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TRANSIENT DYNAMICS OF BLOCK COORDINATE DESCENT

IN A VALLEY

MARTIN MOHLENKAMP, TODD R. YOUNG*, AND BALÁZS BÁRÁNY

Abstract. We investigate the transient dynamics of Block Coordinate Descent algorithms in
valleys of the optimization landscape. Iterates converge linearly to a vicinity of the valley floor
and then progress in a zig-zag fashion along the direction of the valley floor. When the valley sides
are symmetric, the contraction factor to a vicinity of the valley floor appears to be no worse than

1/8, but without symmetry the contraction factor can approach 1. Progress along the direction of
the valley floor is proportional to the gradient on the valley floor and inversely proportional to the
“narrowness” of the valley. We quantify narrowness using the eigenvalues of the Hessian on the

valley floor and give explicit formulas for certain cases. Progress also depends on the direction of
the valley with respect to the blocks of coordinates. When the valley sides are symmetric, we give
an explicit formula for this dependence and use it to show that in higher dimensions nearly all
directions give progress similar to the worst case direction. Finally, we observe that when starting

the algorithm, the ordering of blocks in the first few steps can be important, but show that a
greedy strategy with respect to objective function improvement can be a bad choice.

Key words. Block Coordinate Descent, alternating Least Squares, tensor Approximation,
swamp, diagonal Valley.

1. Introduction

Consider the generic problem of trying to find minimum points of a non-negative,
differentiable objective function f : Rn → R+. The argument of f can be considered
as a column vector x, which can then be broken into blocks as x = (x1;x2; . . . ;xd).
Minimization with respect to a single block xi while holding the other blocks fixed
is often much easier than minimizing with respect to the full x. This suggests a
minimization algorithm: starting from an initial x,

loop: until some convergence criteria is met:
loop: through i = 1, . . . , d:

update: xi to minimize f with respect to xi.

We call the minimization with respect to one block of coordinates amicro-step and
one loop through i a pass. This algorithm is the simplest form of block coordinate
descent (BCD) (see e.g. [52, 23, 48, 2, 41, 53] and many textbooks). When the
blocks consist of single coordinates, BCD is called alternating coordinate [22] or
coordinate descent (CD) (e.g. [23, 30]).

Despite (or perhaps due to) their simplicity, BCD methods are widely used
and promising for many applications such as high-dimensional data analysis [30],
machine learning [36, 24], image processing [53] and others [15, 49]. In the context
of low rank tensor approximation problems, BCD is known as alternating least-
squares (ALS) (e.g. [38, 32, 3, 4, 50, 27, 29, 19, 20, 7, 16, 6, 18, 45, 51, 40, 17, 46]).
A micro-step of ALS reduces to a linear least squares problem and so is extremely
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(a) (b)

Figure 1. Illustrations of the behavior of a coordinate descent
(CD) method in valleys in R2. The first panel shows iterations
along a straight diagonal valley far from any local minimum and
the valley floor is at an angle π/6 from the x-axis. In the second
panel iterations are shown near a local minimum point that is in a
diagonal valley that is π/4 from the coordinate directions. Contour
curves are shown in both panels. In both cases the trajectories zig-
zag slowly downhill along the valley floor.

efficient and precise. Overall, ALS is observed to converge rapidly in many cases.
In other cases, however, it exhibits long periods of very slow progress, in what is
informally called a swamp. Swamps can be classified as terminal or transient.
In a terminal swamp, the slow progress continues to a (local) minimum point. In a
transient swamp, progress eventually accelerates and the iterates exit the swamp.
Analysis of the causes of swamps can be broken into two questions:

(1) What features of a generic f can cause BCD algorithms to progress slowly?
(2) What aspects of the tensor approximation problem cause such features to

occur so frequently and strongly?

Narrow valleys (thin ridges in maximization problems) have been recognized as
a challenge for optimization algorithms for many years (see [34, 35, 42, 11, 14])
and one of the classical test functions for optimization, the Rosenbrock function
[42], has a minimum in a narrow valley that is diagonally oriented at the minimum.
Thus, narrow valleys are a natural candidate as a cause for swamps and answer for
Question 1. In [13] we developed a rudimentary quantitative theory for measuring
the effect of narrow valleys on algorithms, based on the gradient descent with
line search (GDLS) algorithm. For BCD methods, the orientation of the valley is
important. In Figure 1 we illustrate iterations of a CD method in transient and
terminal valleys in R2. Roughly speaking, the problem is that iterations of a BCD
method zig-zag slowly in a narrow valley. It is also clear that a valley will attract
a non-trivial open set of points under a BCD method.

For the tensor approximation problem, in [13] we found that nonhyperbolic sinks
and saddles can occur for certain parameters values and these cause swamps. For
nearby parameter values the weakly hyperbolic sinks and saddles create narrow val-
leys that also cause swamps. See Figure 2 for an illustration of such narrow valleys.
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Figure 2. Two views of the level surfaces in the optimization
landscape for the problem of fitting a specific 2 × 2 × 2 tensor
of rank 2 by a tensor of rank 1. The coordinates are angular so
opposite faces are identified. Three narrow diagonal valleys (yellow
tube-like) can be seen leading to the global minimizer (inside the
green).

In [28] we found that the tensor approximation problem often and robustly con-
tains saddle-like essential (non-removable) discontinuities such as the one plotted
in Figure 3. Such discontinuities occur on the boundary of the low rank approx-
imation problem and persist under perturbations of the target tensor. Extremely
narrow valleys emanate from these discontinuities and it was observed that large
sets of initial conditions can be attracted to a neighborhood of these saddle-like
essential discontinuities. Orbits leave the neighborhood along the narrow valleys.
This feature may explain the frequent and robust appearance of transient swamps
in tensor approximation problems.

In the current paper, we take the results in [13, 28] to be a sufficient answer
for Question 2. Thus we take the tensor approximation problem and ALS as mo-
tivation, but turn our attention back to Question 1 and BCD in general. Con-
vergence of BCD methods has been studied for many years and with many dif-
ferent assumptions on the objective function and variations on the algorithm (e.g.
[52, 23, 48, 30, 2, 39, 53, 41]). Local convergence for ALS was studied in [50]. Here
we instead seek to understand transient behavior, specifically:

• How does the progress of BCD depend on the gradient down the valley
floor and the narrowness of the valley?

• How does the progress of BCD depend on the direction of the valley with
respect to the partitioning of coordinates into blocks?

• How fast do the BCD iterates converge to a vicinity of the valley floor?
• How does asymmetry in the narrowness of the valley affect BCD?

In order to focus on these transient behaviors, we consider an infinitely long, straight
valley. One can then use the results as a local model for behavior in a valley that
does include a minimum point but where the iterates are currently not near the
minimum.

In Section 2 we present our main analysis of BCD dynamics in a valley given by
a locally quadratic normal form. We use v to denote the uphill direction along the
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Figure 3. Illustration of a saddle-like essential discontinuity us-
ing contour plots with blue small and red large. The left panel is
the objective function that appears in the transient swamp in [13,
Section 4.2] with contours in [0, 1]. The right panel is the same
objective function, but with contours in [0.01, 0.03] and white in-
dicating values above 0.03. Such discontinuities seem to exist ro-
bustly on the boundary of tensor approximation problems. The
objective function is a function of 12 variables in 6 blocks, so only
a slice is shown. Iterates drawn near the discontinuity will leave
the neighborhood extremely slowly along the narrow valley shown.

bottom of the valley floor. The partition of coordinates x = (x1;x2; . . . ;xd) induces
a corresponding partition of the direction vector v = (v1;v2; . . . ;vd) that defines
the valley floor. We will say that the valley is maximally diagonal in the case
when |v1| = |v2| = · · · = |vd| = 1/

√
d. We use ϵ to parameterize the magnitude

of the gradient on the valley floor. In Section 2.2 we derive the effect of the BCD
algorithm applied to a valley, show that iterates converge linearly to a vicinity of
the valley floor, and show that progress in the direction −v is proportional to ϵ.

In Section 2.3 we assume that the valley sides are symmetric about the valley
floor and use σ to parameterize the magnitude of the eigenvalue of the Hessian
restricted to the hyperplane orthogonal to v. Under the assumption of symmetric
sides, we find the following.

• The rate of progress is proportional to ϵ/σ. Thus, as expected, narrower
valleys cause slower progress.

• For any d ≥ 2, the overall rate of progress down the valley depends on the
direction as  d∑

i=1

i−1∑
j=1

|vi|2|vj |2
−1

.

Consequently:
– The overall rate of progress down the valley is slowest when the valley

direction is maximally diagonal.
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– Unless the valley direction v happens to be very close to the span
of one of the d blocks, the progress will be almost as slow as for a
maximally diagonal direction. In other words, BCD behaves badly for
most directions v.

• The iterations converge linearly to a vicinity of the valley floor and then
zig-zag at a distance ∼ ϵ/σ from the valley floor. For d = 2 and d = 3 we
prove that the contraction factor toward the vicinity of the valley floor is at
most 1/8 per pass. We show numerically that the contraction factor is less
than 1/8 in the maximally diagonal case for 3 < d ≤ 100. We conjecture
that the factor is at most 1/8 for any symmetric valley.

• The order in which blocks of coordinates are updated can significantly affect
the total number of iterations needed. In d = 2, choosing the block that
reduces f(x) the most will also give the most progress down the valley, but
for d > 2 that is no longer true.

In Section 2.4 we remove the assumption of symmetric valley sides but add
the assumption that each block is size one (so BCD reduces to CD). With these
assumptions, we show the following.

• When v is maximally diagonal, progress is inversely proportional to the
trace of the Hessian restricted to the hyperplane orthogonal to v. When v
is not maximally diagonal, progress is inversely proportional to a weighted
sum of the eigenvalues, rather than the trace.

• Iterations converge linearly to a neighborhood of the valley floor, but there
does not exist a uniform bound on the contraction factor, as there was in
the symmetric case. This factor may approach 1 from below in some limits.

In Section 3 we briefly consider the dynamics at valley-like sinks and saddles in
order to relate them to the dynamics in a valley. We consider a hyperbolic sink or
saddle, a nonhyperbolic sink or saddle, and an essential discontinuity that is sink-
like or saddle-like. Now using ϵ as the strength of the attraction or repulsion in the
weak direction, we find progress is again proportional to ϵ/σ. In the hyperbolic case
we find that progress is proportional to the current distance to the sink or saddle.
In the nonhyperbolic and essential discontinuity cases we find that the progress is
proportional to the cube of this distance, and thus is much slower.

In Section 4, we discuss some implications of our analysis on the use of BCD and
ALS methods and potential improvements in their performance.

2. BCD Dynamics in a Valley

We will use the convention that x ∈ Rn is a column vector and xT is its transpose.
The usual inner (dot) product of x and y is then xTy and the usual 2-norm is

|x| =
√
xTx. Elements gathered into a row vector are written (x1, x2, . . . ) whereas

elements gathered into a column are written (x1;x2; . . . ); the latter notation allows
us to gather column vectors into a column vector as in x = (x1;x2; . . . ;xd).

2.1. The Model Problem. If f is smooth at a point x0, then locally f(x) ≈
f2(x), where f2 is quadratic and given by

f2(x) = f(x0) +∇f(x0)
T (x− x0) +

1

2
(x− x0)

TH(x0)(x− x0) ,
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where H(x0) is the Hessian of f at x0. The point x0 will be a point of interest,
such as a sink or saddle or point on the floor of a valley of the objective function f .
In studying local dynamics, we will study the local “normal form” f2 rather than f
and hereout we will consider only f = f2. Without loss of generality one can take
x0 = 0 and f(x0) = 0. The features we wish to study have a primary orientation,
which in the case of a narrow valley is the direction of ∇f(x0). We will assume
|∇f(x0)| is small, so we will replace ∇f(x0) by ϵv, where v is a unit vector and
ϵ ≥ 0. The Hessian has effects both along v and orthogonal to v. We assume these
split cleanly in that v is an eigenvector of H(x0). The features also attract the
gradient flow to V = span(v), so we assume the portion of H(x0) orthogonal to v
is positive definite.

For a valley, we therefore consider the form

(1) f(x) = ϵvTx+
1

2
xTH⊥x ,

where H⊥ is a positive semi-definite matrix with nullspace V and ϵ > 0. When the
nonzero eigenvalues of H⊥ are large compared to ϵ, then the valley is narrow. The
gradient of f is

(2) ∇f(x) = ϵv +H⊥x .

2.2. Block Coordinate Descent. Suppose now we partition Rn into d > 1 sets
of variables, i.e. x = (x1;x2; . . . ;xd). This induces a partition v = (v1;v2; . . . ;vd)
and a partition of H⊥ into blocks H⊥

ij . We assume always that |vi| > 0 for all i.
By a BCD method, we will mean minimizing with respect to the coordinate blocks
xi sequentially and cyclically. To minimize in xi, one sets the partial gradient with
respect to xi equal to zero and solves for xi. From (2) we obtain

∇xif(x) = ϵvi +
d∑

j=1

H⊥
ijxj = ϵvi +H⊥

ii xi +
d∑

j=1, ̸=i

H⊥
ijxj .

We can solve ∇xif(x) = 0 for xi to obtain

(3) xnew
i = −

(
H⊥

ii

)−1

 d∑
j=1, ̸=i

H⊥
ijxj + ϵvi

 .

If H⊥
ii were not invertible, then there would be a non-zero w such that H⊥

iiw = 0.
Setting w′ = (0; . . . ;0;w;0; . . . ;0), i.e. the zero vector except w in the i-th block,
we would obtain w′TH⊥w′ = 0. We assumed H⊥ was positive semi-definite with
nullspace V , so w′ must be a multiple of v. We also assumed |vj | > 0 for all j,
which does not allow w′ to have zero blocks. Thus H⊥

ii is invertible.
We can also write (3) as an update of the whole vector x as

xnew = Mix+ ai ,(4)

where Mi is an n× n matrix and ai a length n vector corresponding to the update
of the ith block of x. Both Mi and ai are partitioned into blocks, which are given
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by

(Mi)kj =


0 if k ̸= i and j ̸= k

I if k ̸= i and j = k

0 if k = i and j = k

−
(
H⊥

ii

)−1
H⊥

ij if k = i and j ̸= i

and(5)

(ai)k =

{
0 if k ̸= i

−
(
H⊥

ii

)−1
ϵvi if k = i

.(6)

A BCD pass through the directions can be written recursively as

xnew = Md (· · · (M2 (M1x+ a1) + a2) + · · · ) + ad .

By collecting the terms involving x, we can write this as

xnew = Mx+ b with

M = Md · · ·M2M1 and(7)

b = Md (· · · ((M2a1) + a2) + · · · ) + ad =

d∑
i=1

Md · · ·Mi+1ai .(8)

(TakeMd · · ·Md+1 = I since it represents an empty product.) The effect of applying
M is to move x toward v. We can formalize this in terms of its eigenvalues and
eigenvectors.

Theorem 2.1. The matrix M in (7) has an eigenvalue 1 with eigenvector v; all
its other eigenvalues satisfy |λ| < 1.

Proof. If we apply Mi defined by (5) to v, then we have (Miv)k = Ivk for k ̸= i.

Since H⊥v = 0, we have
∑d

j=1,̸=i H
⊥
ijvj = −H⊥

ii vi, so the k = i block gives

(Miv)i = −
(
H⊥

ii

)−1
d∑

j=1, ̸=i

H⊥
ijvj = −

(
H⊥

ii

)−1 (−H⊥
ii vi

)
= vi .

Thus v is an eigenvector with eigenvalue 1 for each Mi and hence also for their
product M .

To analyze the remaining eigenvalues, consider the BCD update process when
ϵ = 0 and hence ai = b = 0. Each step computes ∇xi

1
2x

TH⊥x and, if this is

nonzero, updates x to reduce 1
2x

TH⊥x. Since H⊥ is positive semi-definite, we

always have 0 ≤ 1
2x

TH⊥x. Thus, for any x, either 0 ≤ (Mx)TH⊥Mx < xTH⊥x

or ∇ 1
2x

TH⊥x = 0. Since ∇ 1
2x

TH⊥x = H⊥x, the second case implies x is in the

nullspace of H⊥, which means it is a multiple of v.
Suppose w is an eigenvector of M with eigenvalue λ, and w is not a multiple of

v. If λ is real, then w can also be taken real and we have

0 ≤ (Mw)TH⊥Mw = λ2wTH⊥w < wTH⊥w

so |λ| < 1. If λ is complex, then its complex conjugate λ is an eigenvalue with
eigenvector w. Since w +w and i(w −w) are real, we have

0 ≤ (λw + λw)TH⊥(λw + λw) < (w +w)TH⊥(w +w) and

0 ≤ −(λw − λw)TH⊥(λw − λw) < −(w −w)TH⊥(w −w) .
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Adding these inequalities yields

0 ≤ 2|λ|2
(
wTH⊥w +wTH⊥w

)
< 2

(
wTH⊥w +wTH⊥w

)
,

so |λ| < 1. �

Assume for the moment that the eigenvalues of M are distinct. Let Λ be the set

of eigenvalues of M and wλ an eigenvector for eigenvalue λ. Let b =
∑

λ∈Λ b̂λwλ

and x0 =
∑

λ∈Λ x̂λwλ be the expressions of b and the initial condition x0 in the
basis of eigenvectors. Then, for k > 0, solutions of the recurrence satisfy

xk = Mkx0 +
k−1∑
i=0

M ib =
∑
λ∈Λ

(
λkx̂λ +

k−1∑
i=0

λib̂λ

)
wλ .(9)

The term with λ = 1 contributes (x̂1 + kb̂1)w1, which progresses along w1 with

rate b̂1. For each |λ| < 1, the term contributes (λkx̂λ + (1 − λk)(1 − λ)−1b̂λ)wλ,

which converges to (1 − λ)−1b̂λwλ with factor |λ|. Observe that λ ≈ 1 causes
large separation from w1 as well as slow convergence while |λ| ≈ 1 only causes slow
convergence. We have shown in Theorem 2.1 that M has a simple eigenvalue 1 with
eigenvector w1 = v and that all other eigenvalues satisfy |λ| < 1. Thus iterations
will converge linearly to

xk ≈ (x̂1 + kb̂1)v +
∑
|λ|<1

(1− λ)−1b̂λwλ.

If the eigenvalues of M are not distinct but it is still diagonalizable, then a basis
of eigenvectors still exist. The above analysis still holds, but the notation becomes
cumbersome.

If M is not diagonalizable, then some eigenvalues have geometric multiplicity
less than their algebraic multiplicity. Let λ be such an eigenvalue, which we now
fix so that we can suppress it from the notation. By Theorem 2.1, we know |λ| <
1. Corresponding to each m × m block associated to λ in the Jordan canonical
form of M there is a chain of m linearly independent vectors {yj}mj=1 such that
(A − λI)yj = yj−1 and (A − λI)y1 = 0. The generalized eigenvectors {yj}mj=2

make up for the lack of enough eigenvectors to form a basis; note that y1 = wλ is
an eigenvector and so is included in the previous analysis. We can compute directly
that

Mkyj =

j−1∑
q=0

(
k

q

)
λk−qyj−q for k ≥ m and(10)

lim
k→∞

k−1∑
i=0

M iyj =

j−1∑
q=0

1

(1− λ)q+1
yj−q .(11)

Since |λ| < 1, the terms (10) converge to zero linearly with contraction factor
µ for any µ with |λ| < µ < 1. The expansions of x0 and b will include terms
corresponding to {yj}mj=2. In (9) we will then have have a coefficient of x0 times
(10), which still converges to zero linearly. Similarly, we will have a coefficient of b

times
∑k−1

i=0 M iyj , which converges linearly to (11).
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Our first goal in subsequent sections will be to find b̂1 to determine the progress

rate down the valley for various cases. We can already observe that b̂1 is propor-
tional to ϵ since b contains a factor of ϵ coming from ai in (6). Our second goal
will be to find the maximum of {|λ| : |λ| < 1} to determine the contraction factor
toward a vicinity of the valley floor.

2.3. Dynamics in a Symmetric Valley.

2.3.1. Formulation and Reduction to Coefficients. When the attraction to
V is radially symmetric about V , then for some σ > 0 we can write

H⊥ = σ(I − vvT ), and thus have(12)

f(x) = ϵvTx+
σ

2
(xTx− (vTx)2) and

∇f(x) = ϵv + σ(x− (vTx)v) .

Note that xTx − (vTx)2 is the squared distance from x to V . The update (3)
becomes

xi =
(
σ(I − viv

T
i )
)−1

σ
d∑

j=1, ̸=i

viv
T
j xj − ϵvi


=

σ
d∑

j=1, ̸=i

vT
j xj − ϵ

(σI − σviv
T
i

)−1
vi

=

σ
d∑

j=1, ̸=i

vT
j xj − ϵ

 1

σ(1− vT
i vi)

vi .(13)

Note that the updated xi is a multiple of vi, so we can write xi = civi. After
one pass through the directions, we will have xj = cjvj for all j. Thus a pass of
BCD maps the entire space onto the subspace W = (c1v1; c2v2; . . . ; cdvd) and W is
invariant under micro-steps of BCD. We remark that V is a subspace of W , but V
is not invariant under micro-steps or the full BCD algorithm. Note that if vj = 0
then the update would produce xj = 0 and cj then has no meaning or role. We
have assumed |vj | > 0 for all j to avoid such null directions. Let pi = vT

i vi and
p be the vector of pi values. We can then exchange the vector update (13) for the
scalar update

(14) ci =

σ
d∑

j=1, ̸=i

cjpj − ϵ

 1

σ(1− pi)
=

1

1− pi

 d∑
j=1, ̸=i

cjpj −
ϵ

σ

 .

In what follows we assume there has already been one update pass through the
directions, so x ∈ W and we can work entirely with the coefficient vector c =
(c1; . . . ; cd), which we assume for convenience has initial value c0 = (c01; . . . ; c

0
d).

Since |v|2 =
∑d

j=1 pj = 1, for interpretation we can rewrite (14) as

(15) ci =

∑d
j=1,̸=i cjpj∑d
j=1, ̸=i pj

− ϵ

σ(1− pi)
.
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The first term is a weighted average of {cj}j ̸=i and so tries to make all {cj}dj=1 the
same. The second term controls the drift down the valley. It is proportional to
ϵ, which is the size of the gradient on the valley floor. It is inversely proportional
to σ, so the narrower the valley is, the slower the progress down the valley. It is
also inversely proportional to (1− pi) ∈ (0, 1), so the update of the i-block achieves
more progress if v has a larger component in vi.

We can also write (14) as an update of the whole vector c as

cnew = Mic−
ϵ

σ(1− pi)
ei with(16)

Mi =

(
I +

1

1− pi
ei (p− ei)

T

)
.(17)

We note that M and Mi here are matrices representing the same linear operators
as in section 2.2, but restricted to the subspace W . A BCD pass through the
directions can then be written

cnew = Mc+ b with

M = Md · · ·M2M1 and(18)

b =
−ϵ

σ

(
d∑

i=1

Md · · ·Mi+1
1

1− pi
ei

)
.(19)

Corresponding to Theorem 2.1. we have

Corollary 2.2. The matrix M in (18) has an eigenvalue 1 with eigenvector 1; all
its other eigenvalues satisfy |λ| < 1.

Proof. By direct computation, Mi1 = 1 for all i, so M has an eigenvalue 1 with
eigenvector 1. The rest of the theorem follows from Theorem 2.1 since the current
M and Mi are simply restrictions of the linear operators in Section 2.2 to W . �

The convergence theory in Section 2.2 still applies, now replacing x by c and v

by 1. We are thus still interested in finding b̂1 and the maximum of {|λ| : |λ| < 1}.
Note from (19) that b has a factor ϵ/σ and therefore so does each b̂λ. Thus the
progress along the valley and the asymptotic distance from the floor of the valley
are both proportional to ϵ/σ.

2.3.2. The case d = 2. When d = 2 we have p1 + p2 = 1 and the update (14)
yields

c11 =
1

1− p1

(
c02p2 −

ϵ

σ

)
= c02 −

1

p2

ϵ

σ
and

c12 =
1

1− p2

(
c11p1 −

ϵ

σ

)
= c11 −

1

p1

ϵ

σ
= c02 −

1

p1p2

ϵ

σ
.

Continuing, we have

ck1 = c02 −
(
k − 1

p1p2
+

1

p2

)
ϵ

σ
= c02 −

(
k

p1p2
− 1

p1

)
ϵ

σ
and

ck2 = c02 −
k

p1p2

ϵ

σ
.

The coefficients produced by the steps of the algorithm alternate between two
parallel lines. Namely, (ck1 , c

k−1
2 ) is always on the line c2 = c1 +

ϵ
p2σ

and (ck1 , c
k
2) is
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Figure 4. Trajectory of the coefficients (c1, c2) generated by BCD
in a symmetric valley with d = 2. In the left panel c1 is optimized
first and in the right panel c2 is optimized first. In both the tra-
jectory is immediately projected onto a pair of parallel lines close
to {c1 = c2}. This illustrates very clearly that the initial order
of optimization micro-steps may matter greatly. For two coordi-
nate blocks (d = 2) progress is optimized if one chooses to first
minimize with respect to the block (x2 in this example) that gives
the greatest improvement in the objective function (i.e. a greedy
strategy). We will see in Section 2.3.3 that this does not work for
more than two blocks.

on the line c2 = c1 − ϵ
p1σ

. Therefore, iterates in the original coordinates alternate

between the two parallel lines as(
xk
1

xk−1
2

)
∈ V +

ϵ

p2σ

(
0
v2

)
and

(
xk
1

xk
2

)
∈ V − ϵ

p1σ

(
0
v2

)
.

These lines are each a distance ∼ ϵ/σ from V . In Figure 4 we illustrate the trajec-
tories of coefficients (c1, c2).

We can express the direction of v with respect to its partition into v1 and v2

using the angle θ such that (cos(θ), sin(θ)) = (
√
p1,

√
p2). (Note that θ is the

angle between v and the x1 coordinate hyperplane.) Each pass of BCD moves x a
distance of

(20) |∆x| =
∣∣∣∣(ck+1

1 v1

ck+1
2 v2

)
−
(
ck1v1

ck2v2

)∣∣∣∣ = 1

p1p2

ϵ

σ
|v| = 1

cos2 θ sin2 θ

ϵ

σ
= 4 csc2(2θ)

ϵ

σ
.

The minimal progress of 4ϵ/σ occurs when θ = π/4, which is the maximally diagonal
case |v1| = |v2|. We plot the dependence on θ in Figure 5. For a large domain
of angles, the movement is close to the minimum value. In particular, for angles
π/8 < θ < 3π/8, which is half the available domain, the rate will be less than twice
the minimum value. If we consider for which θ the rate of progress is within an
order of magnitude of the minimum value, that occurs for 0.16 < θ < 1.41 or about
80% of the domain of angles.

We also observe from the recurrence and Figure 4 that it can matter a lot whether
one optimizes first in x1 or x2. We see that the difference in the number of iterations
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Figure 5. Graph of csc2(2θ), which is proportional to the progress
of BCD as a function of the angle of the gradient with respect to
two blocks of variables. We see that this in fact is quite small for
a large neighborhood of angles around the minimum at π/4.

can be on the order of σ/ϵ times the distance of x0 from the valley floor. With
two blocks (d = 2) it is easy to check that the first micro-step of BCD should be
greedy. That is, one should calculate the micro-steps with respect to each block of
coordinates and update the block that gives the largest decrease in the objective
function.

From our investigation of d = 2, we draw the following conclusions or lessons:

• Iterations zig-zag along lines ∼ ϵ/σ from the valley floor.
• A greedy first micro-step can have a large benefit.
• Progress is proportional to ϵ/σ. It depends on the angle θ proportionally
to csc2(2θ). The slowest progress rate 4ϵ/σ occurs when |v1| = |v2|.

2.3.3. The case d = 3. When d = 3 we have p1 + p2 + p3 = 1 and the update
(14) yields

ck+1
1 =

1

p2 + p3

(
p2c

k
2 + p3c

k
3 − ϵ

σ

)
,

ck+1
2 =

1

p1 + p3

(
p1c

k+1
1 + p3c

k
3 − ϵ

σ

)
, and

ck+1
3 =

1

p1 + p2

(
p1c

k+1
1 + p2c

k+1
2 − ϵ

σ

)
.

A trajectory of this recurrence is plotted in Figure 6. Iterations of the coefficients
are attracted to a neighborhood of the diagonal {c1 = c2 = c3}, then zig-zag
downward along the valley floor. In particular, in the limit the iterations alternate
between three lines that are parallel to the diagonal.

Using (17), we can compute the matrix (18)

M = M3M2M1 =

0 p2

1−p1

p3

(1−p1)

0 p1p2

(1−p1)(1−p2)
p3

(1−p1)(1−p2)

0 p1p2

(1−p1)(1−p2)(1−p3)
(p1+p2−p1p2)p3

(1−p1)(1−p2)(1−p3)
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Figure 6. Trajectory of the coefficients (c1, c2, c3) generated by
BCD in a symmetric valley with d = 3. The first panel shows
iterations of the coefficients first approaching a neighborhood of
the diagonal {c1 = c2 = c3}, then moving along three lines that
are parallel to the diagonal. In the second panel these iterations
are projected onto a plane normal to the diagonal.

and the vector (19)

b = − ϵ

σ


1

1−p1
1

(1−p1)(1−p2)
1

(1−p1)(1−p2)(1−p3)

 .

The matrix M has an eigenvalue 0 with eigenvector e1 and (as noted in Corol-
lary 2.2) an eigenvalue 1 with eigenvector 1. The third eigenvalue-eigenvector pair
is

λ =
−p1p2p3

(1− p1)(1− p2)(1− p3)
=

−p1p2p3
(p1 + p2)(p2 + p3)(p1 + p3)

, and(21)

wλ =

(
(1− p2)(1− p3)

p21
,

−(1− p3)p3
p1p2

, 1

)T

.

Since pi + pj ≥ 2
√
pipj , we have that |λ| ≤ 1/8; the case p1 = p2 = p3 = 1/3 yields

λ = −1/8 so this bound is sharp.
By solving a linear system, we can express b in the basis {e1,1,wλ} as b =

b̂0e1 + b̂11+ b̂λw with

b̂0 =
ϵ

σ

1

p1
, b̂1 = − ϵ

σ

1

p1p2 + p2p3 + p1p3
, and

b̂λ = − ϵ

σ

p1p2p3
(1− p1)(1− p2)(1− p3)(p1p2 + p2p3 + p1p3)

.

Similarly, for any starting point c0 ∈ R3 we have c0 = ĉ0e1 + ĉ11 + ĉλwλ. The
expression (9) for the solutions of the recurrence becomes
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ck =
(
ĉ1 + b̂1k

)
1+

(
ĉλλ

k + b̂λ
1− λk

1− λ

)
wλ + b̂0e1 .

We see that the coefficients of the recurrence converge to a neighborhood of the
diagonal {c1 = c2 = c3} (rather than being sent there immediately as in the case
d = 2) and so iterates of the algorithm converge to a neighborhood of the line
spanned by v. The convergence to the valley floor is controlled by the eigenvalue
λ in (21). We saw that |λ| ≤ 1/8, with equality attained for the symmetric case
p1 = p2 = p3 = 1/3. Therefore the slowest convergence to the valley is with a
contraction factor of 1/8 per pass of the algorithm. The minimum of |λ| = 0 occurs
along the boundary, where the problem reduced to the case d = 2. It is of particular
note that the contraction factor |λ| ≤ 1/8 is independent of ϵ, which is the size of
the gradient, and σ, which determines how narrow the valley is.

Asymptotically, as k grows large we have

ck ≈
(
ĉ1 + b̂1k

)
1+ b̂λ

1

1− λ
wλ + b̂0e1 .

For k large, each pass (3 micro-steps) will move approximately by:

(22) |∆x| = |xk+1 − xk| ≈ |b̂1| =
ϵ

σ

1

p1p2 + p2p3 + p1p3
.

As with the d = 2 case in Section 2.3.2, the dependence on ϵ and σ is as ϵ/σ, which
is small when σ ≫ ϵ. Since p1 + p2 + p3 = 1, either zero, one, or two of the pi can
be small.

• If none of the pi are small, then the scalar depending on the pi cannot
speed the progress. It is elementary to show that (22) is convex and is
minimized by the symmetric case p1 = p2 = p3 = 1/3, corresponding to
|v1| = |v2| = |v3|. Thus, the slowest rate of progress along the valley is

min |∆x| = 3ϵ/σ .

• If one of the pi is small, then the BCD algorithm will nearly project onto the
hyperplane spanned by the two non-zero coordinate blocks. The trajectory
will then zig-zag near that plane with essentially the same rate as the d = 2
case in Section 2.3.2. In particular, if we set p3 = 0 in (22), then it reduces
to (20). If we then set p1 = p2 = 1/2, then the slowest rate of progress is
4ϵ/σ.

• If two of the pi are small, then (22) can be large.

Numerically, in R3 we find that (22) is no more than twice the minimum value
for 85.3% of unit vectors v and it is within the same order as the minimum for
96.2% of all unit vectors (using a spherically symmetric uniform distribution on the
sphere |v1|2 + |v2|2 + |v3|2 = 1). Both of these percentages are significantly larger
than the corresponding percentages for the case n = d = 2. Thus we observe that
the portion of all directions that make BCD slow grows markedly as the number of
blocks increases from 2 to 3.

The BCD method and the sequential recurrence (31) are not symmetric in the
blocks of coordinates and so the choice of the order of optimization may matter.
Progress along the valley direction is achieved by decreasing the coefficients {ci} and
so optimizing first with respect to the largest ci will result in the largest progress
down the valley among all d possible first micro-steps. However, in the context of
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a real problem the coefficients {ci} will not be known and one might hope for a
proxy, such as the value of the objective function f . In Section 2.3.2 we observed
that for two coordinate blocks (d = 2), it is advantageous to use a greedy strategy
(with respect to f) to choose the order of micro-steps. For d ≥ 3 this is no longer
true as we will show in the following example.

Fix d ≥ 3 and consider the initial state x0 = (0,v2,v3, . . . ,vd) ∈ W , which can
be described by the coefficients (c1, c2, . . . , cd) = (0, 1, 1, . . . , 1). If we optimize with
respect to x1 first, then by direct calculation c1 becomes

c1 = 1− d

d− 1

ϵ

σ

and the updated vector is y1 = (c1v1;v2; . . . ;vd). If instead we optimize with
respect to x2 first, then c2 becomes updated to

c2 = 1− 1

d− 1
− d

d− 1

ϵ

σ
,

which produces a new vector y2 = (0; c2v2;v3; . . . ;vd). Comparing the objective
function f(x) evaluated at the new points y1 and y2, we find that

f(y1) = ϵ− 1

d− 1

ϵ2

2σ
and

f(y2) = ϵ
d− 2

d− 1
− 1

d− 1

ϵ2

2σ
+

(d− 2)σ

2d(d− 1)
= f(y1) +

1

d− 1

(
σ(d− 2)

2d
− ϵ

)
.

For d ≥ 3 and σ(d − 2)/2d > ϵ (in particular if ϵ ≪ σ as in a narrow valley) then
we will have f(y1) < f(y2). Thus the greedy choice is to optimize with respect to
x1 first. However,

vTy1 = 1− 1

d− 1

ϵ

2σ
while vTy2 =

d− 2

d− 1
− 1

d− 1

ϵ

2σ
= vTy1 −

2

d− 1
,

so optimizing with respect to x2 first gives more movement in the direction −v,
which is better for progress down the valley and allows for fewer steps to leave
the valley. In fact, we may observe that vTy1 > vTx0 = 1 − 1/d provided ϵ/σ <
2(d− 1)/d, i.e., y1 is further up the valley than the initial point.

This happens because of the composition of the objective function. The first part
of f , with coefficient ϵ, measures linear distance in the direction v. The second part,
multiplied by σ, penalizes the square of the distance from V . If x is not close to V ,
then the objective f will be dominated by the quadratic part. A greedy strategy
will tend to pull the iteration toward V , but not necessarily further down the valley
in the direction −v.

For this example, while “greedy with respect to micro-steps” can lead to bad
results, “greedy with respect to a full pass” works for d = 3. By that we mean take
full passes with different orders of search directions and chose the order with the
most improvement in f(x). In this example with d = 3, a full pass using the order
that achieves the most improvement in f(x), that is ℓ = 3, 2, 1 (or d = 2, 3, 1), also
achieves the most improvement along the important direction v. Whether or not
this is true in general is left for future exploration.

Summarizing, in the case d = 3 we find:

• Iterations are attracted linearly to a neighborhood of the valley floor with
a contraction factor per pass no worse than 1/8, independent of ϵ and σ.
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• Iterations zig-zag at a distance ∼ ϵ/σ from the valley floor.
• In one pass, iterations move a distance ∼ ϵ/σ with a minimum of 3ϵ/σ.
• The slowest convergence to the valley and the slowest progress along the
valley occur when v is maximally diagonal, i.e. |v1| = |v2| = |v3|.

• For d = 3 a large set of directions v make progress of alternating algorithms
slow. The percentage of slow directions is higher than for the case d = 2.

• For d > 2, a greedy strategy based on decreasing the objective function by
micro-steps may be counterproductive in a narrow valley.

2.3.4. Progress rate for d ≥ 2. In previous sections we derived the progress rate

b̂1 in a symmetric valley in the cases d = 2 (20) and d = 3 (22). Now we produce
the progress rate for d arbitrary. We will use the results to show that the progress
rate is slow except for a set of directions v ∈ Rn that is exponentially small in n.

Theorem 2.3. The progress rate is

(23) b̂1 = − ϵ

σ

1∑d
i=1

∑i−1
j=1 pipj

= − ϵ

σ

2∑d
i ̸=j pipj

.

Proof. We give the high-level arguments of the proof now, while deferring calcula-
tions.

2.2 showed that the eigenvalue 1 is simple and has eigenvector 1, and all other
eigenvalues satisfy |λ| < 1. Thus, by the power method, ẑ11 = limk→∞ Mkz for

any z, so in particular b̂11 = limk→∞ Mkb. The matrix M∞ = limk→∞ Mk is thus
the projector onto the component of a vector in the eigenvector 1 when expanded
into the eigenvectors of M . We can thus write M∞ = 1uT for some u.

Since M∞M = M∞, we know 1uTM = 1uT and hence uTM = uT . Thus u is a
left eigenvector of M with eigenvalue 1. Since this eigenvalue is simple, u is unique
up to a scalar factor. In Lemma 2.4 we will show that the vector y with entries

yi = pi
∑i−1

j=1 pj is a left eigenvector of M with eigenvalue 1. Since M∞M∞ = M∞,

we know uT1 = 1 and thus u = y/(yT1).

In Lemma 2.5 we will show that yTb = −ϵ/σ. Thus b̂1 = uTb = −ϵ/(σyT1).

We can compute directly that yT1 =
∑d

i=1 pi
∑i−1

j=1 pj , thus yielding (23). �

Lemma 2.4. The vector

(24) y =
d∑

i=1

pi

i−1∑
j=1

pj

 ei

is a left eigenvector of M in (18) with eigenvalue 1.

Proof. We will show that

(25) yTMd · · ·Mk = yT +
d∑

i=k

pi(p− ei)
T

for k = 1, 2, . . . , d. Setting k = 1 then yields

yTM = yT +
d∑

i=1

pi(p− ei)
T = yT +

(
d∑

i=1

pi

)
pT −

d∑
i=1

pie
T
i = yT ,

which means y is a left eigenvector with eigenvalue 1.
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The argument is recursive, and so acts like a finite induction down in k. The
base case is obtained by setting k = d + 1 in (25), which yields yT = yT . The
recursive step is then to take the k + 1 version of (25), apply Mk on the right, and
show we get (25). We thus compute(

yT +

d∑
i=k+1

pi(p− ei)
T

)(
I +

1

1− pk
ek (p− ek)

T

)
.

The product of the first term with the identity I in the second term yields all of
(25) except for its i = k term. The remainder of the product is(

yT +
d∑

i=k+1

pi(p− ei)
T

)
1

1− pk
ek (p− ek)

T

=

pk

k−1∑
j=1

pj

+

d∑
i=k+1

pipk

 1

1− pk
(p− ek)

T

=

 d∑
j=1,̸=k

pj

 pk
1− pk

(p− ek)
T
= pk (p− ek)

T
.

Since this is the desired i = k term, the induction and the result are proven. �

Lemma 2.5. For the vectors y in (24) and b in (19), yTb = −ϵ/σ.

Proof. Substituting (25) into (19) yields

yTb =
−ϵ

σ

d∑
i=1

yT +
d∑

j=i+1

pj(p− ej)
T

 1

1− pi
ei

=
−ϵ

σ

d∑
i=1

pi

i−1∑
j=1

pj

+
d∑

j=i+1

pjpi

 1

1− pi

=
−ϵ

σ

d∑
i=1

pi

 i−1∑
j=1, ̸=i

pj

 1

1− pi
=

−ϵ

σ

d∑
i=1

pi =
−ϵ

σ
.

�

From (23) we obtain the following.

Corollary 2.6. The progress rate (23) is slowest when v is maximally diagonal,
where (23) has value −(ϵ/σ)2d/(d− 1).

Proof. A direct computation shows that the function ϕ(p) =
∑d

i ̸=j pipj is concave

down on the unit simplex σd = {p : pi ≥ 0,
∑d

i=1 pi = 1}. In particular, if we
eliminate pd from ϕ using the constraint and calculate second partial derivatives of
ϕ̄(p1, . . . , pd−1) = ϕ(p), we find that all mixed partial derivatives are −1, while the
pure second derivatives all equal to −2. It is then easy to show that the Hessian
matrix is strictly negative definite. Separately, the method of Lagrange multipliers
shows that ϕ restricted to the unit simplex has a single critical point, which is
the symmetric point pi = 1/d for all 1 ≤ i ≤ d. The symmetric point, which



574 M. MOHLENKAMP, T. R. YOUNG, AND B. BÁRÁNY

Figure 7. Log plot of the portion of vectors v on the unit sphere

Sn−1 for which the rate of progress, b̂1, is more than twice (P2
∗) and 10 times (P10 ◦) the minimum value, 2n/(n − 1) ϵ

σ , as a
function of n for CD. For practical purposes, almost all directions
v behave nearly as badly as a maximally diagonal direction.

corresponds to v being maximally diagonal, is the maximum point for ϕ and the

minimum point for |b̂1|. �

In the previous section we saw that as n increases from 2 to 3, the fraction
of directions that behave badly increases. Using Theorem 2.3 for n = 3, 4, 5 we
calculated the values of P2 and P10, the portion of unit vectors for which the rate

of progress b̂1 is greater than twice or 10 times the slowest rate, respectively, and
plotted the results in Figure 7. We see that even for n = 4 these portions are quite
small. Thus, practically all directions are bad for a CD algorithm. The following
results show that this pattern continues asymptotically for BCD. Proposition 2.7
shows that fast progress requires v to have a large projection onto a single block.
Proposition 2.9 then shows that the set of such vectors is exponentially small in n.

Proposition 2.7. For any α > 2, the directions v ∈ Sn−1 for which |b̂1| >
α2d/(d− 1) ϵ

σ satisfy

(26) pi >
1

2
+

1

2

√
1− 2(d− 1)

αd
for some i with 1 ≤ i ≤ d.

Proof. Without loss of generality, we can order {pi} so that pi ≤ pd for all 1 ≤ i < d.
Note that for p satisfying p1 + · · ·+ pd = 1, we have

ϕd(p) =
d∑

i ̸=j

pipj =
d−1∑
i ̸=j

pipj + pd

d−1∑
i=1

pi = ϕd−1(p
′) + pd(1− pd) ,(27)

where we use p′ to denote the vector formed from p by removing the last entry.

We have that |b̂1| > α2d/(d − 1) ϵ
σ if and only if ϕ(p) < (d − 1)/2αd. From (27),
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this implies pd(1− pd) <
d−1
2αd . This inequality has solutions

(28) pd >
1

2
+

1

2

√
1− 2(d− 1)

αd
or pd <

1

2
− 1

2

√
1− 2(d− 1)

αd

provided α > 2(d− 1)/d. If we take α > 2, then there are solutions for any d. The
first solution is the desired inequality (26).

The second solution to (28) implies pd < 1/2; since we assumed pd was the largest
pi, this implies all pi are less than 1/2. Consider ϕ restricted to the unit simplex
with the additional constraints 0 ≤ pi ≤ 1/2 for all i. Since ϕ is concave down on
the simplex and since the constraints are linear, local minimum points must occur
at the corners of the restricted region. The corners correspond to k > 1 coordinates
equal to 1/k and the other d − k coordinates equal to 0, i.e. permutations of the
vector qk that is 1/k in the first k coordinates and 0 elsewhere. We can compute
directly

ϕ(qk) =
1

k2

(
i

2

)
=

k − 1

2k
=

1

2
− 1

2k
≥ 1

4
.

Since this is inconsistent with ϕ(p) < (d−1)/2αd < 1/4, we can rule out the second
solution to (28). �

Next we will apply Paul Lévy’s spherical isoparametric inequality also known as
concentration of measure on the sphere [25]. Let µ be the normalized surface area
measure on Sn−1 and let ∥ · ∥ denote Euclidean distance in Rn.

Theorem 2.8 (Measure Concentration for the Sphere Sn−1). Let A ⊂ Sn−1 be a
measurable subset of the unit sphere Sn−1 such that µ(A) = 1/2. Let Aδ denote the
δ-neighborhood of A in Sn−1. i.e., Aδ = {x ∈ Sn−1 | ∃z ∈ A, ∥x− z∥ ≤ δ}. Then,

(29) µ(Aδ) ≥ 1− 2e−nδ2/2 .

Proposition 2.9. If v ∈ Sn−1 is partitioned into d blocks, the number of coordi-
nates in each block is at most n/2, and 0 < γ < 1/2, then the measure of the set of
v for which |vi|2 ≥ 1/2 + γ for some i is less than

(30) 2d exp(−nγ2/2) .

Proof. We will show that the set A = {v ∈ Sn−1 | |vd|2 ≥ 1/2 + γ} has measure
less than 2 exp(−nγ2/2). Permuting the distinguished index then yields (30). The
set B = {v ∈ Sn−1 | |vd|2 ≤ 1/2} has measure at least 1/2 by the assumption that
vd contain not more than half the variables. By the isoparametric inequality (29)
applied to B, µ(A) < 2 exp(−nδ2/2), where δ is the minimum distance between A
and B. We thus need only show that δ ≥ γ.

The minimum distance between A and B occurs on their boundaries ∂A and
∂B. Defining

f(x) = |x1|2 + · · ·+ |xd−1|2 and g(x) = |xd|2 ,
we can characterize ∂A and ∂B as intersections of level sets of these functions as

∂A = {x | f(x) = 1/2−γ, g(x) = 1/2+γ} and ∂B = {x | f(x) = 1/2, g(x) = 1/2} .
The minimal distance between ∂A and ∂B will occur at points x ∈ ∂A and y ∈ ∂B
where the normal plane to ∂A at x intersects ∂B at y. Note that the normal plane
to ∂A at x is spanned by the vectors

∇f(x) = (x1; . . . ;xd−1,0) and ∇g(x) = (0; . . . ;0;xd).
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From this condition we deduce that y must satisfy yi = axi for 1 ≤ i ≤ d− 1 and
yd = bxd for some real a and b. Applying the constraints x ∈ ∂A and y ∈ ∂B, we
obtain

a = ± 1√
1− 2γ

and b = ± 1√
1 + 2γ

.

We can substitute these expressions directly into the distance formula to find that
the distance is independent of the point x ∈ ∂A and is minimized at y corresponding
to the positive values of a and b. For these points we find that

δ2 = d(x,y)2 = 2−
√
1− 2γ −

√
1 + γ.

Since γ < 1/2, we can expand the square root expressions as convergent Taylor
series. The odd terms in the expansion cancel leaving

d(x,y)2 = γ2 +
5

4
γ4 + . . . ,

where all the successive even powers have positive coefficients and we can conclude
that δ > γ. �

2.3.5. The case d > 3 with pi = 1/d. For d > 3 we will further analyze the
maximally diagonal case pi = |vi|2 = 1/d for all 1 ≤ i ≤ d, which has the slowest
progress along the valley. The update (14) in this case becomes

(31) ci =
1

d− 1

d∑
j=1, ̸=i

cj −
d

d− 1

ϵ

σ
.

If we let sj be the sequence sdk+i = cki , then sj satisfies the recurrence

(32) sj =
1

d− 1

d−1∑
i=1

sj−i − d

d− 1

ϵ

σ
.

This recurrence has a particular solution sjpart = − 2
d−1

ϵ
σ j, so that on a pass of BCD

it moves in the valley direction by

(33) |∆x| = 2d

d− 1

ϵ

σ
,

which agrees with (23) for pi = 1/d. The homogeneous part of the recurrence (32)
has the auxiliary equation

(d− 1)zd−1 − zd−2 − zd−3 − . . .− z − 1 = 0 .

Dividing it by z − 1 yields

(34) (d− 1)zd−2 + (d− 2)zd−3 + . . .+ 2z + 1 =
d−2∑
i=0

(i+ 1)zi = 0 .

The recurrence (32) is equivalent to applying M1, followed by a cyclic permuta-
tion of coordinates ci 7→ c(i+1 mod d), which can be represented by a permutation

matrix C. Now consider that Mi = C−i+1M1C
i−1. It is then easy to show, using

C−d+1 = C, that the full matrix M = Md · · ·M1 is equal to (CM1)
d. The poly-

nomial in (34) is the characteristic polynomial of CM1 divided by z(z − 1). The
eigenvalues of M are thus the roots of (34) raised to the power d, along with 0
and 1. In Figure 8(a) we plot the maximum modulus of the roots as a function of
d. In Figure 8(b) we plot the same maximal root raised to the power d for each d
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(a) (b)

Figure 8. (a) Maximal modulus of non-unity roots of the auxil-
iary polynomial (34) as a function of d, d ≥ 3. For d = 3, −1/2
is the second root. As d becomes large the modulus of the root
appears to approach 1, but relatively slowly. These roots quantify
the contraction toward the diagonal (in coefficient space) of one
micro-step of an alternating algorithm. (b) The modulus of the
maximal root raised to the power d, 3 ≤ d ≤ 100. This is an up-
per bound on the contraction factor to the valley of a pass of the
algorithm. It appears this factor is bounded above by 1/8.

and observe that this is bounded above by 1/8 for d = 3, . . . , 100. As discussed in
Section 2.2, the maximum modulus of the eigenvalues of M other than 1 controls
the convergence to a neighborhood of the diagonal.

For the case d > 3 with pi = 1/d, we find:

• Iterations are attracted to a neighborhood of the valley floor with a con-
traction factor no worse than 1/8 per pass, independent of d, ϵ and σ.

We also confirmed that a pass moves the point a distance ∼ ϵ/σ with a minimum

of
2d

d− 1

ϵ

σ
.

2.3.6. Comparison with Gradient Descent with Line Search. The GDLS
algorithm computes the gradient and then moves along the ray in the negative
gradient direction until it encounters the first local minimum. Since this algorithm
is independent of the coordinate system, the progress rate of GDLS is independent
of v. In [13, Section 2.3.2], the behavior of GDLS in a valley in d = 2 was studied.
By rotating the coordinate system to map v to e1 and x0 into the span of e1 and
e2, the analysis also holds for a symmetric valley in d > 2. The iterates alternate
between the two lines x2 = x0

2 and x2 = −(ϵ/σ)2/x0
2. The mean progress (along

−e1) is

ϵ

σ

(
1 +

1

2

((
ϵ

σx0
2

)2

+

(
ϵ

σx0
2

)−2
))

.

The progress rate depends on the initial value x0
2 and attains its minimum value of

2ϵ/σ when |x0
2| = ϵ/σ.

In comparison:
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• Both methods move proportionally to ϵ/σ.
• The BCD progress rate is insensitive to the starting point but is sensitive
to v. Since the proportion of v yielding slow progress increases with d, one
is likely to notice the effect of valleys when using BCD.

• The GDLS progress rate is insensitive to v but is sensitive to the starting
point. GDLS does not have a mechanism for converging to the vicinity
of the valley floor. Whether or not one notices the effect of a valley thus
depends on either an (un)lucky choice of starting point or the behavior of
f(x) outside the local validity of the valley model.

2.4. Diagonal Valley with asymmetric walls.

2.4.1. The general setup and the special case of coordinate descent. If
the attraction to V is not radially symmetric about V , then

H⊥ =
n−1∑
m=1

σmumuT
m

with {um} orthonormal, uT
mv = 0 for all m, and σm > 0. In order to compute the

update (3), we need to compute

(
H⊥

ii

)−1
=

(
n−1∑
m=1

σmumiu
T
mi

)−1

,

where umi is the i-th block out of um.
Since this is too general to allow a useful formula, we will only consider block

size one, i.e. the CD case. In this context umi is just a scalar umi and the inverse
is just the reciprocal. Let

(35) σ̂ij =

∑d−1
m=1 σmumiumj∑d−1
m=1 umiumj

,

which is a weighted average of the σm, with some negative weights when i ̸= j. Let
U be the matrix whose first d − 1 rows are u1 through ud−1 and whose last is v.

This matrix is orthogonal (as is its transpose), so
∑d−1

m=1 umiumj + vivj = δij . We
can then interpret

H⊥
ii =

d−1∑
m=1

σmu2
mi =

∑d−1
m=1 σmu2

mi∑d−1
m=1 u

2
mi

(1− vivi) = σ̂ii(1− pi)

as the familiar factor 1−pi times a weighted average of the σm. Similarly, for i ̸= j
we have H⊥

ij = σ̂ij(−vivj).
We can then write (3) as

xi =
1

σ̂ii(1− pi)

 d∑
j=1, ̸=i

σ̂ijvivjxj − ϵvi

 .

Letting xi = civi, we can reduce to the coefficient equation

ci =
1

σ̂ii(1− pi)

 d∑
j=1, ̸=i

σ̂ijpjcj − ϵ

 =

∑d
j=1, ̸=i

σ̂ij

σ̂ii
pjcj

1− pi
− ϵ

σ̂ii(1− pi)
.
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This update is analogous to (15) in that it contains an averaging term and a drift
term; it reduces to (15) when σm = σ for all m.

We can put this into vector form, as we did in Section 2.3.1 for the symmetric
valley. Corresponding to Equations (16) and (17), we have

cnew = Mic−
ϵ

σ̂ii(1− pi)
ei with

Mi =

d∑
j=1,̸=i

(
ej +

σ̂ijpj
(1− pi)σ̂ii

ei

)
eTj .(36)

Corresponding to (19) we have

b = −ϵ
d∑

i=1

Md · · ·Mi+1
1

σ̂ii(1− pi)
ei .(37)

As in the general case in Section 2.2 and the symmetric case in Section 2.3, we are

interested in finding b̂1 and the maximum of {|λ| : |λ| < 1}. As in Corollary 2.2, M
has an eigenvalue 1 with eigenvector 1 and all its other eigenvalues satisfy |λ| < 1.

2.4.2. A particular example in R3. In R3 consider the diagonal direction v =
(1, 1, 1)T /

√
3, two orthogonal vectors u1 = (1,−1, 0)T /

√
2 and u2 = (−1,−1, 2)T /

√
6,

and two eigenvalues σ1, σ2 > 0. Let

f(x) = c+ ϵv · x+
σ1

2
(u1 · x)2 +

σ2

2
(u2 · x)2 so

∇f(x) = ϵv + σ1(u1 · x)u1 + σ2(u2 · x)u2 .

Using the notation (x, y, z) ∈ R3, CD starting with the x direction produces the
recurrence

xk+1 =
3σ1 − σ2

3σ1 + σ2
yk +

2σ2

3σ1 + σ2
zk − 2

√
3

3σ1 + σ2
ϵ ,

yk+1 =
3σ1 − σ2

3σ1 + σ2
xk+1 +

2σ2

3σ1 + σ2
zk − 2

√
3

3σ1 + σ2
ϵ , and

zk+1 =
xk+1 + yk+1

2
−

√
3

2σ2
ϵ.

When σ1 = σ2, this reduces to the form in Section 2.3.3 with v = (1, 1, 1)T /
√
3.

This sequential recurrence can be rewritten as a simultaneous recurrence

xk+1 =
3σ1 − σ2

3σ1 + σ2
yk +

2σ2

3σ1 + σ2
zk − 2

√
3

3σ1 + σ2
ϵ ,

yk+1 =

(
3σ1 − σ2

3σ1 + σ2

)2

yk +
12σ1σ2

(3σ1 + σ2)2
zk − 12σ1

√
3

(3σ1 + σ2)2
ϵ , and

zk+1 =
3σ1(3σ1 − σ2)

(3σ1 + σ2)2
yk +

9σ1σ2 + σ2
2

(3σ1 + σ2)2
zk − 9σ2

1 + 24σ1σ2 + 3σ2
2

2σ2(3σ1 + σ2)2

√
3ϵ.

We can write this in matrix-vector form as xk+1 = Mxk + a. (We could write this

in terms of the coefficients using c = x
√
3 and b = a

√
3, but here we stay with

x.) The matrix M has eigenvalues 0 and 1 with eigenvectors e1 = (1, 0, 0)T and v,
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respectively. For σ2 = 3σ1, 0 is a repeated eigenvalue with eigenvectors e1 and e2.
Assuming σ2 ̸= 3σ1, the third eigenvalue/eigenvector pair is

λ =
−σ2(3σ1 − σ2)

(3σ1 + σ2)2
and wλ =

(
3σ1 + σ2

3σ1 − σ2
,− 2σ2

3σ1 − σ2
,
1

2

)T

.

For the two cases 0 < σ2 < 3σ1 and σ2 > 3σ1 it is elementary to check that
|λ| < 1. Since λ → 1 as σ1/σ2 → 0, no better bound is possible; the case σ1/σ2 ≈ 0
corresponds to f acting like an ill-conditioned sink in the direction orthogonal to
v.

Assume from hereon that σ2 ̸= 3σ1. In the basis of eigenvectors we have a =
â0e1 + â1v + âλwλ, where

â0 = −
√
3

σ2
ϵ , â1 = − 6

σ1 + σ2
ϵ , and âλ =

(3σ2
1 + σ2

2)(3σ1 − σ2)
√
3

2σ2(σ1 + σ2)(3σ1 + σ2)2
ϵ .

Suppose x0 ∈ R3 is the initial guess and x0 = x̂0e1+ x̂1v+ x̂λwλ. Then, for k > 0,

xk = x̂11+x̂λλ
kwλ−

k−1∑
n=0

(â1v+âλλ
nwλ) = (x̂1 − â1k)v+

(
x̂λλ

k − âλ
1− λk

1− λ

)
wλ.

We see that xk approaches a neighborhood of the line spanned by v. Asymptoti-
cally, xk moves on each pass of CD by ∆x = â1v. Thus, on each pass it moves a
distance |∆x| = |â1||v| = |â1| = 6ϵ/(σ1 + σ2). For σ1 = σ2, this result reduces to
the symmetric case. If σ1 or σ2 is much larger than the other, then the speed of the
algorithm becomes approximately inversely proportional to the largest eigenvalue.

Note that σ1 + σ2 is the trace of the Hessian matrix. We will show in the next
section that if v is maximally diagonal, then the progress is inversely proportional
to the trace. We found that when v ̸= (1, 1, 1)T /

√
3 the progress is inversely

proportional to a weighted sum of the eigenvalues (not the trace), but the formulas
are too cumbersome to be useful.

2.4.3. Progress in the maximally diagonal case. In the maximally diagonal
case vi = 1/

√
d for all i, (35) becomes

σ̂ij =

∑d−1
m=1 σmumiumj

δij − 1/d
.(38)

Since the denominator is now constant, we can use properties of um to obtain
properties that can be used to simplify later formulas. Since um is orthogonal to
v, which is constant, we have

(39)
d∑

j=1

d−1∑
m=1

σmumiumj =
d−1∑
m=1

σmumi

 d∑
j=1

umj

 =
d−1∑
m=1

σmumi0 = 0 .

We then have
d∑

j=1

σ̂ij =
1

−1/d

d∑
j=1

d−1∑
m=1

σmumiumj +

(
−1− 1/d

−1/d
+ 1

)
σ̂ii = dσ̂ii

so 1 =
1

(d− 1)σ̂ii

d∑
j=1,̸=i

σ̂ij .(40)



TRANSIENT DYNAMICS OF BLOCK COORDINATE DESCENT IN A VALLEY 581

The matrix Mi in (36) and vector b in (37) become

Mi =
d∑

j=1, ̸=i

(
ej +

σ̂ij

(d− 1)σ̂ii
ei

)
eTj and(41)

b =
−ϵd

d− 1

d∑
i=1

Md · · ·Mi+1
1

σ̂ii
ei .(42)

Similar to the symmetric valley in Section 2.3.4, we can now determine the
progress rate.

Theorem 2.10. For an asymmetric, maximally diagonal valley, the progress rate
is

b̂1 = − ϵ2d∑d−1
m=1 σm

= − ϵ2d

trace(H⊥)
.

Proof. The proof structure is the same as for Theorem 2.3. 2.11 shows that a
specific y is a left eigenvector of M with eigenvalue one. 2.12 shows yTb = −ϵd2

and Lemma 2.13 shows yT1 = (d/2)
∑d−1

m=1 σm = (d/2)trace(H⊥). Computing

b̂1 = yTb/yT1 yields the desired formula. �

Lemma 2.11. The vector

y =
d∑

i=1

i−1∑
j=1

σ̂ij

 ei(43)

is a left eigenvector of M = Md · · ·M1 (with Mi in (41)) with eigenvalue 1.

Proof. We will show that

yTMd · · ·Mk =

k−1∑
j=1

(
j−1∑
m=1

σ̂jm +

d∑
m=k

σ̂mj

)
eTj +

d∑
j=k+1

(
j−1∑
m=k

σ̂mj

)
eTj(44)

for k = 1, 2, . . . , d. Setting k = 1 then yields

yTM = yTMd · · ·M1 = 0 +

d∑
j=2

(
j−1∑
m=1

σ̂mj

)
eTj = yT ,

which means y is a left eigenvector with eigenvalue 1.
The argument is recursive, and so acts like a finite induction down in k. The

base case is obtained by setting k = d + 1 in (44), which yields yT = yT . The
recursive step is then to take the k + 1 case of (44), apply Mk on the right, and
show we get (44). We thus compute k∑

j=1

(
j−1∑
m=1

σ̂jm +
d∑

m=k+1

σ̂mj

)
eTj +

d∑
j=k+2

(
j−1∑

m=k+1

σ̂mj

)
eTj


×

 d∑
i=1, ̸=k

(
ei +

σ̂ki

(d− 1)σ̂kk
ek

)
eTi

 .
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For the terms with 1 ≤ j ≤ k − 1 and k + 2 ≤ j ≤ d, Mk acts as the identity. For
the j = k term we have(

k−1∑
m=1

σ̂km +

d∑
m=k+1

σ̂mk

)
eTk

d∑
i=1,̸=k

(
ei +

σ̂ki

(d− 1)σ̂kk
ek

)
eTi

=

(
k−1∑
m=1

σ̂km +
d∑

m=k+1

σ̂mk

)
1

(d− 1)σ̂kk

d∑
i=1, ̸=k

σ̂kie
T
i .

Noting the symmetry σ̂mk = σ̂km and using (40), the factor before the sum becomes
one and we reduce this j = k term to

d∑
i=1, ̸=k

σ̂kie
T
i =

k−1∑
j=1

σ̂kje
T
j +

d∑
j=k+1

σ̂kje
T
j .

Combining with the original 1 ≤ j ≤ k − 1 and k + 2 ≤ j ≤ d terms, we then have

k−1∑
j=1

σ̂kje
T
j +

d∑
j=k+1

σ̂kje
T
j

+
k−1∑
j=1

(
j−1∑
m=1

σ̂jm +
d∑

m=k+1

σ̂mj

)
eTj +

d∑
j=k+2

(
j−1∑

m=k+1

σ̂mj

)
eTj

=

k−1∑
j=1

(
σ̂kj +

j−1∑
m=1

σ̂jm +

d∑
m=k+1

σ̂mj

)
eTj + σ̂k,k+1e

T
k+1

+
d∑

j=k+2

(
σ̂kj +

j−1∑
m=k+1

σ̂mj

)
eTj .

Combining terms yields (44), as desired. �
Lemma 2.12. For y in (43) and b in (42), yTb = −ϵd2.

Proof. Substituting (44) into (42) yields

yTb =
−ϵd

d− 1

d∑
i=1

 i∑
j=1

(
j−1∑
m=1

σ̂jm +
d∑

m=i+1

σ̂mj

)
eTj +

d∑
j=i+2

(
j−1∑

m=i+1

σ̂mj

)
eTj

 1

σ̂ii
ei

=
−ϵd

d− 1

d∑
i=1

(
i−1∑
m=1

σ̂im +
d∑

m=i+1

σ̂mi

)
1

σ̂ii
= −ϵd

d∑
i=1

1

σ̂ii(d− 1)

d∑
m=1,̸=i

σ̂im .

Applying (40) then yields −ϵd2 as desired. �

Lemma 2.13. For y in (43), yT1 = (d/2)
∑d−1

m=1 σm = (d/2)trace(H⊥).

Proof. From the definitions of y in (43) and σ̂ij in (38),

yT1 =

d∑
i=1

i−1∑
j=1

σ̂ij

 =

d∑
i=1

i−1∑
j=1

∑d−1
m=1 σmumiumj

δij − 1/d


= −d

d∑
i=1

i−1∑
j=1

d−1∑
m=1

σmumiumj = −d

2

d∑
i=1

d∑
j=1

d−1∑
m=1

σmumiumj +
d

2

d∑
i=1

d−1∑
m=1

σmu2
mi .
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The first term is zero by (39). By the normalization convention
∑d

i=1 u
2
mi = 1, the

second term is (d/2)
∑d−1

m=1 σm, as desired. �

3. BCD Dynamics Near a Symmetric-sided Valley-like Sink or Saddle

In this section we consider how the analysis in symmetric-sided valleys in Sec-
tion 2.3 relates to the sink and saddle cases. Recall from (15) that the valley update
can be written

(45) ci =
1

1− pi

d∑
j=1,̸=i

cjpj −
ϵ

σ(1− pi)
,

where the first term acts to move the iteration toward the diagonal and the second
term determines the progress down the valley. For concreteness we will compare
with the special case d = 2 and p1 = p2 = 1/2, for which (45) yields

c1 = c2 − 2
ϵ

σ
and c2 = c1 − 2

ϵ

σ
.

In Section 3.1 we consider a hyperbolic sink or saddle, in Section 3.2 we consider
a nonhyperpolic sink or saddle, and in Section 3.3 we consider an essential disconti-
nuity that is sink-like or saddle-like. In the hyperbolic case an explicit update rule
corresponding to (45) is easy to find, in the nonhyperbolic case it is possible to find
but too ugly to be useful, and in the essential discontinuity case it is (seemingly)
impossible to find. Instead we will derive implicit, approximate update rules in
which ci appears on both side. These allow better interpretation and qualitative
matching to (45). The parameter ϵ, which measured the gradient along v in a
valley, is now used to measure the strength of the attraction to or repulsion from 0
along v. In all cases we find that the progress is proportional to (ϵ/σ)/(1− pi), as
it was for the valley. In the hyperbolic case we find that progress is proportional to
the current distance to 0 and in the nonhyperbolic and essential discontinuity cases
we find that it is proportional to the cube of this distance, and thus much slower.

3.1. Hyperbolic Sink or Saddle. Instead of the valley objective function (1),
we consider

f(x) = ϵ
(vTx)2

2
+

1

2
xTH⊥x = ϵ

(vTx)2

2
+

σ

2
(xTx− (vTx)2) ,

which has a sink at x = 0 if ϵ > 0 and a saddle if ϵ < 0. We can then compute
∇xi

f(x) = ϵvTxvi+σ(xi−vTxvi), set ∇xi
f(x) = 0, and obtain a scalar coefficient

equation

0 = ϵ
d∑

j=1

cjpj + σ

ci −
d∑

j=1

cjpj

 .

Although one can solve for ci to obtain an update rule, it is more enlightening to
rearrange as

(46) ci =
1

1− pi

d∑
j=1,̸=i

cjpj −
ϵ

σ(1− pi)

d∑
j=1

cjpj

and interpret it as an implicit, approximate update rule, where the right side uses
the current value of ci and the left side is the new value. As in (45), the first term
acts to move the iteration toward the diagonal and the second term determines
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the progress toward the sink or away from the saddle, which are at 0. Progress is
proportional to (ϵ/σ)/(1− pi) and, when all cj ≈ c, to the distance of c to 0.

For d = 2 and p1 = p2 = 1/2, (46) yields

c1 = c2 −
ϵ

σ
(c1 + c2) and c2 = c1 −

ϵ

σ
(c1 + c2) .

The BCD algorithm will alternate between these two lines, going inward when ϵ > 0
and outward when ϵ < 0.

3.2. Nonhyperbolic Sink or Saddle. We now consider

f(x) = ϵ
(vTx)4

4
+

1

2
xTH⊥x = ϵ

(vTx)4

4
+

σ

2
(xTx− (vTx)2) ,

which has a nonhyperbolic sink at x = 0 if ϵ > 0 and a nonhyperbolic saddle
if ϵ < 0. Following the same process of setting ∇xif(x) = 0 leads to the scalar
coefficient equation

0 = ϵ

 d∑
j=1

cjpj

3

− σ

d∑
j=1

cjpj + σci .(47)

As a cubic, this equation is solvable for ci, but the expression is ugly and not useful.
Rearranging (47), we can obtain the implicit update rule

ci =
1

1− pi

d∑
j=1, ̸=i

cjpj −
ϵ

σ(1− pi)

 d∑
j=1

cjpj

3

.(48)

As in (46), the first term acts to move the iteration toward the diagonal and the
second term determines the progress toward the sink or away from the saddle, which
are at 0. Progress is proportional to (ϵ/σ)/(1 − pi) and, when all cj ≈ c, to the
cube of the distance of c to 0. Hence progress is much slower than in the hyperbolic
case.

For d = 2 and p1 = p2 = 1/2, (48) yields

c1 = c2 −
ϵ

σ

(
c1 + c2

2

)3

and c2 = c1 −
ϵ

σ

(
c1 + c2

2

)3

.(49)

The BCD algorithm will alternate between these two curves, which are plotted in
Figure 9. The iterations will slowly zig-zag into (ϵ > 0) or out of (ϵ < 0) the cusp.

3.3. Sink or Saddle at an Essential Discontinuity. In [28], the extremely
slow transient dynamics sometimes observed when BCD algorithms are used for
tensor approximations is attributed to a particular peculiar feature in the objective
function f . This feature is saddle-like in that it is attracting from most directions
and repelling in one direction. The attraction phase is fast but the repulsion phase
is very slow due to being in an extremely narrow valley. The center of this feature,
which for convenience we will set as 0, is a point of discontinuity of f . The limit
limx→0 f(x) does not exist, but the limit along any ray (i.e. limt→0+ f(tx)) exists
and is uniformly bounded. Thus f has a discontinuity at 0 that is not removable,
so we call it essential.
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Nonhyperbolic Essential discontinuity
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Figure 9. The curves defining the CD iteration for a sink or sad-
dle in the nonhyperbolic and essential discontinuity cases. The
left side shows the curves (49) with |ϵ/σ| = 1 and the right side
shows the curves (51) with |ϵ/σ| = 1/4; although quite similar, the
curves are not identical. For ϵ > 0, (0, 0) is a sink and iterations
will slowly zig-zag into the cusp, with steps proportional to the
cube of the distance to (0, 0). For ϵ < 0, (0, 0) is a saddle and
iterations will slowly zig-zag out with steps of the same size.

For the particular model problem studied, it is shown [28, Lemma A.2] that

lim
t→0+

f(tx) = a1 − a2

(
vT x

|x|

)2

with a1 > 0 and a2 > 0 .

Rearranging yields

(a1 − a2) +
a2
|x|2

(
xTx− (vTx)2

)
,

which shows how the distance from V appears. In principle the behavior along v
could be of several forms, including non-differentiable behavior such as ϵ|vTx|. The
example in [28] has hyperbolic behavior like ϵ(vTx)2/2, so we will use the normal
form

f(x) = ϵ
(vTx)2

2
+

σ

2|x|2
(
xTx− (vTx)2

)
.

The constant σ in (12) is replaced by σ/|x|2, which goes to infinity as x → 0, so
the valley is extremely narrow for small x. We can then compute

∇f(x) = ϵvTxv − σvTx

(xTx)2
(xTxv − vTxx) .
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From the (partial) gradient, we again see that setting ∇xif(x) = 0 leads to a scalar
coefficient equation, which is

0 = ϵ− σ(∑d
j=1 pjc

2
j

)2
 d∑

j=1,̸=i

pjc
2
j − ci

d∑
j=1, ̸=i

pjcj

 .

Rearranging to solve for the free ci in the second term, we obtain the implicit
update rule

ci =

∑d
j=1, ̸=i pjc

2
j∑d

j=1,̸=i pjcj
− ϵ

σ

(∑d
j=1 pjc

2
j

)2
∑d

j=1,̸=i pjcj
.(50)

If all cj ≈ c, then
∑d

j=1,̸=i pjcj ≈ (1 − pi)c,
∑d

j=1, ̸=i pjc
2
j ≈ (1 − pi)c

2, and∑d
j=1 pjc

2
j ≈ c2, so (50) acts as ci ≈ c − (ϵ/σ)/(1 − pi)c

3. The first term is still a

weighted average of the cj (using pjcj as the weight on cj) and so acts to move the
iteration toward the diagonal. The second term determines the progress toward the
sink or away from the saddle, with progress proportional to (ϵ/σ)/(1 − pi) and to
the cube of the distance of c to 0. Hence progress is similar to the nonhyperbolic
case.

For d = 2 and p1 = p2 = 1/2, (50) yields

c1 = c2 −
ϵ

σ

(c21 + c22)
2

c2
and c2 = c1 −

ϵ

σ

(c21 + c22)
2

c1
.(51)

We plot these curves in Figure 9 and note their similarity to the nonhyperbolic
case.

4. Discussion and Implications

4.1. Primary Conclusions. One can think of iterations of BCD in a valley as
the cross product of slow descent in one direction −v and contraction to a sink in
the directions orthogonal to v. While iterations are not too close to the bottom of
the valley, they decompose into these two motions. However, near the bottom of
the valley these two motions interact and iterations zig-zag near the valley floor.
Our analysis reveals the following insights into optimization in a valley:

• When the sink is well-conditioned, convergence to a vicinity of the valley
floor is linear, with small contraction factor.

• When the sink is poorly-conditioned, convergence to a vicinity of the valley
floor is still linear, but the contraction factor can be close to 1. This
situation is to be expected, since convergence to a minimum is slower for a
poorly-conditioned sink, even without the effects of a valley.

• Once the iteration is close to the valley floor, it zig-zags at distance from
the valley floor that is proportional to strength of descent and inversely
proportional to the strength of the sink.

• The progress of BCD (as well as GDLS) is proportional to the strength of
the descent and inversely proportional to the strength of the sink.

• The progress of BCD for most valley directions v is nearly as bad as the
worst-case (maximally diagonal) direction. Thus we find that valleys are
a phenomenon that might frequently be encountered in high dimensional
problems such as tensor approximation.
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• When starting the algorithm, the ordering of blocks in the first few steps
can be important. A greedy approach that chooses the micro-step that
gives the best improvement in the objective function may in fact give the
worst progress along the downhill direction of the valley and thus lead to
slower transient through the valley.

• The behavior near sinks and saddles is consistent with the behavior in a
valley. Progress in the nonhyperbolic and essential discontinuity cases are
similar to each other and much slower than in the hyperbolic case.

4.2. Algorithmic Implications. One immediate implication is that greedy meth-
ods (e.g. [6]) may not always work well. For d > 2, a greedy first step can push the
iteration further up the valley, instead of down.

A second implication is that simply continuing with BCD when a valley is en-
countered will lead to poor performance. Instead the algorithm should be designed
to detect when it has entered a narrow valley and then take some kind of evasive
action.

Certain existing ideas, independent of the BCD approach, are useful to improve
progress in valleys.

• When in a valley, local optimization tends to produce updates that move
in the correct (down-valley) direction but not very far. By extrapolating
(over-relaxing) to take bigger steps, the overall progress rate is increased.

• After some number of iterations have been performed, the general direction
of the valley can be established by fitting to the trend in the iterations.
Then one can extrapolate in that direction or perform a line search (or
higher-order search) in that direction. We think that the benefit of naive
extrapolation is limited because the problem is “doubly ill-conditioned”:

– determining the downhill direction in a narrow valley is ill-conditioned
in that small changes in the position produce large changes in the
gradient direction and

– given a presumptive down-valley direction, a line search in that direc-
tion is also ill-conditioned.

One may not succeed in moving far down the valley because the line di-
rection, unless it is extremely accurate, will quickly lead up the side of the
valley and far steps are rejected since they increase the objective function.

• A method intended to overcome the specific difficulties of extrapolation in
narrow valleys was proposed in [21]. Their method is to search by attempt-
ing a long parabolic extrapolation, but rather than rejecting/accepting the
step from the objective function at the end of the extrapolation, follow the
extrapolation by a normal, un-extrapolated step, and then test the objec-
tive function. This added relaxation step, according to their reasoning, will
move a point that has veered slightly up the side back down into the valley
again.

• By extending the standard proof that conjugate gradient (CG) (see e.g.
[35, 11, 12]) solves a n × n linear system exactly in n steps, one can show
that nonlinear conjugate gradient (NCG) will find the bottom of a straight
valley in a finite number of steps and then move infinitely far down such
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an idealized valley1. NCG methods for the tensor approximation problem
have already been developed (e.g. [33, 1, 10, 44]).

• As noted in [28, Section 5.2] (and anticipated by [38, 32, 31]) adding regular-
ization to the error function in the tensor approximation problem removes
the essential discontinuity and the narrowest portion of the valley.

When BCD is being considered for some application, there is usually some spe-
cific reason for it, such as the ease of updating one block in ALS, that discourages
one from simply abandoning BCD. This motivates the development of hybrid
methods. For the tensor approximation problem, algorithms to have already been
developed based on ALS with NCG [9], ALS with line search along the trend (e.g.
[37, 7, 43]), ALS with extrapolation along the trend (e.g. [8, 14, 16, 18, 5, 47, 37]),
and ALS with over-relaxation [26].

It seems promising to combine BCD with the method in [21] when it is detected
that the iteration has fallen into a narrow valley. For example one might use the
trend from a few passes of BCD to take a long linear or parabolic extrapolation step,
then relax back to the floor before considering whether to accept the result. Our
analysis confirms that the idea of their method should work for BCD methods, with
the following caveat: it may take more than one step to relax, since one BCD step
will not usually fall completely back into the valley floor. But, given that iterates
convergence back to the floor linearly, the number of steps needed to descend back
to the valley floor should not be large and could be estimated and controlled.
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