkin finite element solution.

Theorem 4.4. Let u ∈ H2(ΩR) be the solution of (4)–(6) and uh ∈ Vh be the

solution of scheme (22). Then the error function eh = Qhu − uh satisfies the

following estimate

|||Qhu− uh||| ≤ ck‖e0‖+ ch‖u‖2 + c
ε(N, u)

kN
‖u‖2,(46)

where c > 0 is a constant independent of h and N , and ε(N, u) is a function of the

truncation order N and the function u satisfying ε(N, u) → 0 as N → ∞.

Proof. We first take vh = eh in the error equation (38) yields
∑

E∈Th

‖eh‖
2
E +

∑

E∈Th

h−1
E ‖e0 − eb‖

2
∂E − 〈TNeb, eb〉ΓR

= k2‖e0‖
2 +

∑

E∈Th

〈(∇u −Rh∇u) · n, e0 − eb〉∂E + dN (u, eh)− d(u, eh)

+
∑

E∈Th

h−1
E 〈Q0u−Qbu, e0 − eb〉∂E .(47)

Then, take the real part of the above equation, we have
∑

E∈Th

‖eh‖
2
E +

∑

E∈Th

h−1
E ‖e0 − eb‖

2
∂E − Re〈TNeb, eb〉ΓR

= k2‖e0‖
2 +Re

{ ∑

E∈Th

〈(∇u−Rh∇u) · n, e0 − eb〉∂E

+
∑

E∈Th

h−1
E 〈Q0u−Qbu, e0 − eb〉∂E + dN (u, eh)− d(u, eh)

}
.(48)
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Since (see Lemma 3.3 in [30])

Re〈TNeb, eb〉ΓR
≤ 0,

then, we can deduce as follows

|||eh|||
2 ≤ k2‖e0‖

2 +

∣∣∣∣∣
∑

E∈Th

〈(∇u−Rh∇u) · n, e0 − eb〉∂E

∣∣∣∣∣

+

∣∣∣∣∣
∑

E∈Th

h−1
E 〈Q0u−Qbu, e0 − eb〉∂E

∣∣∣∣∣+
∣∣dN (u, eh)− d(u, eh)

∣∣ .(49)

Next, let us bound the terms on the right hand side of (49) one by one. From the
estimates (36), (37) and Young’s inequality we have

∣∣∣∣∣
∑

E∈Th

h−1
E 〈Q0u−Qbu, e0 − eb〉∂E

∣∣∣∣∣ ≤ ch‖u‖2|||eh||| ≤ ch2‖u‖22 +
1

6
|||eh|||

2,

∣∣∣∣∣
∑

E∈Th

〈(∇u−Rh∇u) · n, e0 − eb〉∂E

∣∣∣∣∣ ≤ ch‖u‖2|||eh||| ≤ ch2‖u‖22 +
1

6
|||eh|||

2.

In view of the trace theorem, there exist a bounded linear operator γ : H1(ΩR) →
H1/2(ΓR) and using the estimate (14) in Lemma 2.3, we get

∣∣dN (u, eh)− d(u, eh)
∣∣ =

∣∣〈(T − TN)γu, eb〉ΓR

∣∣

≤ c‖(T − TN)γu‖− 1
2
,ΓR

‖eb‖ 1
2
,ΓR

≤ c
ε(N, u)

N
‖u‖2‖eb‖ 1

2
,ΓR

≤ c
ε(N, u)

N
‖u‖2

1

k
|||eh|||

≤ c
ε2(N, u)

k2N2
‖u‖22 +

1

6
|||eh|||

2,

where ε(N, u) be defined in (15). Consequently,

|||eh|||
2 ≤ 2k2‖e0‖

2 + ch2‖u‖22 + c
ε2(N, u)

k2N2
‖u‖22.

This completes the proof. �

Next, we analyze the error in the L2 norm by using a duality argument as was
commonly employed in the Galerkin finite element methods.

Theorem 4.5. Let u ∈ H2(ΩR) be the solution of (4)–(6) and uh ∈ Vh be the

solution of scheme (22). If k2h+ kε(N,u)
N < 1, there holds

‖Q0u− u0‖ ≤ ckh2‖u‖2 + c(k +
1

k
+ hN)

ε(N, u)

N2
‖u‖2,(50)

where c > 0 is a constant independent of h and N , and ε(N, u) is a function of the

truncation order N and the function u satisfying ε(N, u) → 0 as N → ∞.



WG FOR HELMHOLTZ EQUATION WITH DTN BOUNDARY CONDITION 653

Proof. Now, we consider the following dual problem of (4)–(6) that seeks ω ∈
C2(ΩR) ∩C1(ΩR) satisfying

−∆ω − k2ω = e0 inΩR,(51)

ω = 0 onΓ0,(52)

∂ω

∂n
= Tω onΓR,(53)

It can be shown that there exists a constant c such that

‖ω‖2 ≤ ck‖e0‖.

By testing (51) with e0, we arrive at

‖e0‖
2 = (−∆ω, e0)− k2(ω, e0)

=
∑

E∈Th

(∇ω,∇e0)E −
∑

e∈E0
h

〈∇ω · n, e0〉e −
∑

e∈ER

h

〈Tω, e0〉e − k2(ω, e0).(54)

By the definition of the discrete weak gradient and the (33), we have

(∇d(Qhω),∇deh)E = (Rh∇ω,∇deh)E = −(∇ · (Rh∇ω), e0)E + 〈(Rh∇ω) · n, eb〉∂E

= (∇e0, Rh∇ω)E − 〈(Rh∇ω) · n, e0 − eb〉∂E

= (∇e0,∇ω)E − 〈(Rh∇ω) · n, e0 − eb〉∂E .(55)

It follows from the error equation (38) that
∑

E∈Th

(∇deh,∇d(Qhω))E + s(eh, Qhω)− k2(e0, ω) + dN (eh, Qbω)

=
∑

E∈Th

〈(∇u −Rh∇u) · n,Q0ω −Qbω〉∂E

+ s(Qhu,Qhω) + dN (u,Qbω)− d(u,Qbω).(56)

Substituting (55) and (56) into (54) gives

‖e0‖
2 =

∑

E∈Th

(∇ω,∇e0)E −
∑

e∈E0
h

〈∇ω · n, e0 − eb〉e −
∑

e∈ER

h

〈Tω, e0〉e − k2(ω, e0)

=
∑

E∈Th

(∇d(Qhω),∇deh)E +
∑

E∈Th

〈(Rh∇ω) · n, e0 − eb〉∂E

−
∑

e∈E0
h

〈∇ω · n, e0 − eb〉e −
∑

e∈ER

h

〈Tω, e0〉e − k2(ω, e0)

=
∑

E∈Th

〈(∇u−Rh∇u) · n,Q0ω −Qbω〉∂E +
∑

e∈ΓR

〈(Rh∇ω) · n, e0 − eb〉e

+
∑

e∈E0
h

〈(Rh∇ω) · n−∇ω · n, e0 − eb〉e + s(Qhu,Qhω)− s(eh, Qhω)

+ dN (u,Qbω)− d(u,Qbω)− dN (eh, Qbω) + d(ω, e0)

=
∑

E∈Th

〈(∇u−Rh∇u) · n,Q0ω −Qbω〉∂E + s(Qhu,Qhω)− s(eh, Qhω)

+
∑

E∈Th

〈(Rh∇ω) · n−∇ω · n, e0 − eb〉∂E + dN (u,Qbω)

− d(u,Qbω)− dN (eh, Qbω) + d(eh, ω).(57)



654 Q. HU, Y. HE AND K. WANG

Next, we bound each term on the right hand side of (57). It follows from the
Cauchy-Schwarz inequality, the definition of Qb ,the trace inequality and the esti-
mate (34) in Lemma 4.1 that

∣∣∣∣∣
∑

E∈Th

〈(∇u−Rh∇u) · n,Q0ω −Qbω〉∂E

∣∣∣∣∣

≤

(
∑

E∈Th

‖∇u−Rh∇u‖2∂E

) 1
2
(
∑

E∈Th

‖Q0ω −Qbω‖
2
∂E

) 1
2

≤ c

(
∑

E∈Th

‖∇u−Rh∇u‖2∂E

) 1
2
(
∑

E∈Th

‖Q0ω − ω‖2∂E

) 1
2

≤ ch2‖u‖2‖ω‖2 ≤ ckh2‖u‖2‖e0‖.(58)

Using the estimates (37) in Lemma 4.2 and (34) in Lemma 4.1, we arrive at

∣∣∣∣∣
∑

E∈Th

〈Rh(∇ω) · n−∇ω · n, e0 − eb〉∂E

∣∣∣∣∣

≤

(
hE

∑

E∈Th

‖∇ω −Rh∇ω‖2∂E

) 1
2
(
∑

E∈Th

h−1
E ‖e0 − eb‖

2
∂E

) 1
2

≤ ch|||eh|||‖ω‖2 ≤ ckh|||eh|||‖e0‖.(59)

Analogously, it follows from the estimates (36) in Lemma 4.2 and (35) in Lemma
4.1, we obtain

|s(eh, Qhω)|

≤

∣∣∣∣∣
∑

E∈Th

h−1
E 〈e0 − eb, Q0ω −Qbω〉

∣∣∣∣∣ =
∣∣∣∣∣
∑

E∈Th

h−1
E 〈e0 − eb, Q0ω − ω〉

∣∣∣∣∣

≤

(
∑

E∈Th

h−1
E ‖e0 − eb‖

2
∂E

) 1
2
(
∑

E∈Th

h−2
E ‖Q0ω − ω‖2∂E + ‖∇(Q0ω − ω)‖2∂E

) 1
2

≤ ch|||eh|||‖ω‖2 ≤ ckh|||eh|||‖e0‖.

(60)

Based on the trace inequality and the estimate (34) in Lemma 4.1, it yields

|s(Qhu,Qhω)| ≤

∣∣∣∣∣
∑

E∈Th

h−1
E 〈Q0u−Qbu,Q0ω −Qbω〉

∣∣∣∣∣

≤

(
∑

E∈Th

h−1
E ‖Q0u− u‖2∂E

) 1
2
(
∑

E∈Th

h−1
E ‖Q0ω − ω‖2∂E

) 1
2

≤ ch2‖u‖2‖ω‖2 ≤ ckh2‖u‖2‖e0‖.(61)

According to the trace theorem, there exist a bounded linear operator γ : H1(ΩR) →
H1/2(ΓR) and using the estimate (14) in Lemma 2.3 and the definition of Qb, we
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can get
∣∣d(ω, eh)− dN (Qbω, eh)

∣∣ =
∣∣〈(T − TN)γω, eb〉

∣∣

≤ c‖(T − TN)γω‖− 1
2
,ΓR

‖eb‖ 1
2
,ΓR

≤ c
ε(N, u)

N
‖ω‖2‖eb‖ 1

2
,ΓR

≤ c
ε(N, u)

kN
‖ω‖2|||eh|||

≤ c
ε(N, u)

N
|||eh|||‖e0‖,(62)

where ε(N, u) be defined in (15). Similarly, we also have

∣∣d(u,Qbω)− dN (u,Qbω)
∣∣ ≤ c

ε(N, u)

N2
‖u‖2‖Qbω‖2

≤ c
ε(N, u)

N2
‖u‖2‖ω‖2

≤ ck
ε(N, u)

N2
‖u‖2‖e0‖.(63)

Substituting (58)–(63) and the estimate (46) into (57), we get

‖e0‖ ≤ c(k2h+
kε(N, u)

N
)‖e0‖+ ckh2‖u‖2 + c(k +

1

k
+ hN)

ε(N, u)

N2
‖u‖2.(64)

Assume that k2h+ kε(N,u)
N < 1, we arrive at

‖e0‖ ≤ ckh2‖u‖2 + c(k +
1

k
+ hN)

ε(N, u)

N2
‖u‖2.(65)

This completes the proof. �

Combining the results of Theorem 4.4 and Theorem 4.5, we have the following
error estimate.

Theorem 4.6. Let u ∈ H2(ΩR) be the solution of (4)–(6) and uh ∈ Vh be the

solution of scheme (22). If k2h+ kε(N,u)
N < 1, there holds

|||Qhu− uh||| ≤ c(k2h+ 1)h‖u‖2 + c(
k2 + 1

N
+

1

2
+ kh)

ε(N, u)

N
‖u‖2,(66)

where c > 0 is a constant independent of h and N , and ε(N, u) is a function of the

truncation order N and the function u satisfying ε(N, u) → 0 as N → ∞.

5. Numerical Experiments

Throughout this section, we consider the following two dimensional Helmholtz
problem,

−∆u− k2u = f inΩR,(67)

u = g onΓ0,(68)

∂u

∂n
= iku+

1

2R
u onΓR,(69)

where (69) is the first order approximation of (6), which is proposed by Feng in
[10], Engquist and Majda in [8, 9], Bayliss, Gunzburger and Turkel in [1, 2]. The
boundaries Γ0 and ΓR are two circles with radius R0 and R respectively, and both
circles share the same center (0, 0). The region ΩR is the annular between Γ0 and
ΓR.
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In this section, we present the numerical results to validate our theoretical results.
Let uh = {u0, ub} be the numerical solution of (22), and u be the solution of (4)–(6).
Let Qhu = {Q0u,Qbu} be the L2 projection of u onto the appropriately defined
spaces. The error for the weak Galerkin solution of (22) shall be measured in three
norms defined as follows:

‖Qhu− uh‖1,h =

(
∑

E∈Th

∑

e∈∂E

h−1
E

∫

e

|Q0u−Qbu− u0 + ub|
2ds

+
∑

E∈Th

∫

E

|∇d(Qhu− uh)|
2
dx

)1/2

(Discrete H1 norm),

‖Q0u− u0‖ =

(
∑

E∈Th

∫

E

|Q0u− u0|
2
dx

)1/2

(Element− based L2 norm),

‖Qbu− ub‖ =

(
∑

e∈Eh

he

∫

e

|Qbu− ub|
2ds

)1/2

(Edge− based L2 norm).

Example 1. We first consider the Helmholtz equation defined on ΩR. Here, we
set f = sin(kr)/r, where r =

√
(x2 + y2). The boundary data g is chosen so that

the exact solution is

u =
cos(kr)

r
−

cos k + i sin k

k(J0(k) + iJ1(k))
J0(kr),

in polar coordinates, where Jξ(z) are Bessel functions of the first kind and order ξ.
Uniform triangular partitions were used in the computation through successive

mesh refinements. The numerical errors for the corresponding weak Galerkin so-
lutions in H1 and L2 norms and the convergence rate are collected in Table 1
and Table 2. Table 1 shows the performance of the weak Galerkin finite element
method with k = 4, R0 = 0.5, R = 1 and Table 2 illustrates the performance of the
weak Galerkin finite element method with k = 10, R0 = 0.05, R = 0.1. For both
cases, we can observe an optimal convergence rate, i.e., the error measured in H1

norm is O(h) and in L2 norm is O(h2), which are in agreement with the theoretical
prediction.

Table 1. Convergence rates with k = 4, R0 = 0.5, R = 1.

h ‖Qhu− uh‖1,h rate ‖Q0u− u0‖ rate ‖Qbu− ub‖ rate
0.44026 2.1074e+00 - 2.8850e−01 - 2.8634e−01 -
0.22518 5.3785e−01 2.04 3.5335e−02 3.13 3.3836e−02 3.19
0.11421 2.4113e−01 1.18 7.8663e−03 2.21 7.5125e−03 2.22
0.0576 1.1683e−01 1.06 1.9142e−03 2.06 1.8268e−03 2.07
0.028941 5.7881e−02 1.02 4.7537e−04 2.02 4.5358e−04 2.02
0.014508 2.9215e−02 0.99 1.1864e−04 2.01 1.1320e−04 2.02

Example 2. In this example, we take f = 0 and the exact solution is chosen as

u = Jξ(k
√
(x+ 1)2 + y2) cos

(
ξ arctan

(
y

x+ 1

))
.

The boundary condition g are given by the exact solutions u for ξ = 1, ξ = 3
2 , ξ = 2

3 ,
respectively. Here, Jξ denotes the Bessel function of the first kind and order ξ. It
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Table 2. Convergence rates with k = 10, R0 = 0.05, R = 0.1.

h ‖Qhu− uh‖1,h rate ‖Q0u− u0‖ rate ‖Qbu− ub‖ rate
0.044026 5.0527e−02 - 6.9358e−04 - 7.3935e−05 -
0.022518 2.6375e−02 0.970 1.7201e−04 2.08 1.3435e−05 2.54
0.011421 1.3577e−02 0.978 4.2973e−05 2.04 2.8624e−06 2.28
0.00576 7.5221e−03 0.863 1.0743e−05 2.03 6.7314e−07 2.11

0.0028941 4.4173e−03 0.773 2.6858e−06 2.03 1.6458e−07 2.05
0.0014508 2.6887e−03 0.719 6.7146e−07 2.01 4.0790e−08 2.02

can be checked that u is smooth for ξ ∈ N, while its derivative has a singularity at
(−1, 0) for ξ /∈ N.

With k = 4, R0 = 0.5, R = 1, Tables 3–5 show the errors in H1 norm and L2

norm for ξ = 1, ξ = 3
2 , ξ = 2

3 , respectively. It can be seen that in all three cases, the

numerical convergence rates in H1 norm and L2 norm for weak Galerkin solution
are first and second orders.

Table 3. Convergence rates with k = 4, R0 = 0.5, R = 1, ξ = 1.

h ‖Qhu− uh‖1,h rate ‖Q0u− u0‖ rate ‖Qbu− ub‖ rate
0.44026 2.6242e+00 - 3.7813e−01 - 3.6757e−01 -
0.22518 6.9062e−01 1.99 4.7471e−02 3.10 3.8784e−02 3.35
0.11421 3.1223e−01 1.17 1.0517e−02 2.22 8.1035e−03 2.31
0.0576 1.5475e−01 1.03 2.5560e−03 2.07 1.9731e−03 2.09

0.028941 7.8362e−02 0.987 6.3457e−04 2.02 4.7883e−04 2.03
0.014508 4.0623e−02 0.951 1.5837e−04 2.01 1.1937e−04 2.01

Table 4. Convergence rates with k = 4, R0 = 0.5, R = 1, ξ = 3/2.

h ‖Qhu− uh‖1,h rate ‖Q0u− u0‖ rate ‖Qbu− ub‖ rate
0.44026 2.2505e+00 - 3.1144e−01 - 3.137e−01 -
0.22518 5.8287e−01 2.01 3.7614e−02 3.15 3.3020e−02 3.36
0.11421 2.6463e−01 1.16 8.2983e−03 2.23 6.9901e−03 2.29
0.0576 1.3128e−01 1.02 2.0152e−03 2.07 1.6793e−03 2.08

0.028941 6.6734e−02 0.983 5.0023e−04 2.02 4.1574e−04 2.03
0.014508 3.4729e−02 0.946 1.2484e−04 2.01 1.0368e−04 2.01

Table 5. Convergence rates with k = 4, R0 = 0.5, R = 1, ξ = 2/3.

h ‖Qhu− uh‖1,h rate ‖Q0u− u0‖ rate ‖Qbu− ub‖ rate
0.44026 2.9608e+00 - 4.3740e−01 - 4.1104e−01 -
0.22518 8.3163e−01 1.89 5.7760e−02 3.02 4.6698e−02 3.24
0.11421 3.8679e−01 1.13 1.2932e−02 2.20 1.0126e−02 2.25
0.0576 1.9697e−01 0.986 3.1597e−03 2.06 2.5104e−03 2.04

0.028941 1.0354e−01 0.934 7.8887e−04 2.02 6.5074e−04 1.96
0.014508 5.6068e−02 0.888 1.9846e−04 2.00 1.7321e−04 1.92
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Example 3. In this study, we take f = 0 and the exact solution is chosen as

u = Jξ(k
√
(x+ 0.1)2 + y2) cos

(
ξ arctan

(
y

x+ 0.1

))
.

The boundary condition g are given by the exact solutions u for ξ = 1, ξ = 3/2, ξ =
2/3. It can be checked that its derivative has a singularity at (−0.1, 0) for ξ /∈ N.

With k = 10, R0 = 0.05, R = 0.1, Tables 6–8 show the errors in H1 norm and L2

norm for ξ = 1, ξ = 3
2 , ξ = 2

3 , respectively. It shows that for ξ = 1, the numerical

convergence rate in H1 norm and L2 norm for weak Galerkin solution is first and
second order. For ξ = 3

2 , the rates of convergence decrease in H1 norm and keeps

second order in L2 norm. However, the convergence rates decreases in both kinds
of norms for the non-smooth case ξ = 2

3 .

Table 6. Convergence rates with k = 10, R0 = 0.05, R = 0.1, ξ = 1.

h ‖Qhu− uh‖1,h rate ‖Q0u− u0‖ rate ‖Qbu− ub‖ rate
0.044026 8.3623e−02 - 1.1667e−03 - 2.7400e−04 -
0.022518 4.2343e−02 1.02 2.9151e−04 2.07 6.5145e−05 2.14
0.011421 2.1360e−02 1.01 7.2967e−05 2.04 1.5968e−05 2.07
0.00576 1.1018e−02 0.967 1.8250e−05 2.02 3.9645e−06 2.04

0.0028941 5.8388e−03 0.923 4.5632e−06 2.01 9.8855e−07 2.02
0.0014508 3.1888e−03 0.876 1.1408e−06 2.01 2.4687e−07 2.01

Table 7. Convergence rates with k = 10, R0 = 0.05, R = 0.1, ξ = 3/2.

h ‖Qhu− uh‖1,h rate ‖Q0u− u0‖ rate ‖Qbu− ub‖ rate
0.044026 6.6068e−02 - 7.6287e−04 - 3.4584e−04 -
0.022518 3.6240e−02 0.896 1.9295e−04 2.05 9.1257e−05 1.99
0.011421 1.9134e−02 0.941 4.8475e−05 2.03 2.3363e−05 2.01
0.00576 1.1000e−02 0.809 1.2139e−05 2.02 5.8936e−06 2.01

0.0028941 6.7183e−03 0.716 3.0363e−06 2.01 1.4778e−06 2.01
0.0014508 4.2287e−03 0.670 7.5922e−07 2.01 3.6974e−07 2.01

Table 8. Convergence rates with k = 10, R0 = 0.05, R = 0.1, ξ = 2/3.

h ‖Qhu− uh‖1,h rate ‖Q0u− u0‖ rate ‖Qbu− ub‖ rate
0.044026 1.4470e−01 - 1.4832e−03 - 1.0788e−03 -
0.022518 8.5593e−02 0.783 3.8020e−04 2.03 3.5780e−04 1.64
0.011421 5.1677e−02 0.743 9.9683e−05 1.97 1.1693e−04 1.65
0.00576 3.1754e−02 0.711 2.6730e−05 1.92 3.7795e−05 1.65

0.0028941 1.9740e−02 0.691 7.3538e−06 1.88 1.2112e−05 1.65
0.0014508 1.2354e−02 0.679 2.0788e−06 1.83 3.8582e−06 1.66

Example 4. In this numerical test, we will investigate the performance of weak
Galerkin finite element method for the same setting as Example 1 with large wave
number k. We solve the problem with R0 = 0.05, R = 1 for four wave numbers
k = 5, k = 10, k = 50, k = 100. The errors of weak Galerkin solution in H1 norm
and L2 norm respective to k are shown in Figure 2 and Figure 3. It can be seen
that the weak Galerkin finite element method are convergent for four cases.
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Figure 2. The errors for four wave numbers k = 5, k = 10, k =
50, k = 100. (a) Discrete H1 norm. (b) Element-based L2 norm.
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Figure 3. The errors in edge-based L2 norm for four wave num-
bers k = 5, k = 10, k = 50, k = 100.

6. Conclusions

This paper introduces a weak Galerkin finite element method for the exterior
Helmholtz problem. We reduce the original boundary value problem equivalently
to a nonlocal boundary value problem by the exact Dirichlet to Neumann (DtN)
boundary condition. In practice, one needs to truncate the infinite series of the
exact DtN operator at a finite order. Thus, the error estimate include the effect of
truncation of the DtN operator and the numerical discretization.
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