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SUPERLINEAR CONVERGENCE OF AN SQP-TYPE METHOD

FOR NONLINEAR SEMIDEFINITE PROGRAMMING

WENHAO FU AND ZHONGWEN CHEN*

Abstract. In this paper, we study the rate of convergence of a sequential quadratic programming

(SQP) method for nonlinear semidefinite programming (SDP) problems. Since the linear SDP
constraints does not contribute to the Hessian of the Lagrangian, we propose a reduced SQP-
type method, which solves an equivalent and reduced type of the nonlinear SDP problem near the
optimal point. For the reduced SDP problem, the well-known and often mentioned ”σ-term” in the

second order sufficient condition vanishes. We analyze the rate of local convergence of the reduced
SQP-type method and give a sufficient and necessary condition for its superlinear convergence.
Furthermore, we give a sufficient and necessary condition for superlinear convergence of the SQP-
type method under the nondegeneracy condition, the second-order sufficient condition with σ-term

and the strict complementarity condition.

Key words. Nonlinear semidefinite programming, SQP-type method, second order sufficient
condition, constraint nondegeneracy, superlinear convergence.

1. Introduction

Consider the following nonlinear semidefinite programming (SDP) problem

(1)

min
x∈Rn

f(x)

s.t. h(x) = 0,
G(x) ≽ 0,

where f : Rn → R, h : Rn → Rl and G : Rn → Sm are all smooth functions. Sm

denotes the linear space ofm-order real symmetric matrices, Sm
+ and Sm

++ denote the
linear space ofm-order real symmetric positive semidefinite matrices and symmetric
positive definite ones, respectively. ≽ and ≻ denote positive semidefinite order and
positive definite order, which means A ≽ B if and only if A−B ∈ Sm

+ and A ≻ B
if and only if A − B ∈ Sm

++, respectively. In the past few years, basic theoretical
issues of nonlinear semidefinite programming have been studied, such as optimality
conditions ([9, 15]), duality theory ([6]), stability analysis ([1, 7, 10]) and so forth.

There are various methods for solving nonlinear SDP problem, such as the
penalty/barrier multiplier method ([13]), the Augmented Lagrangian method ([11,
12]), the primal-dual interior point method ([21]), sequential semidefinite program-
ming (SSDP) method ([3, 22, 23]) and so forth. As one of effective methods for
solving nonlinear SDP problem, the SSDP method is a development of the SQP-
type method on semidefinite cone space. The main idea of such method is to
generate steps by solving a sequence of quadratic semidefinite subproblems. At the
current iterate xk, the trial step dk is obtained by solving the following quadratic

Received by the editors December 23, 2019 and, in revised form, March 25, 2020.
2000 Mathematics Subject Classification. 90C22, 90C30, 65K05.

*Corresponding author.

592



SUPERLINEAR CONVERGENCE OF AN SQP-TYPE METHOD 593

semidefinite programming subproblem

(2)
min
d∈Rn

∇f(xk)
T d+

1

2
dTWkd

s.t. h(xk) +Dh(xk)d = 0,
G(xk) +DG(xk)d ≽ 0,

where ∇f(x) denotes the gradient of the objective function f(x), Wk denotes the
Hessian matrix of the Lagrangian function of (1) (see (3) for its definition) or its
approximate symmetric matrix, Dh(x) denotes the Jacobian matrix of h(x) and

Dh(x)T = (∇h1(x),∇h2(x), · · · ,∇hl(x)).

Linear operator DG(x) denotes by

DG(x) =

(
∂G(x)

∂x1
,
∂G(x)

∂x2
, · · · , ∂G(x)

∂xn

)
,

which satisfies

DG(x)d =
n∑

i=1

di
∂G(x)

∂xi
, ∀d ∈ Rn.

Hence, the new iteration is updated by a line search xk+1 = xk + αkdk, where
αk ∈ (0, 1] is a step size.

Under suitable assumptions, the sequence generated by the algorithm above con-
verges globally to a KKT point of the problem (1), e.g., see [3, 23]. A fast local rate
of convergence can be arrived if Wk is a good approximation of the Hessian matrix.
Fares et al. ([8]) proved the local quadratic rate of convergence under the maxi-
mal rank condition and the second order sufficient condition without σ-term. Under
the nondegeneracy condition and the second-order sufficient condition with σ-term,
Wang et al. ([19]) made a further analysis on the local property of convergence for
SSDP method and also proved that the algorithm has a local quadratic convergence
rate when Wk is chosen as the Hessian matrix of the Lagrangian function. Zhao and
Chen ([23]) gave a globally convergent algorithm based on the references [3, 8, 19]
and proved the step size αk of the algorithm is always equal to 1 for k sufficiently
large under the nondegeneracy condition and the second-order sufficient condition
with σ-term. Thus the algorithm is convergent superlinearly. The results on the
local rate of convergence of some other methods, such as the primal-dual interior
point method, the augmented Lagrangian method etc., for nonlinear SDP can be
found in [14, 16, 18, 20].

It’s worth noting that the results on the local convergence mentioned above all
include multiplier term. There are few researches on the convergent rate of the
sequence without multiplier term which is generated by SQP-type method for non-
linear SDP, while Boggs et al. ([2]) has already proposed an sufficient and necessary
condition in the case of nonlinear programming in the 1980s. Another point of at-
tention is that the Hessian matrix of the Lagrangian function at the optimal point
is not necessarily positive definite on the critical cone (see the example showed in
[4]). Therefore the subproblems in the SQP-type method near the optimal point
may be nonconvex when Wk takes the Hessian matrix of the Lagrangian function
of (1) or its approximate symmetric matrix, which may influence the local conver-
gence properties of the method. In this paper, we analyze the convergent rate of the
sequence without multiplier term. And then an equivalent and reduced type of the
primal problem near the optimal point is analyzed and the conditions of superlinear
convergence are discussed. Finally, a sufficient and necessary condition for super-
linear convergence of the algorithm is given under the nondegeneracy condition,
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the second-order sufficient condition with σ-term and the strict complementarity
condition.

The paper is organized as follows. In Section 2, we introduce the SSDP method
and give some results on the local rate of convergence. In Section 3, we first reformu-
late the primal problem into an equivalent and reduced form, which is obtained by
Schur-complement theorem. Then we analyze the conditions of superlinear conver-
gence for the reduced SSDP method. In Section 4, we give an equivalent condition
of superlinear convergence of the sequence generated by the SSDP method and
conclude with final remarks in Section 5.

2. Local convergence of an SQP-type method

The Lagrangian function of the problem (1) is

(3) L(x, µ, Y ) = f(x)− µTh(x)− ⟨Y,G(x)⟩,

where µ ∈ Rl, Y ∈ Sm, ⟨A,B⟩ = tr(BTA) denotes the inner product of A,B ∈
Rm×n, tr(X) denotes the trace of a matrix X. At the current iterate xk, we
solve the quadratic semidefinite programming subproblem (2). Suppose that the
subproblem (2) has a solution dk and that (µk+1, Yk+1) is the Lagrange multiplier
corresponding to the constraints. Let xk+1 = xk + dk, then the iterate sequence
{(xk, µk, Yk)} is generated. The detailed algorithm is described as follows.

Algorithm 2.1. Local SSDP Algorithm.
Initialization. Given an initial point (x0, µ0, Y0) ∈ Rn ×Rl × Sm

+ , k := 0.
Step 1. Solve (2) to get dk and the corresponding Lagrange multiplier (µk+1, Yk+1).
Step 2. If dk = 0, then stop.
Step 3. Set xk+1 = xk + dk.
Step 4. Set k := k + 1 and go to Step 1.
Suppose that Algorithm 2.1 generates an infinite sequence {(xk, µk, Yk)}. We

give some basic assumptions in order to analyze the local convergence of the se-
quences {(xk, µk, Yk)} and {xk}.

Assumption A
A1 f(x), h(x) and G(x) are twice continuously differentiable on Rn.
A2 The nondegeneracy condition holds at a feasible point x∗, i.e.,(

Dh(x∗)
DG(x∗)

)
Rn +

(
{0}

lin(TSm
+
(G(x∗)))

)
=

(
Rl

Sm

)
,

where lin(TSm
+
(G(x∗))) is a linearity space of the critical cone TSm

+
(G(x∗)).

A3 Second-order sufficient condition.
A3.1 (Second-order sufficient condition with σ-term) Suppose that (x∗, µ∗, Y ∗)

∈ Rn ×Rl × Sm is a KKT triple of the problem (1), i.e.,

(4) ∇f(x∗)−Dh(x∗)Tµ∗ −DG(x∗)∗Y ∗ = 0,

(5) h(x∗) = 0, G(x∗) ≽ 0, Y ∗ ≽ 0, ⟨Y ∗, G(x∗)⟩ = 0,

where DG(x)∗ denotes the adjoint operator of the linear operator DG(x) and sat-
isfies

DG(x)∗Y =

(
⟨Y, ∂G(x)

∂x1
⟩, ⟨Y, ∂G(x)

∂x2
⟩, · · · , ⟨Y, ∂G(x)

∂xn
⟩
)T

, Y ∈ Sm.

Moreover,

(6) dT∇2
xxL(x

∗, µ∗, Y ∗)d+ΥG(x∗)(Y
∗, DG(x∗)d) > 0 for all d ∈ C(x∗)\{0},
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where,

(7) C(x∗) = {d ∈ Rn | Dh(x∗)d = 0, DG(x∗)d ∈ TSm
+
(G(x∗)), ∇f(x∗)T d = 0}

is the critical cone, linear-quadratic function ΥB : Sm × Sm → R is defined by

ΥB(D,A) = 2⟨D,AB†A⟩, (D,A) ∈ Sm × Sm,

where B† is the Moore-Penrose generalized inverse of B.
A3.2 (Second-order sufficient condition without σ-term) Suppose that (x∗, µ∗,

Y ∗) ∈ Rn ×Rl × Sm is a KKT triple of the problem (1) and

(8) dT∇2
xxL(x

∗, µ∗, Y ∗)d > 0 for all d ∈ C(x∗)\{0}.

A4 The strict complementarity condition holds at x∗, i.e.,

rank(G(x∗)) + rank(Y ∗) = m for all Y ∗ ∈ Ω∗,

where Ω∗ is the set of the multipliers corresponding to the constraint G(x) ≽ 0 at
x∗.

Fares et al. ([8]) and Correa and Ramirez ([3]) give the following result about
the local convergence of Algorithm 2.1.

Theorem 2.1. ([3, 8]) Suppose that the assumptions A1 and A3.2 hold. Suppose
that (Dh(x∗)T , DG(x∗)) has full rank and that

Wk −∇2
xxL(x

∗, µ∗, Y ∗) = o(1).

Then there is δ > 0 such that if ∥x0 − x∗∥ < δ, ∥µ0 − µ∗∥ < δ and ∥Y0 − Y ∗∥ <
δ, Algorithm 2.1 is well defined and the sequence {(xk, µk, Yk)} generated by it
converges superlinearly to (x∗, µ∗, Y ∗). The convergence rate is quadratic especially
when

(9) Wk −∇2
xxL(x

∗, µ∗, Y ∗) = O(∥xk − x∗∥+ ∥(µk, Yk)− (µ∗, Y ∗)∥)

and the second derivatives of f, h,G are locally Lipschitz continuous at x∗.

Though the sequence generated by Algorithm 2.1 under the assumptions of The-
orem 2.1 is convergent quadratically, we need to suppose that (Dh(x∗)T , DG(x∗))
has full rank and that the assumption A3.2 holds. Zhao et al. ([23]) analyze the
local convergence rate under the nondegeneracy condition and the second-order
sufficient condition with σ-term.

Theorem 2.2. ([23]) Suppose that the assumptions A1, A2, A3.1 and A4 hold
and that the second derivatives of f, h,G are locally Lipschitz continuous at x∗. The
sequence {(xk, µk, Yk)} is generated by Algorithm 2.1. Suppose that the matrix Wk

is uniformly positive definite, uniformly bounded and satisfies

(10) (Wk −∇2
xxL(x

∗, µ∗, Y ∗))dk = o(∥dk∥).

If the sequence {xk} converges to x∗, then the sequence {(xk, µk, Yk)} converges to
(x∗, µ∗, Y ∗) superlinearly.

It’s worth noting that it is not necessary to get the convergence rate of the
sequence with multiplier term. Moreover, quadratic or superlinear convergence of
the sequence {(xk, µk, Yk)} above is not equivalent to the traditional one of the
sequence {xk}. Now we discuss the convergence rate of {xk}. The following lemma
is required.
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Lemma 2.3. Suppose that the assumptions A1, A2, A3.1 hold and that the
second derivatives of f, h,G are locally Lipschitz continuous at x∗. The sequence
{(xk, µk, Yk)} is generated by Algorithm 2.1. Suppose that the matrix Wk is uni-
formly positive definite, uniformly bounded and satisfies (9). Then there is δ > 0
such that if ∥xk − x∗∥ < δ, ∥µk − µ∗∥ < δ and ∥Yk − Y ∗∥ < δ, then

∥dk∥+ ∥µk+1 − µ∗∥+ ∥Yk+1 − Y ∗∥ = O(∥xk − x∗∥+ ∥(µk, Yk)− (µ∗, Y ∗)∥).

Proof. The proof is finished by combining Theorem 3.2 in [19] with Lemma 3.8 in
[23]. �

Theorem 2.4. Suppose that the assumptions A1, A2 and A3.1 hold and that
the second derivatives of f, h,G are locally Lipschitz continuous at x∗. The sequence
{(xk, µk, Yk)} is generated by Algorithm 2.1. Suppose that the matrix Wk is uni-
formly positive definite, uniformly bounded and satisfies (9). Then there is δ > 0
such that if ∥x0−x∗∥ < δ, ∥µ0−µ∗∥ < δ and ∥Y0−Y ∗∥ < δ, then Algorithm 2.1 is
well defined and the sequence {(xk, µk, Yk)} converges quadratically to (x∗, µ∗, Y ∗)
and the sequence {xk} converges to x∗ superlinearly.

Proof. By Lemma 2.3 and

1

2
(a+ b)2 ≤ a2 + b2 ≤ (a+ b)2, ∀a, b ≥ 0, a, b ∈ R,

we have that
∥dk∥ = O(ϵk), ∥Yk+1 − Y ∗∥ = O(ϵk),

where ϵk = ∥(xk, µk, Yk)− (x∗, µ∗, Y ∗)∥. By the assumption A1,

0 = h(xk) +Dh(xk)dk

= h(x∗) +Dh(x∗)(xk − x∗) +O(∥xk − x∗∥2)
+Dh(x∗)dk +O(∥xk − x∗∥∥dk∥)

= Dh(x∗)(xk+1 − x∗) +O(ϵ2k).(11)

By the definition and the property of the projection operator ΠSm
+
(·) ([17]), that

is, let A ∈ Sm has the following spectral decomposition,

A = QΛQT ,

where Λ is the diagonal matrix of eigenvalues of A and Q is a corresponding or-
thogonal matrix of orthonormal eigenvectors. Then

ΠSm
+
(A) = QΛ+Q

T ,

where Λ+ is the diagonal matrix whose diagonal entries are the nonnegative parts
of the respective diagonal entries of Λ. Thus, the complementarity condition of (1)
and one of (2) can be reformulated as

(12) ΠSm
+
(G(x∗)− Y ∗) = G(x∗)

and

(13) ΠSm
+
(G(xk) +DG(xk)dk − Yk+1) = G(xk) +DG(xk)dk,

respectively. Since the projection operator ΠSm
+
(·) is strongly semi-smooth, it fol-

lows that there is an operator M∗ ∈ ∂ΠSm
+

(G(x∗)− Y ∗) such that

ΠSm
+
(G(x∗)− Y ∗)

= ΠSm
+
(G(xk) +DG(xk)dk − Yk+1) +M∗(G(x∗)−G(xk)−DG(xk)dk

+Yk+1 − Y ∗) +O(∥G(x∗)−G(xk)−DG(xk)dk + Yk+1 − Y ∗∥2).(14)
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Similar to (11), we have that

(15) G(xk) +DG(xk)dk −G(x∗) = DG(x∗)(xk+1 − x∗) +O(ϵ2k).

Thus,

(16) ∥G(x∗)−G(xk)−DG(xk)dk + Yk+1 − Y ∗∥ = O(ϵk+1) +O(ϵ2k).

Therefore, it follows from (12)–(16) that

(17) −(M∗ − I)DG(x∗)(xk+1 − x∗) +M∗(Yk+1 − Y ∗) = O(ϵ2k) +O(ϵ2k+1).

By (9),

(Wk −∇2
xxL(x

∗, µ∗, Y ∗))dk = O(∥dk∥ϵk) = O(ϵ2k).

Since (dk, µk+1, Yk+1) is a KKT triple of the subproblem (2), we have that

0 = ∇f(xk) +Wkdk −Dh(xk)
Tµk+1 −DG(xk)

∗Yk+1

= ∇f(xk)−Dh(xk)
Tµ∗ −DG(xk)

∗Y ∗ +∇2
xxL(x

∗, µ∗, Y ∗)dk +O(ϵ2k)

−Dh(xk)
T (µk+1 − µ∗)−DG(xk)

∗(Yk+1 − Y ∗)

(4)
= ∇xL(xk, µ

∗, Y ∗)−∇xL(x
∗, µ∗, Y ∗) +∇2

xxL(x
∗, µ∗, Y ∗)dk +O(ϵ2k)

−Dh(xk)
T (µk+1 − µ∗)−DG(xk)

∗(Yk+1 − Y ∗)

= ∇2
xxL(x

∗, µ∗, Y ∗)(xk + dk − x∗) +O(∥xk − x∗∥2)−Dh(xk)
T (µk+1 − µ∗)

−DG(xk)
∗(Yk+1 − Y ∗) +O(ϵ2k).

Noting that

Dh(xk)
T (µk+1 − µ∗) +DG(xk)

∗(Yk+1 − Y ∗)

= Dh(x∗)T (µk+1 − µ∗) +DG(x∗)∗(Yk+1 − Y ∗) +O(ϵkϵk+1).

Therefore,

∇2
xxL(x

∗, µ∗, Y ∗)(xk+1 − x∗)−Dh(x∗)T (µk+1 − µ∗)

−DG(x∗)∗(Yk+1 − Y ∗)

= O(ϵ2k) +O(ϵkϵk+1).(18)

By (18), (11) and (17), we have that ∇2
xxL(x

∗, µ∗, Y ∗) −Dh(x∗)T −DG(x∗)∗

−Dh(x∗) O O
−(M∗ − I)DG(x∗) O M∗

 xk+1 − x∗

µk+1 − µ∗

Yk+1 − Y ∗


= O(ϵ2k) + o(ϵk+1).(19)

It follows from the assumptions A2, which means that Ω∗ is a singleton, i.e., Ω∗ =
{Y ∗}, and from A3.1 that the left operator of (19) at x∗ is nonsingular (see [17],
Proposition 3.2). So ϵk+1 = O(ϵ2k), i.e., the sequence {(xk, µk, Yk)} converges to
(x∗, µ∗, Y ∗) quadratically.

Now we will prove that the sequence {xk} converges to x∗ superlinearly.
If ϵk+1 satisfies

(20) ϵk+1 = O(∥xk − x∗∥ϵk),

then
∥xk+1 − x∗∥
∥xk − x∗∥

=
O(ϵk+1)

∥xk − x∗∥
= O(ϵk) → 0,

i.e., the sequence {xk} converges to x∗ superlinearly. Therefore, it is enough to
prove that (20) holds.
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Since ∥xk − x∗∥ = O(ϵk) and ∥dk∥ = O(ϵk), similar to (11) and (15), we have

0 = h(x∗) +Dh(x∗)(xk − x∗) +O(∥xk − x∗∥2)
+Dh(x∗)dk +O(∥xk − x∗∥∥dk∥)

= h(x∗) +Dh(x∗)(xk − x∗) +Dh(x∗)dk +O(∥xk − x∗∥ϵk)
= Dh(x∗)(xk+1 − x∗) +O(∥xk − x∗∥ϵk).(21)

and

G(xk) +DG(xk)dk −G(x∗) = DG(x∗)(xk+1 − x∗) +O(∥xk − x∗∥ϵk).

Therefore,

∥G(x∗)−G(xk)−DG(xk)dk + Yk+1 − Y ∗∥ = O(∥xk − x∗∥ϵk) +O(ϵk+1).

Similar to (17), we have that

(22) −(M∗−I)DG(x∗)(xk+1−x∗)+M∗(Yk+1−Y ∗) = O(∥xk−x∗∥ϵk)+O(ϵ2k+1).

It follows from (9) that

(Wk −∇2
xxL(x

∗, µ∗, Y ∗))dk

= O(∥dk∥ϵk) (dk = xk+1 − x∗ + x∗ − xk)

= O(∥xk − x∗∥ϵk) +O(∥xk+1 − x∗∥ϵk)
= O(∥xk − x∗∥ϵk) + o(ϵk+1).

Since (dk, µk+1, Yk+1) is a KKT triple of the subproblem (2), we have that

∇2
xxL(x

∗, µ∗, Y ∗)(xk+1 − x∗)

−Dh(x∗)T (µk+1 − µ∗)−DG(x∗)∗(Yk+1 − Y ∗)

= O(∥xk − x∗∥ϵk) + o(ϵk+1).(23)

By (23), (21) and (22), ∇2
xxL(x

∗, µ∗, Y ∗) −Dh(x∗)T −DG(x∗)∗

−Dh(x∗) O O
−(M∗ − I)DG(x∗) O M∗

 xk+1 − x∗

µk+1 − µ∗

Yk+1 − Y ∗


= O(∥xk − x∗∥ϵk) + o(ϵk+1).(24)

Since the left operator of (24) is nonsingular at x∗, it follows that ϵk+1 = O(∥xk −
x∗∥ϵk). Thus, the result is proved. �

Under the assumptions of Theorem 2.2 or Theorem 2.4, the sequence {(xk, µk, Yk)}
converges superlinearly when Wk is an approximate symmetric matrix of the Hes-
sian matrix of the Lagrangian function. However, the Hessian matrix may not be
positive definite (even negative definite) even if the second-order sufficient condition
with σ-term holds. In this case, it is unsuitable to approximate the Hessian matrix
by a positive definite matrix. Actually, Diehl et al. ([4]) show that the classic
SQP-type method under the assumptions A1-A3.1 may only have a linear rate of
convergence if the assumption A3.2 does not hold and Wk is any positive definite
and bounded matrix. Therefore, we consider an equivalent and reduced problem
near the optimal point where the Hessian matrix of the Lagrangian function of the
reduced problem is always positive definite on its critical cone, i.e., the assumption
A3.2 holds.
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3. Local convergence of a reduced SQP-type method

Motivated by Dorsch et al ([5]), we assume, without loss of generality, that G(x)
has the following form near the optimal solution x∗ of (1).

G(x) =

(
A(x) B(x)
B(x)T C(x)

)
,

where A(x∗) is nonsingular and rank(G(x∗)) = rank(A(x∗)) = r. In fact, this
matrix partition holds after a reordering of the variables or, equivalently, by con-
sidering the matrix PTG(x)P instead of G(x), where P is a permutation matrix.
By continuity, there is a neighbourhood N1(x

∗) of x∗ such that rank(A(x)) = r for
all x ∈ N1(x

∗). Let

S(x) = C(x)−B(x)TA(x)−1B(x) ∈ Sm−r, x ∈ N1(x
∗).

Then, for all x ∈ N1(x
∗), we have that

G(x) =

(
Ir A(x)−1B(x)
O Im−r

)T (
A(x) O
O S(x)

)(
Ir A(x)−1B(x)
O Im−r

)
,

where Ir and Im−r are r-order and (m − r)-order identity matrices, respectively.
Therefore, for all x ∈ N1(x

∗), G(x) ≽ 0 if and only if S(x) ≽ 0. Thus, we get an
equivalent problem of (1) near the optimal point x∗

(25)
min f(x)
s.t. h(x) = 0,

S(x) ≽ 0.

We refer to the equivalent problem (25) as a reduced problem of (1). Denote the
Lagrangian function of the reduced problem (25) by

(26) L̃(x, µ̃, Ỹ ) = f(x)− µ̃Th(x)− ⟨Ỹ , S(x)⟩,

where µ̃ ∈ Rl, Ỹ ∈ Sm−r. Under certain constraint qualifications there is a multi-
plier pair (µ̃∗, Ỹ ∗) ∈ Rl × Sm−r associated with the optimal point x∗ of (1) such
that

(27) ∇f(x∗)−Dh(x∗)T µ̃∗ −DS(x∗)∗Ỹ ∗ = 0,

(28) h(x∗) = 0, S(x∗) ≽ 0, Ỹ ∗ ≽ 0, ⟨Ỹ ∗, S(x∗)⟩ = 0.

At the current iterate xk, we have the reduced quadratic semidefinite program-
ming subproblem as follows

(29)
min ∇f(xk)

T d+
1

2
dT W̃kd

s.t. h(xk) +Dh(xk)d = 0,
S(xk) +DS(xk)d ≽ 0,

where W̃k is the Hessian matrix of the Lagrangian function of (25) or its approxi-
mate symmetric matrix. It follows from the equation (28) in [5] that, for all d ∈ Rn,

DS(xk)d =

(
−A(xk)

−1B(xk)
Im−r

)T

DG(xk)d

(
−A(xk)

−1B(xk)
Im−r

)
.

Denote the solution of (29) by d̃k and the corresponding Lagrange multiplier by

(µ̃k+1, Ỹk+1). Set xk+1 = xk+ d̃k. Thus, we obtain the following reduced sequential
semidefinite programming (RSSDP) algorithm conceptually.

Algorithm 3.1. Local RSSDP Algorithm.
Initialization. Given an initial point (x0, µ̃0, Ỹ0) ∈ Rn ×Rl ×Sm−r

+ , k := 0.
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Step 1. Solve (29) to get d̃k and the corresponding Lagrange multiplier (µ̃k+1, Ỹk+1).

Step 2. If d̃k = 0, stop.
Step 3. Set xk+1 = xk + d̃k.
Step 4. Set k := k + 1, go to Step 1.
Let the sequence {(xk, µ̃k, Ỹk)} be generated by Algorithm 3.1. By the definition

of S(x), the σ-term in the second-order sufficient condition of the reduced problem
(25) vanishes. By Lemma 5.a in [5], the multiplier pairs of the primal problem (1)
and the reduced problem (25) are both determined uniquely when the assumptions
A1 and A2 hold. Furthermore, it follows from Lemma 4 in [5] that the multiplier
pairs associated with the optimal point x∗ of the above two problems have the
following relations

µ̃∗ = µ∗, Ỹ ∗ =

(
−A(x∗)−1B(x∗)

Im−r

)T

Y ∗
(

−A(x∗)−1B(x∗)
Im−r

)
.

Lemma 3.1. Suppose that the assumptions A1, A2 and A3.1 hold. The critical
cone C(x∗) of the primal problem (1) at the optimal point x∗ is equal to that of the
reduced problem (25) and

dT∇2
xxL(x

∗, µ∗, Y ∗)d+ΥG(x∗)(Y
∗, DG(x∗)d) = dT∇2

xxL̃(x
∗, µ̃∗, Ỹ ∗)d

for all d ∈ C(x∗), where (µ∗, Y ∗) and (µ̃∗, Ỹ ∗) are the Lagrange multipliers of (1)
and (25) associated with x∗, respectively.

Proof. We first prove the following conclusion

C(x∗) = C̃(x∗) , {d ∈ Rn |Dh(x∗)d = 0, DS(x∗)d ∈ TSm−r
+

(S(x∗)), ∇f(x∗)T d = 0}.

Denote G(x∗) by G∗. Let N2(G
∗) = {X ∈ Sm | X = G(x), x ∈ N1(x

∗)}. Define

F (X) =

(
−((Ir, O)X(Ir, O)T )−1((Ir, O)X(O, Im−r)

T )
Im−r

)
, X ∈ N2(G

∗).

It is obvious that, for all x ∈ N1(x
∗),

(Ir, O)G(x)(Ir, O)T = A(x), (Ir, O)G(x)(O, Im−r)
T = B(x),

F (G(x)) =

(
−A(x)−1B(x)

Im−r

)
,

F (G(x))TDG(x)dF (G(x)) = DS(x)d, for all d ∈ Rn.

Since F (·) is twice continuously differentiable on N2(G
∗), so is F (G(·)) on N1(x

∗).
Moreover, the columns of F (G(x∗)) span the kernel space of G(x∗) and the kernel
space of S(x∗) is Sm−r. By the definition of tangent cone,

{d ∈ Rn | DG(x∗)d ∈ TSm
+
(G(x∗))}

= {d ∈ Rn | F (G(x∗))TDG(x∗)dF (G(x∗)) ≽ 0}
= {d ∈ Rn | DS(x∗)d ≽ 0}
= {d ∈ Rn | DS(x∗)d ∈ TSm−r

+
(S(x∗))}.

Therefore, C(x∗) = C̃(x∗).
Define map ϕ : N2(G

∗) → Sm−r satisfying

ϕ(X) = F (X)TXF (X).

Obviously, ϕ(·) is twice continuously differentiable on N2(G
∗) as well. It follows

from chain rule and

G∗F (G∗) =

(
O

S(x∗)

)
= 0
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that for all Y ∈ Sm, we have that

DXϕ(G∗)Y

= (DXF (G∗)Y )TG∗F (G∗) + F (G∗)TY F (G∗) + F (G∗)TG∗(DXF (G∗)Y )

= F (G∗)TY F (G∗) ∈ Sm−r.

As F (G∗) has full column rank, for all Ỹ ∈ Sm−r, there is a matrix

Y0 = F (G∗)(F (G∗)TF (G∗))−1Ỹ (F (G∗)TF (G∗))−1F (G∗)T

such that

DXϕ(G∗)Y0 = Ỹ .

Therefore, DXϕ(G∗) is onto. Next we can prove that ϕ(·) satisfies

Sm
+ ∩N2(G

∗) = {X ∈ Sm | ϕ(X) ∈ Sm−r
+ }.

In fact, it is obvious that ϕ(X0) ∈ Sm−r
+ for all X0 ∈ Sm

+ ∩N2(G
∗). On the con-

trary, the domain of ϕ(·) implies that X0 ∈ N2(G
∗) for all X0 ∈ {X ∈ Sm | ϕ(X) ∈

Sm−r
+ }. Hence, ϕ(X0) ∈ Sm−r

+ is equivalent to X0 ∈ Sm
+ . So Sm

+ is C2 reducible to

Sm−r
+ at G∗. The remainder of the proof follows from (3.272) in [1]. �

Similar to Theorem 2.4, we have the following result.

Theorem 3.2. Suppose that the assumptions A1, A2 and A3.1 hold and that
the second derivatives of f, h,G are locally Lipschitz continuous at x∗. The se-
quence {(xk, µ̃k, Ỹk)} is generated by Algorithm 3.1. Suppose that the matrix W̃k

is uniformly positive definite, uniformly bounded and satisfies

(30) W̃k −∇2
xxL̃(x

∗, µ̃∗, Ỹ ∗) = O(∥xk − x∗∥+ ∥(µ̃k, Ỹk)− (µ̃∗, Ỹ ∗)∥).

Then there is δ > 0 such that if ∥x0 − x∗∥ < δ, ∥µ̃0 − µ̃∗∥ < δ and ∥Ỹ0 − Ỹ ∗∥ < δ,

then Algorithm 3.1 is well defined and the sequence {(xk, µ̃k, Ỹk)} converges to

(x∗, µ̃∗, Ỹ ∗) quadratically and the sequence {xk} converges to x∗ superlinearly.

Proof. It follows from the assumption A1 and the definition of S(x) that S(x) is
twice continuously differentiable in some neighbourhood N1(x

∗) of x∗. Since G(x)
is locally Lipschitz continuous at x∗, so is S(x) at x∗. By Lemma 5.a in [5], the
nondegeneracy condition of the reduced problem (25) holds at x∗. The rest of the
proof runs as in Theorem 2.4. �

Under the assumptions of Theorem 3.2, the condition (30) ensures that the whole

sequence {(xk, µ̃k, Ỹk)} converges quadratically and then {xk} converges superlin-
early, which is unnecessary for superlinear convergence of the sequence {xk}. Now
we discuss the equivalent condition of superlinear convergence of the sequence {xk}.
We first have the following lemma.

Lemma 3.3. Suppose that the assumptions A1, A2, A3.1 and A4 hold. The
sequence {(xk, µ̃k, Ỹk)} is generated by Algorithm 3.1. {d̃k} is a solution to the
subproblem (29). If the sequence {xk} converges to x∗, then

S(xk) +DS(xk)d̃k = 0

holds for all k sufficiently large.

Proof. Suppose, by contradiction, that there exists an infinity index set K1 such
that

S(xk) +DS(xk)d̃k ∈ Sm−r
+ \{0}, ∀k ∈ K1,
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which implies that

λ1(S(xk) +DS(xk)d̃k) > 0, ∀k ∈ K1,

where λ1(·) denotes the maximal eigenvalue function of a square matrix. By the
complementarity condition of the subproblem (29), we have that

λ1(−Ỹk+1) = 0, ∀k ∈ K1.

It follows from the continuous property of the maximal eigenvalue function that

λ1(−Ỹ ∗) = λ1( lim
k∈K1

−Ỹk+1) = 0.

By A4 and Lemma 5.b in [5], the strict complementarity condition of the reduced

problem (25) holds, which implies by S(x∗) = 0 that Ỹ ∗ ≻ 0. That is a contradic-
tion. Thus, the result is true. �

For convenience, we define an n× 1
2 (m− r)(m− r + 1)-order matrix as

AS(x) =

(
svec

(
∂S(x)

∂x1

)
, svec

(
∂S(x)

∂x2

)
, · · · , svec

(
∂S(x)

∂xn

))T

,

where, for all Z = (zij) ∈ Sm, the operator svec(·) is defined by

svec(Z) = (z11,
√
2z12, z22,

√
2z13,

√
2z23, z33, · · · , zmm)T ∈ R 1

2m(m+1).

Obviously, AS(x)
T d = svec(DS(x)d) for all d ∈ Rn. It follows from the strict

complementarity condition that

(31) C(x∗) = C̃(x∗) = {d ∈ Rn | Dh(x∗)d = 0, AS(x
∗)T d = 0}.

Moreover, for all Ỹ ∈ Sm−r, we have that

AS(x)svec(Ỹ )

=

((
svec

(
∂S(x)

∂x1

))T

svec(Ỹ ), · · · ,
(
svec

(
∂S(x)

∂xn

))T

svec(Ỹ )

)T

=

(⟨
Ỹ ,

(
∂S(x)

∂x1

)⟩
, · · · ,

⟨
Ỹ ,

(
∂S(x)

∂xn

)⟩)T

= DS(x)∗Ỹ .

Therefore, the nondegeneracy condition of (25) is equal to that (Dh(x∗)T , AS(x
∗))

having full column rank. Now, we define a matrix near the optimal point x∗ as

P̃ (xk) := I − (Dh(xk)
T , AS(xk))

[(
Dh(xk)

AS(xk)T

)
(Dh(xk)

T , AS(xk))
]−1 (

Dh(xk)

AS(xk)
T

)
.

Clearly, P̃ (xk) is an orthogonal projection matrix fromRn to Ker((Dh(xk)
T , AS(xk))

T ).

For abbreviation, we denote P̃ (xk) by P̃k.

Theorem 3.4. Suppose that the assumptions A1, A2, A3.1 and A4 hold and
that the second derivatives of f, h,G are locally Lipschitz continuous at x∗. The se-
quence {(xk, µ̃k, Ỹk)} is generated by Algorithm 3.1. If the sequence {xk} converges

to x∗, then the step d̃k in Algorithm 3.1 is a superlinearly convergent one, i.e.,

lim
k→+∞

∥xk + d̃k − x∗∥
∥xk − x∗∥

= 0

if and only if the matrix W̃k satisfies

(32) P̃k(W̃k −∇2
xxL̃(x

∗, µ̃∗, Ỹ ∗))d̃k = o(∥d̃k∥).
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Proof. By the definition of the projection matrix P̃k,

P̃k(Dh(xk)
T µ̃k+1 +DS(xk)

∗Ỹk+1)

= P̃k

(
Dh(xk)

T , AS(xk)
)( µ̃k+1

svec(Ỹk+1)

)
= O

= P̃k

(
Dh(xk)

T , AS(xk)
)( µ̃∗

svec(Ỹ ∗)

)
= P̃k(Dh(xk)

T µ̃∗ +DS(xk)
∗Ỹ ∗).

Since (d̃k, µ̃k+1Ỹk+1) is a KKT triple of the subproblem (29), we have that

W̃kd̃k = −∇f(xk) +Dh(xk)
T µ̃k+1 +DS(xk)

∗Ỹk+1.

Abbreviate P̃ (x∗) to P̃∗, then,

P̃k(W̃k −∇2
xxL̃(x

∗, µ̃∗, Ỹ ∗))d̃k

= P̃k(−∇f(xk) +Dh(xk)
T µ̃k+1 +DS(xk)

∗Ỹk+1 −∇2
xxL̃(x

∗, µ̃∗, Ỹ ∗)d̃k)

= −P̃k(∇f(xk)−Dh(xk)
T µ̃∗ −DS(xk)

∗Ỹ ∗ +∇2
xxL̃(x

∗, µ̃∗, Ỹ ∗)d̃k)

= −P̃k(∇xL̃(xk, µ̃
∗, Ỹ ∗)−∇xL̃(x

∗, µ̃∗, Ỹ ∗) +∇2
xxL̃(x

∗, µ̃∗, Ỹ ∗)d̃k)

= −P̃k∇2
xxL̃(x

∗, µ̃∗, Ỹ ∗)(xk + d̃k − x∗) + o(∥xk − x∗∥).(33)

Again by P (x∗) = P (xk) + o(1) that

P̃k(W̃k −∇2
xxL̃(x

∗, µ̃∗, Ỹ ∗))d̃k = −P̃ ∗∇2
xxL̃(x

∗, µ̃∗, Ỹ ∗)(xk + d̃k − x∗)

+o(∥xk+1 − x∗∥) + o(∥xk − x∗∥).(34)

By (11),

(35) −Dh(x∗)(xk+1 − x∗) = o(∥xk − x∗∥).

Similarly, by Lemma 3.3, it holds for k sufficiently large that

(36) AS(x
∗)T (xk+1 − x∗) = o(∥xk − x∗∥).

By (34), (35) and (36),  P̃ ∗∇2
xxL̃(x

∗, µ̃∗, Ỹ ∗)
Dh(x∗)
AS(x

∗)T

 (xk+1 − x∗)

=

 −P̃k(W̃k −∇2
xxL̃(x

∗, µ̃∗, Ỹ ∗))d̃k
O
O


+o(∥xk+1 − x∗∥) + o(∥xk − x∗∥).(37)

We can prove that the left coefficient matrix in (37) has full column rank.
Suppose, by contraction, that there exists a nonzero vector d ∈ Rn such that

P̃ ∗∇2
xxL̃(x

∗, µ̃∗, Ỹ ∗)d = 0, (Dh(x∗)T , AS(x
∗))T d = 0.

By the second part of the equation above, P̃ ∗d = d. Hence,

dT∇2
xxL̃(x

∗, µ̃∗, Ỹ ∗)d = dT P̃ ∗∇2
xxL̃(x

∗, µ̃∗, Ỹ ∗)d = 0.

By Lemma 3.1 and (31),∇2
xxL̃(x

∗, µ̃∗, Ỹ ∗) is positive definite on Ker(Dh(x∗)T , AS(x
∗))

\{0}. Thus, d = 0, which is a contradiction.
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If the sequence {xk} converges to x∗ superlinearly, then

lim
k→+∞

∥d̃k∥/∥xk − x∗∥ = 1.

By (33),

(38) P̃k(W̃k −∇2
xxL̃(x

∗, µ̃∗, Ỹ ∗))d̃k = O(∥xk+1 − x∗∥) + o(∥xk − x∗∥)
and thus

∥P̃k(W̃k −∇2
xxL̃(x

∗, µ̃∗, Ỹ ∗))d̃k∥
∥d̃k∥

=
∥P̃k(W̃k −∇2

xxL̃(x
∗, µ̃∗, Ỹ ∗))d̃k∥

∥xk − x∗∥
· ∥xk − x∗∥

∥d̃k∥
(38)
=

(
O(∥xk+1 − x∗∥)

∥xk − x∗∥
+

o(∥xk − x∗∥)
∥xk − x∗∥

)
∥xk − x∗∥

∥d̃k∥
→ 0.

i.e., (32) holds.
On the contrary, if (32) holds, then, it follows from (37) and its left coefficient

matrix having full column rank that

∥xk+1 − x∗∥ = O(∥P̃k(W̃k −∇2
xxL̃(x

∗, µ̃∗, Ỹ ∗))d̃k∥
+o(∥xk+1 − x∗∥) + o(∥xk − x∗∥)

(32)
= o(∥xk+1 − x∗∥) + o(∥xk − x∗∥) + o(∥d̃k∥).

By ∥d̃k∥ ≤ ∥xk+1 − x∗∥+ ∥xk − x∗∥, ∥xk+1 − x∗∥ = o(∥xk − x∗∥). Thus the result
is proved. �

The preceding theorem guarantees a sufficient and necessary condition for the
step d̃k being a superlinear convergent one, which is also equivalent to the fact
that the primal sequence {xk} generated by Algorithm 3.1 converges superlinearly
when the unit step size is always accepted. Inspired by the technology in Section
3, where a conceptual algorithm 3.1 is applied and an unspecific reduced problem
(25) is solved, we next analyze the equivalent condition for the primal sequence
{xk} generated by Algorithm 2.1 being superlinearly convergent.

4. Superlinear convergence of the SSDP algorithm

In this section, we will construct a projection matrix to obtain an equivalent
condition for superlinear convergence of the standard sequential semidefinite pro-
gramming algorithm.

At the optimal point x∗, we suppose that rank(G(x∗)) = r and that G(x) has a
spectral decomposition as follows

G(x) = Q(x)TDiag(λ1(x), λ2(x), · · · , λm(x))Q(x),

where Q(x) = (q1(x), q2(x), · · · , qm(x)) is an orthogonal matrix, λ1(x), λ2(x), · · · ,
λm(x) are the eigenvalues of G(x) in decreasing order. Denote that Qα(x) =
(q1(x), q2(x), · · · , qr(x)), Qγ(x) = (qr+1(x), · · · , qm(x)).

Let L(G(x)) be the linear space generated by the column vectors of Qγ(x).
Then the column vectors of Qγ

∗ = Qγ(x∗) span the linear space L(G(x∗)). Denote
the orthogonal projection matrix from Rn to L(G(x)) by Pγ(G(x)). Note that
Pγ(G(x)) is continuously differentiable in a neighbourhood of G∗ = G(x∗) about G
(see Example 3.140 in [1]). Therefore, Fγ(G(x)) = Pγ(G(x))Qγ

∗ is also continuously
differentiable in a neighbourhood ofG∗ = G(x∗) aboutG. Especially, Fγ(G∗) = Qγ

∗ .
The rank of Fγ(G(x)) is equal to m− r for x close to x∗ sufficiently, i.e., its column
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vectors are linear independent. Let U(G(x)) be a matrix generated by the column
vectors of the matrix Fγ(G(x)) using Gram-Schmidt orthogonal method. In this
case, the matrix U(G(x)) is well defined and is continuously differentiable about G
in a neighbourhood of G∗ and U(G(x∗)) = Qγ

∗ . Moreover, the linear space L(G(x))
generated by the column vectors of Qγ(x) coincides with that of U(G(x)), and we
have U(G(x))TU(G(x)) = Im−r. Thus, U(G(x))TG(x)U(G(x)) ≽ 0 is equivalent
to G(x) ≽ 0 in a neighbourhood of x∗.

Suppose that the sequence {(xk, µk, Yk)} is generated by Algorithm 2.1 and that
dk is a solution to the subproblem (2). Let

Ŝ(x) = U(G(x))TG(x)U(G(x))

and Uk = U(G(xk)), Ŝk = Ŝ(xk), Ŷk = UT
k YkUk.

Lemma 4.1. Suppose that the assumptions A1, A2 and A3.1 hold. {(xk, µk, Yk)}
generated by Algorithm 2.1 is an infinite sequence. {dk} is a solution to (2). If
{xk} converges to x∗, then

DG(xk)
∗Yk −DŜ(xk)

∗Ŷk = O(∥dk−1∥2).

Proof. By the definition of (Ŝk, Ŷk) and UT
k Uk = Im−r,⟨

∂Ŝ(xk)

∂xi
, Ŷk

⟩

=

⟨
∂U(G(xk))

TG(xk)U(G(xk))

∂xi
, UT

k YkUk

⟩
=

⟨
∂U(G(xk))

T

∂xi
G(xk)Uk + UT

k
∂G(xk)

∂xi
Uk + UT

k G(xk)
∂U(G(xk))

∂xi
, UT

k YkUk

⟩
=

⟨
Uk

∂U(G(xk))
T

∂xi
G(xk) +

∂G(xk)

∂xi
+G(xk)

∂U(G(xk))

∂xi
UT

k , UkU
T
k YkUkU

T
k

⟩
=

⟨
Uk

∂U(G(xk))
T

∂xi
G(xk), UkU

T
k YkUkU

T
k

⟩
+

⟨
∂G(xk)

∂xi
, UkU

T
k YkUkU

T
k

⟩
+

⟨
G(xk)

∂U(G(xk))

∂xi
UT

k , UkU
T
k YkUkU

T
k

⟩
.(39)

It follows from Qk = (Qα
k , Q

γ
k) and QkQ

T
k = Im that

Qγ
k(Q

γ
k)

T +Qα
k (Q

α
k )

T = Im, (Qγ
k)

TQα
k = 0.

Since both Uk and Qγ
k have full column rank and the linear spaces spanned by

them respectively coincide with each other, UT
k Qγ

k is invertible and UT
k Qα

k = 0.
Therefore,

(UT
k Qγ

k)
−1UT

k = (UT
k Qγ

k)
−1UT

k Qγ
k(Q

γ
k)

T + (UT
k Qγ

k)
−1UT

k Qα
k (Q

α
k )

T

= (Qγ
k)

T .(40)

Similarly, let U⊥
k be the matrix constructed by the standard orthogonal basis of

the orthogonal complement space of the linear space L(G(xk)). Then,

Qγ
k(U

T
k Qγ

k)
−1 = (UkU

T
k + U⊥

k (U⊥
k )T )Qγ

k(U
T
k Qγ

k)
−1 = Uk.

Therefore,

(41) UkU
T
k = Qγ

k(U
T
k Qγ

k)
−1UT

k

(40)
= Qγ

k(Q
γ
k)

T .
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Set the eigenvalues of G(xk−1) +DG(xk−1)dk−1 in decreasing order and let Q̃γ
k be

the matrix whose column vectors are the last m− r eigenvectors. By the definition
of the orthogonal projection operator Pγ(·) (also see Example 3.140 in [1]),

Pγ(G(xk−1) +DG(xk−1)dk−1) = Q̃γ
k(Q̃

γ
k)

T .

Since Pγ(G(xk)) = Qγ
k(Q

γ
k)

T and Pγ(G) is continuously differentiable in a neigh-
bourhood of G∗ about G, we have that

(42)
Qγ

k(Q
γ
k)

T = Q̃γ
k(Q̃

γ
k)

T +O(∥G(xk)−G(xk−1)−DG(xk−1)dk−1∥)
= Q̃γ

k(Q̃
γ
k)

T +O(∥dk−1∥2).

By ⟨Yk, G(xk−1) +DG(xk−1)dk−1⟩ = 0,

(43) Yk = Q̃γ
kΓ̃k(Q̃

γ
k)

T ,

where Γ̃k is a diagonal matrix formed by the eigenvalues of Yk. Therefore, it follows
from (41), (42) and (43) that

UkU
T
k YkUkU

T
k = Qγ

k(Q
γ
k)

TYkQ
γ
k(Q

γ
k)

T

= Q̃γ
k(Q̃

γ
k)

TYkQ̃
γ
k(Q̃

γ
k)

T +O(∥dk−1∥2)
= Q̃γ

k(Q̃
γ
k)

T Q̃γ
kΓ̃k(Q̃

γ
k)

T Q̃γ
k(Q̃

γ
k)

T +O(∥dk−1∥2)
= Q̃γ

kΓ̃k(Q̃
γ
k)

T +O(∥dk−1∥2)
= Yk +O(∥dk−1∥2).(44)

By the complementarity condition of the subproblem (2),

YkG(xk) = Yk(G(xk−1) +DG(xk−1)dk−1) +O(∥dk−1∥2) = O(∥dk−1∥2).

Hence,

(45) ⟨Uk
∂U(G(xk))

T

∂xi
G(xk), Yk⟩ = ⟨G(xk)

∂U(G(xk))

∂xi
UT
k , Yk⟩ = O(∥dk−1∥2).

It follows from (39), (44) and (45) that

(DŜ(xk)
∗Ŷk)i

= ⟨Uk
∂U(G(xk))

T

∂xi
G(xk), Yk⟩+ ⟨∂G(xk)

∂xi
, Yk⟩

+⟨G(xk)
∂U(G(xk))

∂xi
UT
k , Yk⟩+O(∥dk−1∥2)

= (DG(xk)
∗Yk)i +O(∥dk−1∥2),

which proves the lemma. �

Since U∗ = Qγ
∗ at the optimal point x∗, we have that

(46) Ŝ(x∗) = (Qγ
∗)

TG(x∗)Qγ
∗ , Ŷ ∗ = (Qγ

∗)
TY ∗Qγ

∗

and (x∗, µ∗, Ŷ ∗) is a KKT triple of the following SDP problem

(47)

min f(x)
s.t. h(x) = 0,

Ŝ(x) ≽ 0.

Denote the Lagrangian function of (47) by

L̂(x, µ̂, Ŷ ) = f(x)− µ̂Th(x)− ⟨Ŷ , Ŝ(x)⟩, µ̂ ∈ Rl, Ŷ ∈ Sm−r.
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Then the second-order sufficient condition with σ-term (6) is equivalent to

(48) dT∇2
xxL̂(x

∗, µ∗, Ŷ ∗)d > 0, ∀d ∈ C(x∗)\{0},
where the critical cone C(x∗) is as follows

C(x∗) = {d ∈ Rn | Dh(x∗)d = 0, (Qγ
∗)

TDG(x∗)dQγ
∗ ≽ 0, ∇f(x∗)T d = 0}

= {d ∈ Rn | Dh(x∗)d = 0, (U∗)TDG(x∗)dU∗ = 0}.
Denote U(G(x)) = (u1(x), u2(x), · · · , um−r(x)). For 1 ≤ i ≤ j ≤ m − r, we

define

vij(x) =

(
∂(ui(x)

TG(x)uj(x))

∂x1
, · · · , ∂(ui(x)

TG(x)uj(x))

∂xn

)T

,

V (xk) = (vk11,
√
2vk12, v

k
22, · · · ,

√
2vk1,m−r, · · · , vkm−r,m−r) ∈ Rn× 1

2 (m−r)(m−r+1),

where vkij = vij(xk)(1 ≤ i ≤ j ≤ m− r).

Lemma 4.2. It holds for all d ∈ Rn, Ŷ ∈ Sm−r that

(49) V (xk)
T d = svec(DŜ(xk)d),

(50) V (xk)svec(Ŷ ) = DŜ(xk)
∗Ŷ .

Proof. For all d ∈ Rn, by the definition of Vk,

V (xk)
T d

= ((vk11)
T d,

√
2(vk12)

T d, (vk22)
T d, · · · ,

√
2(vk1,m−r)

T d, · · · , (vkm−r,m−r)
T d)T

= svec


 (vk11)

T d (vk12)
T d · · · (vk1,m−r)

T d
...

...
. . .

...
(vkm−r,1)

T d (vkm−r,2)
T d · · · (vkm−r,m−r)

T d


 .

Moreover,

(vkij)
T d

=
∂(ui(xk)

TG(xk)uj(xk))

∂x1
d1 + · · ·+ ∂(ui(xk)

TG(xk)uj(xk))

∂xn
dn

= (DŜ(xk)d)ij .

So (49) holds.

For all Ŷ ∈ Sm−r, by the definition of V (xk),

V (xk)svec(Ŷ ) = (vk11,
√
2vk12, v

k
22, · · · ,

√
2vk1,m−r, · · · , vkm−r,m−r)svec(Ŷ )

=



(
svec

(
∂
(
U(G(xk))

TG(xk)U(G(xk))
)

∂x1

))T

...(
svec

(
∂
(
U(G(xk))

TG(xk)U(G(xk))
)

∂xn

))T


svec(Ŷ )

=

( ⟨
∂Ŝ(xk)

∂x1
, Ŷ

⟩
· · ·

⟨
∂Ŝ(xk)

∂xn
, Ŷ

⟩ )T

= DŜ(xk)
∗Ŷ ,

which means that (50) holds. �
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Since the assumption A2 is equivalent to (Dh(x∗)T , V (x∗)) having full column
rank, the critical cone can be further reformed as

(51) C(x∗) = {d ∈ Rn | Dh(x∗)d = 0, V (x∗)T d = 0}.

We next construct a matrix P (xk) according to (Dh(xk)
T , V (xk)). Let

P (xk) = I −
(
Dh(xk)

T , V (xk)
) [( Dh(xk)

V (xk)
T

)(
Dh(xk)

T , V (xk)
)]−1(

Dh(xk)
V (xk)

T

)
.

It is easy to check that P (xk) is an orthogonal projection matrix from Rn to the
Kernel space Ker((Dh(xk)

T , V (xk))
T ).

Now, we give an equivalent condition for superlinear convergence of the SSDP
algorithm by abbreviating Pk = P (xk).

Theorem 4.3. Suppose that the assumptions A1, A2, A3.1 and A4 hold and
that the second derivatives of f, h,G are locally Lipschitz continuous at x∗. The
sequence {(xk, µk, Yk)} is generated by Algorithm 2.1 and assume that xk converges
to x∗, rank(G(x∗)) = r. Then the iterate xk is a superlinearly convergent one, i.e.,

lim
k→+∞

∥xk + dk − x∗∥
∥xk − x∗∥

= 0

if and only if the matrix Wk satisfies

(52) Pk(Wk −∇2
xxL(x

∗, µ∗, Y ∗))dk = o(∥dk∥).

Proof. By Lemma 3.1 in [23], limk→∞(dk, µk+1, Yk+1) = (0, µ∗, Y ∗). According to
the assumptions, we have that

∇xL(x
∗, µ∗, Y ∗) = ∇xL̂(x

∗, µ∗, Ŷ ∗) = 0,

∇2
xxL̂(x

∗, µ∗, Ŷ ∗)−∇2
xxL(x

∗, µ∗, Y ∗) = ∇2
xx⟨Y ∗, G(x∗)⟩ − ∇2

xx⟨Ŷ ∗, Ŝ∗⟩,

where Ŷ ∗ is defined by (46). By the definition of Pk and (50), for all (µ, Ŷ ) ∈
Rl × Sm−r,

(53) Pk(Dh(xk)
Tµ+DŜ(xk)

∗Ŷ ) = Pk(Dh(xk)
Tµ+ V (xk)svec(Ŷ )) = 0.

Therefore, it follows from (dk, µk+1, Yk+1) being a KKT triple of (2) that

Pk(Wk −∇2
xxL(x

∗, µ∗, Y ∗))dk

=Pk

(
−∇f(xk) +Dh(xk)

Tµk+1 +DG(xk)
∗Yk+1 −∇2

xxL(x
∗, µ∗, Y ∗)dk

)
(53)
= Pk

(
−∇f(xk) +Dh(xk)

Tµ∗ +DŜ(xk)
∗Ŷ ∗ −∇2

xxL̂(x
∗, µ∗, Ŷ ∗)dk

+Dh(xk)
Tµk+1 +DG(xk)

∗Yk+1 −∇2
xxL(x

∗, µ∗, Y ∗)dk +∇2
xxL̂(x

∗, µ∗, Ŷ ∗)dk

)
=− Pk

(
∇xL̂(xk, µ

∗, Ŷ ∗)−∇xL̂(x
∗, µ∗, Ŷ ∗) +∇2

xxL̂(x
∗, µ∗, Ŷ ∗)dk

)
+ Pk

(
Dh(xk)

Tµk+1 +DG(xk)
∗Yk+1 +

(
∇2

xx⟨Y ∗, G(x∗)⟩ − ∇2
xx⟨Ŷ ∗, Ŝ(x∗)⟩

)
dk

)
(53)
= Pk

(
DG(xk)

∗Yk+1 −DŜ(xk)
∗Ŷk+1 +

(
∇2

xx⟨Y ∗, G(x∗)⟩ − ∇2
xx⟨Ŷ ∗, Ŝ(x∗)⟩

)
dk

)
− Pk∇2

xxL̂(x
∗, µ∗, Ŷ ∗)(xk+1 − x∗) + o(∥xk − x∗∥).

(54)
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By the assumption A1 and Yk+1 − Y ∗ = o(1), one has

∇2
xx⟨Yk+1, G(xk)⟩ = ∇2

xx⟨Yk+1, G(x∗)⟩+O(∥xk − x∗∥)
= ∇2

xx⟨Y ∗, G(x∗)⟩+O(∥xk − x∗∥) + o(1)

= ∇2
xx⟨Y ∗, G(x∗)⟩+ o(1),

which implies that

DG(xk+1)
∗Yk+1 = DG(xk)

∗Yk+1 +∇2
xx⟨Yk+1, G(xk)⟩dk + o(∥dk∥)

= DG(xk)
∗Yk+1 +∇2

xx⟨Y ∗, G(x∗)⟩dk + o(∥dk∥),
DŜ(xk+1)

∗Ŷk+1 = DŜ(xk)
∗Ŷk+1 +∇2

xx⟨Ŷ ∗, Ŝ∗⟩dk + o(∥dk∥).

Therefore, it follows from Lemma 4.1 that

DG(xk)
∗Yk+1 −DŜ(xk)

∗Ŷk+1 +
(
∇2

xx⟨Y ∗, G(x∗)⟩ − ∇2
xx⟨Ŷ ∗, Ŝ∗⟩

)
dk

= DG(xk+1)
∗Yk+1 −DŜ(xk+1)

∗Ŷk+1 + o(∥dk∥)
= O(∥dk∥2) + o(∥dk∥) = o(∥dk∥).(55)

Thus, by (54), (55) and P (xk) = P (x∗) + o(1),

P ∗∇2
xxL̂(x

∗, µ∗, Ŷ ∗)(xk+1 − x∗) = −Pk(Wk −∇2
xxL(x

∗, µ∗, Y ∗))dk

+ o(∥xk+1 − x∗∥) + o(∥xk − x∗∥) + o(∥dk∥).(56)

By (21),

(57) Dh(x∗)(xk+1 − x∗) = o(∥xk − x∗∥).

Then, similar to (14), there exists an M̃∗ ∈ ∂ΠSm
+

(
U∗(U∗)T (G(x∗)− Y ∗)U∗(U∗)T

)
such that

ΠSm
+

(
U∗(U∗)T (G(x∗)− Y ∗)U∗(U∗)T

)
= ΠSm

+

(
U∗(U∗)T (G(xk) +DG(xk)dk − Yk+1)U

∗(U∗)T
)

+M̃∗ (U∗(U∗)T (G(x∗)−G(xk)−DG(xk)dk + Yk+1 − Y ∗)U∗(U∗)T
)

+O
(
∥U∗(U∗)T (G(x∗)−G(xk)−DG(xk)dk + Yk+1 − Y ∗)U∗(U∗)T ∥2

)
.(58)

Moreover,

ΠSm
+

(
U∗(U∗)T (G(x∗)− Y ∗)U∗(U∗)T

)
= U∗(U∗)TG(x∗)U∗(U∗)T ,(59)

ΠSm
+

(
U∗(U∗)T (G(xk) +DG(xk)dk − Yk+1)U

∗(U∗)T
)

= U∗(U∗)T (G(xk) +DG(xk)dk)U
∗(U∗)T ,(60)

G(xk) +DG(xk)dk −G(x∗) = DG(x∗)(xk+1 − x∗) + o(∥xk − x∗∥).(61)

Since U(G(x)) is continuously differentiable, by (41) and (42), it holds that

U∗(U∗)T = Uk+1U
T
k+1 +O(∥xk+1 − x∗∥)

= Qγ
k+1(Q

γ
k+1)

T +O(∥xk+1 − x∗∥)
= Q̃γ

k+1(Q̃
γ
k+1)

T +O(∥xk+1 − x∗∥) +O(∥dk∥2)
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and

U∗(U∗)T (G(x∗)−G(xk)−DG(xk)dk + Yk+1 − Y ∗)U∗(U∗)T

= U∗(U∗)T (G(x∗)− Y ∗)U∗(U∗)T

+Q̃γ
k+1(Q̃

γ
k+1)

T (G(xk) +DG(xk)dk − Yk+1) Q̃
γ
k+1(Q̃

γ
k+1)

T

+O(∥xk+1 − x∗∥) +O(∥dk∥2)
= U∗(U∗)TG(x∗)U∗(U∗)T − Q̃γ

k+1(Q̃
γ
k+1)

T (G(xk) +DG(xk)dk)Q̃
γ
k+1(Q̃

γ
k+1)

T

+O(∥xk+1 − x∗∥) +O(∥dk∥2)
= U∗(U∗)TG(x∗)U∗(U∗)T − U∗(U∗)T (G(xk) +DG(xk)dk)U

∗(U∗)T

+O(∥xk+1 − x∗∥) +O(∥dk∥2)
= U∗(U∗)T (G(x∗)−G(xk)−DG(xk)dk)U

∗(U∗)T +O(∥xk+1 − x∗∥) +O(∥dk∥2)
= O(∥xk+1 − x∗∥) +O(∥dk∥2).(62)

Let

Hk = U∗(U∗)T (G(x∗)−G(xk)−DG(xk)dk + Yk+1 − Y ∗)U∗(U∗)T ∈ Sm.

Then, Hk = O(∥xk+1 − x∗∥) +O(∥dk∥2). From (41) and (58)-(62),

Qγ
∗(Q

γ
∗)

TDG(x∗)(xk+1 − x∗)Qγ
∗(Q

γ
∗)

T = U∗(U∗)TDG(x∗)(xk+1 − x∗)U∗(U∗)T

= M̃∗(Hk) +O(∥Hk∥2)
= M̃∗(Hk) + o(∥xk+1 − x∗∥) + o(∥dk∥).(63)

SinceG(x∗) ≽ 0, Y ∗ ≽ 0 and ⟨G(x∗), Y ∗⟩ = 0, we assume, without loss of generality,
that

G(x∗)− Y ∗ = Q∗Λ∗Q
T
∗ ,

where Λ∗ is a diagonal matrix whose diagonal elements are in decreasing order.
Moreover, the first r diagonal elements of Λ∗ are the positive eigenvalues of G(x∗)
as well as the last m− r diagonal elements being the negative eigenvalues of −Y ∗.
Let

Ĥk = QT
∗ HkQ∗ =

(
Ĥαα

k Ĥαγ
k

Ĥγα
k Ĥγγ

k

)
=

(
(Qα

∗ )
THkQ

α
∗ (Qα

∗ )
THkQ

γ
∗

(Qγ
∗)

THkQ
α
∗ (Qγ

∗)
THkQ

γ
∗

)
,

where Qα
∗ is formed by the first r columns of Q∗ and Qγ

∗ by the last m − r ones.
Since

ΠSm
+

(
U∗(U∗)T (G(x∗)− Y ∗)U∗(U∗)T

)
= ΠSm

+
(−Y ∗),

by Proposition 2.2 in [17], there exists an M̂ ∈ ∂ΠSr
+
(0) such that

M̃∗(Hk) = Q∗

(
M̂(Ĥαα

k ) O
O O

)
QT

∗ ,

Thus, we have that

(Qγ
∗)

T M̃∗(Hk)Q
γ
∗ =

(
O Im−r

)( M̂(Ĥαα
k ) O

O O

)(
O

Im−r

)
= 0.

Multiplying Qγ
∗ to the both sides of (63),

(Qγ
∗)

TDG(x∗)(xk+1 − x∗)Qγ
∗ = o(∥xk+1 − x∗∥) + o(∥xk − x∗∥).

Applying svec(·) to the both sides above again, we conclude from

DŜ(x∗)(xk+1 − x∗) = (Qγ
∗)

TDG(x∗)(xk+1 − x∗)Qγ
∗
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and Lemma 4.2 that

V (x∗)T (xk+1 − x∗) = svec(DŜ(x∗)(xk+1 − x∗))

= svec((Qγ
∗)

TDG(x∗)(xk+1 − x∗)Qγ
∗)

= o(∥xk+1 − x∗∥) + o(∥xk − x∗∥).(64)

By (56), (57) and (64), P ∗∇2
xxL̂(x

∗, µ∗, Ŷ ∗)
Dh(x∗)
V (x∗)T

 (xk+1 − x∗)

=

 −Pk(Wk −∇2
xxL(x

∗, µ∗, Y ∗))dk
O
O


+o(∥xk+1 − x∗∥) + o(∥xk − x∗∥) + o(∥dk∥).

The rest of the proof is similar to that in Theorem 3.4. �

5. Conclusions

In this paper, we introduced a sequential semidefinite programming (SSDP) local
method for solving nonlinear semidefinite programming problems, which is inspired
by the classic sequential quadratic programming method. We first give the sufficient
conditions for superlinear convergence of {xk}. Since the curvature of the SDP
constraints does not contribute to the Lagrangian Hessian matrix when they are
linear, Dorsch et al ([5]) consider a reduced SDP, where the positive semidefiniteness
of a symmetric matrix G(x), depending continuously on x, is locally equivalent to
the fact that a certain Schur complement S(x) of G(x) is positive semidefinite.
For the reduced SDP problem, the well-known and often mentioned ”σ-term” in
the second order sufficient condition vanishes. A reduced sequential semidefinite
programming (RSSDP) method is proposed for solving the reduced SDP problem.
Under the nondegeneracy condition, the second-order sufficient condition with σ-
term and the strict complementarity condition, we made an analysis on the local
convergence rate of the RSSDP algorithm and proposed an equivalent condition
for its superlinear convergence. Finally, we proposed an equivalent condition for
superlinear convergence of the sequence {xk} generated by SSDP method.
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