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THE TIME HIGH-ORDER ENERGY-PRESERVING SCHEMES

FOR THE NONLOCAL BENJAMIN-ONO EQUATION

CHUNGUANG CHEN, DONG LIANG∗, AND SHUSEN XIE

Abstract. The new time high-order energy-preserving schemes are proposed for the nonlocal

Benjamin-Ono equation. We get the Hamiltonian system to the nonlocal model, and it is then
discretized by a Fourier pseudospectral method in space and the Hamiltonian boundary value

method (HBVM) in time. This approach has high order of convergence in time and conserves the

total mass and energy in discrete forms. We further develop a time second-order energy-preserving
scheme and a time fourth-order energy-preserving scheme for the nonlocal Benjamin-Ono equation.

Numerical experiments test the proposed schemes with a single solitary wave and the interaction

of two solitary waves. Results confirm the accuracy and conservation properties of the schemes.

Key words. Nonlocal Benjamin-Ono equation, Hamiltonian boundary value method (HBVM),

time high-order, energy preserving, Fourier pseudospectral method.

1. Introduction

Recently, there are more increasing interests in studying the problems of nonlocal
partial differential equations in physics, mechanics, biology, materials science, and
imaging science, etc. We consider the nonlocal Benjamin-Ono equation, which is a
nonlocal partial differential equation arising in the study of long internal gravitation
waves in deep stratified fluids and modelling the propagation of nonlinear dispersive
waves ([3, 12, 14]).

The nonlocal Benjamin-Ono equation describes the remarkable properties of non-
linear dispersive wave propagation, that they permit stable, localized waveform so-
lutions travelling at constant speeds, called solitary waves [11]. When two solitary
waves overtake each other, they emerge from the interaction without any changes
in shape and speed. James and Weideman [13] proposed a pseudospectral method
for the Benjamin-Ono equation by the Hilbert transform, which is a convolution,
reduces to a product under the spectral discretization. Boyd and Xu [9] compared
three pseudospectral methods based on the Fourier, radial basis and rational or-
thogonal basis functions for the Benjamin-Ono equation and obtained exponential
convergence in space. Thomee and Murthy [15] solved the Benjamin-Ono equation
by a finite difference approximations in space and the Crank-Nicolson approxima-
tion in time. This approach has the accuracy order O(h2 + ∆t2). Although the
spectral methods are commonly used to solve the Benjamin-Ono equation, they
do not conserve the physical invariants if the system is integrated in time by non-
conservative integrators such as the standard Runge-Kutta methods or multi-step
methods. As a result, dissipative errors will be introduced and the shapes and
speeds of solitary solutions will change in numerical simulations. Therefore, it is
very important and dificult to develop time high-order energy-preserving numerical
schemes to the nonlocal Benjamin-Ono equation.

Brugnano and Iavernaro et al [6, 7, 8] proposed a class of structure-conserved
method, namely the Hamiltonian boundary value methods (HBVMs) that yield
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the conservation for Hamiltonian invariants represented by polynomial functional
of arbitrarily high-degree. Moreover, the methods are shown to be symmetric,
precisely A-stable, and can have arbitrarily high-order accuracy. The methods have
been extensively applied to simulate Hamiltonian partial differential equations, such
as the semilinear wave equation [4], the nonlinear Schrödinger equation [2], the KdV
equation [5] and the modified KdV equation [16]. However, to our best knowledge,
the HBVMs have not been applied to approximate any nonlocal dispersive partial
differential equations, such as the nonlocal Benjamin-Ono equation.

In this paper, we develop time high-order energy-preserving schemes for the non-
local Benjamin-Ono equation. We first get the Hamiltonian system to the nonlocal
model of Benjamin-Ono equation. We then discretize the nonlocal Benjamin-Ono
equation in space by the Fourier pseudospectral method. We show that the result-
ing semi-discrete system can be written as a Hamiltonian system. We integrate
the corresponding discrete Hamiltonian system with the HBVM approach to ob-
tain a time second-order scheme and a time fourth-order scheme, both preserving
the mass and energy indiscrete forms. Numerical experiments are given to show
the preserving properties and convergence orders of the schemes and to show the
physical phenomenon of the interaction of solitary waves of the nonlocal models.

This paper is organized as follows. In Section 2, we present the nonlocal model
of Benjamin-Ono equation and derive out its Hamiltonian system. In Section 3,
we derive the Runge-Kutta formulation of the HBVMs. In Section 4, we introduce
the basic properties of the Fourier pseudospectral method and obtain the time
second-order and time fourth-order energy-preserving schemes. We show numerical
experiments in Section 5 and some conclusions are addressed in Section 6.

2. Nonlocal model of Benjamin-Ono equation and its Hamiltonian sys-
tem

Consider the nonlocal model of the Benjamin-Ono equation [15]

(1)

{
ut + uux −Huxx = 0, x ∈ [−L,L], t ∈ [0,+∞),

u(x, 0) = u0(x), x ∈ [−L,L],

with u(x+ 2L, t) = u(x, t) and H is the Hilbert transform defined by

(2)

Hu(x) =
1

π
P.V.

∫ +∞

−∞

u(x− y)

y
dy

=
1

2L
P.V.

∫ L

−L
cot(

π

2L
y)u(x− y)dy

for the periodic function u(x). For details of the periodic Hilbert transform and
theoretical analysis of (1), we refer to [15] and the references therein. It can be
shown that the periodic problem (1) has many invariants, such as

M =

∫ L

−L
udx,

I =
1

2

∫ L

−L
u2dx,

H =
1

6

∫ L

−L

[
u3 + 3uxH(u)

]
dx.

(3)

These invariants are usually referred as mass, momentum and energy, respectively.
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Let us define the Hamiltonian functional as

(4) H(u)(t) =
1

6

∫ L

−L

[
u3 + 3uxH(u)

]
dx.

Then, we can derive the infinite-dimensional Hamiltonian system which is equiv-
alent to the nonlocal model of Benjamin-Ono equation (1) as

(5)
du

dt
= − ∂

∂x

δH
δu

.

In the following sections, we will develop the time high-order energy preserving
schemes to the infinite-dimensional Hamiltonian system (5) with the aid of HBVMs,
for solving the nonlocal Benjamin-Ono equation.

3. Preliminaries

In this section, we introduce the frame work of Hamiltonian boundary value
methods (HBVMs). Let

(6)
dy

dt
= J∇H(y), y(0) = y0 ∈ R2m

be a Hamiltonian problem in canonical form, where JT = −J is a skew-symmetric
matrix. The scalar functional H(y) is the Hamiltonian whose value maintains con-
stant during the motion, namely

H(y(t)) ≡ H(y(0)), ∀t ≥ 0,

for the solution of (6) . Indeed, one has

(7)
dH
dt

= ∇H(y(t))T y′(t) = ∇H(y)TJ∇H(y) = 0, ∀t ≥ 0.

In a mechanical system, H(y) is usually the total energy. So it is crucial to pre-
serve H(y) in simulations of these problems. Assume that the Hamiltonian in (6)
is a polynomial of degree ν. Starting from the initial condition y0, we want to
approximate the solution at t = ∆t, say y1 ≈ y(∆t), through a suitable path σ
such that

σ(0) = y0, σ(∆t) = y1, H(y1) = H(y0).

We consider a polynomial path σ of degree s ≥ 1 and denote by Πs−1 the set of
polynomials of degree s− 1, whose base is {P0, P1, · · · , Ps−1}. One can expand the
derivative of σ as

(8) σ′(c∆t) =

s−1∑
l=0

γlPl(c), c ∈ [0, 1].

By imposing the initial condition σ(0) = y0, one can formally obtain that

(9) σ(c∆t) = y0 + ∆t

s−1∑
l=0

∫ c

0

Pl(x)dxγl, c ∈ [0, 1].
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And y1 = σ(∆t) is an approximation of y(∆t). Then energy conservation may be
obtained by the following computation, namely,

H(y1)−H(y0) = H(σ(∆t))−H(σ(0))

=

∫ ∆t

0

∇H(σ(t))Tσ′(t)dt

= ∆t

∫ 1

0

∇H(σ(c∆t))Tσ′(c∆t)dc

= ∆t

∫ 1

0

∇H(σ(c∆t))T
s−1∑
l=0

γlPl(c)dc

= ∆t
s−1∑
l=0

[∫ 1

0

∇H(σ(c∆t))TPl(c)dc

]T
γl

= 0,

provided that

(10) γl = ηlJ

∫ 1

0

∇H(σ(c∆t))Pl(c)dc

for a suitable set of nonzero scalars η0, η1, · · · , ηs−1. If we take the shifted and
scaled Legendre polynomials as the base of Πs−1, all the coefficients ηl are equal to
1. In such a case, we have

P0(x) ≡ 1,

∫ 1

0

Pl(x)dx = 0, l = 1, 2, · · · , s− 1.

Hence, (10) can be written as

(11) γl = J

∫ 1

0

∇H(σ(c∆t))Pl(c)dc.

By setting, hereafter,

f(·) = J∇H(·),

the new approximation is then given by plugging (11) into (9):

(12) σ(c∆t) = y0 + ∆t

s−1∑
l=0

∫ c

0

Pl(x)dx

∫ 1

0

f(σ(τ∆t))Pl(τ)dτ, c ∈ [0, 1].

In particular, for c = 1, we have

y1 = σ(∆t) = y0 + ∆t

s−1∑
l=0

∫ 1

0

Pl(x)dx

∫ 1

0

f(σ(τ∆t))Pl(τ)dτ

= y0 + ∆t

∫ 1

0

P0(x)dx

∫ 1

0

f(σ(τ∆t))P0(τ)dτ

= y0 + ∆t

∫ 1

0

f(σ(τ∆t))dτ.

(13)

The integrals in (12) and (13) have at most degree (ν − 1)s + s − 1 ≡ νs − 1.
Therefore, by fixing a suitable set of k abscissae 0 ≤ c1 < · · · < ck ≤ 1, and cor-
responding quadrature weights {b1, b2, · · · , bk}, such that the resulting quadrature
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formula is exact for polynomials of degree νs− 1, the integrals (12) and (13) may
be replaced by the corresponding quadrature formula, which yields

(14) σ(c∆t) = y0 + ∆t

s−1∑
l=0

∫ c

0

Pl(x)dx

k∑
j=1

bjf(σ(cj∆t))Pl(cj), c ∈ [0, 1],

and

(15) y1 = y0 + ∆t

k∑
j=1

bjf(σ(cj∆t)).

Hence, by setting

Yi = σ(ci∆t), i = 1, ..., k,

we have by (14) that

Yi = y0 + ∆t

k∑
j=1

=aij︷ ︸︸ ︷[
bj

s−1∑
l=0

Pl(cj)

∫ ci

0

Pl(x)dx

]
f(Yj)

≡ y0 + ∆t

k∑
j=1

aijf(Yj), i = 1, ..., k,

(16)

and

(17) y1 = y0 + ∆t

k∑
j=1

bjf(Yj).

In this way, energy conservation can always be achieved provided that the quad-
rature has a suitable high order. For example, we can place the k abscissae {ci} at
the k Gauss-Legendre nodes on [0, 1] thus the quadrature is exact for polynomials
of degree 2k − 1. In such a case, energy conservation is guaranteed for polynomial
Hamiltonian of degree ν satisfying

ν ≤ 2k

s
.

The method (16) and (17) defines a Hamiltonian boundary value method [7]
with k stages and degree s, in short, HBVM(k,s). According to [8], the HBVM has
the following properties:

Theorem 1. For all s = 1, 2, · · · , and k ≥ s, the HBVM(k,s)

(1) has order of accuracy 2s;
(2) is energy-preserving for polynomial Hamiltonians of degree no larger than

2k/s;
(3) for general C2k+2 Hamiltonians, the energy error at each integration step

is O(∆t2k+1), if ∆t is the step size;
(4) is symmetric and, therefore, precisely A-stable.

4. Energy-preserving scheme for the Benjamin-Ono equation

We propose a time second-order energy-preserving scheme and a time fourth-
order energy-preserving scheme for the problem (1), which can be written as the
infinite-dimensional Hamiltonian system

(18)
du

dt
= − ∂

∂x

δH
δu

,
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where the Hamiltonian functional is defined by

(19) H(u)(t) =
1

6

∫ L

−L

[
u3 + 3uxH(u)

]
dx.

4.1. Fourier pseudospectral method for the Benjamin-Ono equation. To
illustrate the main ideas of Fourier pseudospectral space discretization for the pe-
riodic Benjamin-Ono equation, we start by introducing some basic properties of
the standard Fourier pseudospectral method. The interval [−L,L] is divided into
2N equal subintervals with the length of each h = L/N . And we construct the
following interpolation space by means of the collocation points xj = jh, j =
−N, · · · , N − 1,

Sh = Span{gj(x) : −N ≤ j ≤ N − 1},
where gj(x) is a trigonometric polynomial of degree N , and gj(xk) = δkj . Actually,
gj(x) can be written as

(20) gj(x) =
1

2N

N∑
l=−N

1

cl
eilω(x−xj), j = −N, · · · , N

with

cl =

{
1, l = −N + 1, · · · , N − 1,
2, l = −N,N,

and ω = π/L. Let Ih be the interpolation operator

(21) Ihu(x, t) =

N∑
j=−N

ujgj(x)

and we have Ihu(xk, t) =
∑N
j=−N ujgj(xk) = uk.

The values of the derivatives d
dxIhu(x) at the collocation points xj can be ob-

tained by the values of uj and the differential matrices D1, i.e.,

(22)
d

dx
Ihu(x)|x=xj = (D1u)j ,

where D1 represents the first-order Fourier differential matrix with the elements

(23) (D1)m,n =


ω

2
(−1)m+n cot(ω

xm − xn
2

), m 6= n,

0, m = n.

In what follows, we shall derive the matrix of the Hilbert transform of Ihu(x) at
the collocation points. First of all, by (21) and (20), we have

HIhu(x) =

N∑
j=−N

ujH(gj(x))

and

H(gj(x)) =
1

2N

N∑
l=−N

1

cl
H(eilω(x−xj)).

Noticing that eilω(x+2L−xj) = eilω(x−xj), we will use indiscriminately the Hilbert
transforms defined by (2) in the following discussion as they are equivalent for any
2L-periodic functions.
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Let F (·) and F−1(·) represent the Fourier transform and its inverse, respectively:

v̂(λ) = F [v(x)] =

∫ +∞

−∞
v(x)e−iλxdx,

v(x) = F−1[v̂(λ)] =
1

2π

∫ +∞

−∞
v̂(λ)eiλxdλ.

When l = 0, H(eilω(x−xj)) = H(1) = 0. When l 6= 0,

H(eilω(x−xj)) = F−1
[
F [H(eilω(x−xj))]

]
= F−1

[
F [

1

πy
] · F [(eilω(x−xj))]

]
= F−1

[
−isign(λ) · F [(eilω(x−xj))]

]
= F−1

[
−isign(λ) · 2πδ(λ− lω)e−ilωxj ]

]
= −ie−ilωxj

∫ +∞

−∞
δ(λ− lω)sign(λ)eiλxdλ.

By the fact that ∫ +∞

−∞
δ(λ− lω)sign(λ)eiλxdλ

=−
∫ 0

−∞
δ(λ− lω)eiλxdλ+

∫ +∞

0

δ(λ− lω)eiλxdλ

=

{
eilωx, l = 1, · · · , N,
−eilωx, l = −N, · · · ,−1,

it can be shown that

H(gj(x)) = − i

2N

[
−
−1∑

l=−N

1

cl
eilω(x−xj) +

N∑
l=1

1

cl
eilω(x−xj)

]

= − i

2N

[
−

1∑
l=N

1

c−l
e−ilω(x−xj) +

N∑
l=1

1

cl
eilω(x−xj)

]
.

Noticing that cl = c−l, we have

(24)

H(gj(x)) = − i

2N

N∑
l=1

1

cl

[
eilω(x−xj) − e−ilω(x−xj)

]
=

1

N

N∑
l=1

1

cl
sin(lω(x− xj)).

Therefore,

H(gj(xk)) =
1

N

N−1∑
l=1

sin
lπ(k − j)

N
,

where the term with l = N in (24) vanishes. Noticing that

N−1∑
l=1

sin(lθ) = − 1

2 sin θ
2

[
cos(N − 1

2
)θ − cos

θ

2

]
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and

cos(N − 1

2
)
π(k − j)

N
= cos

[
(k − j)π − (k − j)π

2N

]
=

{
cos (k−j)π

2N , if k − j is even,

− cos (k−j)π
2N , if k − j is odd,

we obtain that

H(gj(xk)) =

{
0, if k − j is even,
1
N cot (k−j)π

2N , if k − j is odd,

and

HIhu(x)
∣∣
x=xk

=

N∑
j=−N

ujH(gj(x))
∣∣
x=xk

=



1

N

N−1∑
j=−N,odd

uj cot
(k − j)π

2N
, if k is even,

1

N

N−1∑
j=−N,even

uj cot
(k − j)π

2N
, if k is odd,

(25)

where k = −N,−N + 1, · · · , N − 1.
Let

ak =

{
1
N cot kπ

2N , if k is odd,
0, if k is even,

and define the following 2N × 2N matrix

H =


a0 a−1 · · · a−N · · · a−2N+1

a1 a0 · · · a−N+1 · · · a−2N+2

...
... · · ·

... · · ·
...

a2N−1 a2N−2 · · · aN−1 · · · a0



=


a0 a−1 · · · a−N · · · a1

a1 a0 · · · a−N+1 · · · a2

...
... · · ·

... · · ·
...

a−1 a−2 · · · a−N · · · a0

 ,
where the last equality holds since ak = ak+2N and H is actually a circulant and
skew-symmetric matrix. The Hilbert transform of Ihu(x) at the collocation points
(25) can be expressed as

HIhu(x)
∣∣
x=xk

= (H · u)k ,

where k = −N,−N + 1, · · ·N − 1 and u = {uk}N−1
k=−N .

Remark 1. This expression is exactly the same with the discrete Hilbert transform
obtained by the mid-point rule quadrature in [15].

We approximate u(x, t) by Ihu(x, t), which interpolate u(x, t) at the collocation
points xj , j = −N, · · · , N − 1. The semi-discrete Fourier pseudospectral approxi-
mation is constructed as follows: find Ihu(x, t) ∈ Sh such that

(26) [(Ihu(x, t))t + (Ihu(x, t)) (Ihu(x, t))x −H (Ihu(x, t))xx]
∣∣∣
x=xj

= 0,
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where j = −N,−N + 1, · · · , N −1. Substituting the spectral differentiation matrix
D1 and the Hilbert transform matrix H into (26), we obtain the semi-discrete
system

(27)
du

dt
+

1

2
D1u

2 −D2
1Hu = 0

and the approximation of the Hamiltonian (3)

(28) H =
h

6

 N−1∑
j=−N

u3
j + 3uT (DT

1 H)u

 ,
where D1 and H are skew-symmetric and commutable matrices.

Problem (27) is Hamiltonian as it can be written as

(29)
du

dt
= Jh∇H(u),

where Jh = − 1
hD1 is skew-symmetric. Consequently, we derive the following

energy-preserving schemes by applying the HBVMs to the system (29).

4.2. The high-order energy preserving schemes. The time second-order energy-
preserving scheme for (1) takes the form

(30)


Ki = Un + ∆t

2∑
j=1

aijf(Kj), i = 1, 2,

Un+1 = Un + ∆t

2∑
i=1

bif(Ki),

and the time fourth-order scheme takes the form

(31)


Ki = Un + ∆t

3∑
j=1

aijf(Kj), i = 1, 2, 3,

Un+1 = Un + ∆t

3∑
i=1

bif(Ki),

where f(u) = −D1∇H(u).
In other words, we have defined a k−stage Runge-Kutta Method as follows:

c A = (aij)
bT

where c = (c1, c2, · · · , ck)T , b = (b1, b2, · · · , bk)T and A = (aij) ∈ Rk×k.
For example, when s = 1, k = 2,

c =

[
1

2

(
1− 1√

3

)
,

1

2

(
1 +

1√
3

)]T
,

b =

[
1

2
,

1

2

]T
,

and

A =

 1
4

(
1− 1√

3

)
1
4

(
1− 1√

3

)
1
4

(
1 + 1√

3

)
1
4

(
1 + 1√

3

) .
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When s = 2, k = 3,

c =

[
1

2

(
1−

√
3

5

)
,

1

2
,

1

2

(
1 +

√
3

5

)]T
,

b =

[
5

18
,

4

9
,

5

18

]T
,

and

A =

0.0959 0.0501 −0.0332
0.3003 0.2222 −0.0225
0.3110 0.3944 0.1819

 .
The proposed schemes (30) and (31) correspond to s = 1 and s = 2, respec-

tively. Thus, according to Theorem 1 the schemes (30) and (31) are second-order
and fourth-order in time, respectively, and will be referred to as HBVM(2,1) and
HBVM(3,2) in the following section. Both schemes exactly preserve the mass and
the energy in the discrete level. Actually, the Hamiltonian (28) is a polynomial
with degree ν = 3, therefore, according to Theorem 1, the proposed schemes are
energy-preserving when 3s ≤ 2k.

5. Numerical Experiments

In this section, we approximate the motion of a solitary wave and the interaction
of two solitary waves. These numerical tests show that the proposed schemes are
effective in simulating the nonlocal Benjamin-Ono equation, and they conserve both
the mass and energy in the discrete forms. To estimate the accuracy of the methods,
we introduce the following errors in different norms:

L1 =

N−1∑
j=−N

|uh(xj)− u(xj)|h,

L2 =

 N−1∑
j=−N

|uh(xj)− u(xj)|2h

1/2

,

L∞ = max
−N≤j≤N−1

|uh(xj)− u(xj)|,

(32)

where uh is the numerical solution with space step h and u is the exact solution.
The discrete versions of the invariants (3) at time tn = n∆t are given by

Md(U
n) = h

N−1∑
j=−N

Unk ,

Kd(U
n) =

h

2

N−1∑
j=−N

(Unk )2,

Hd(U
n) =

h

6

 N−1∑
j=−N

(Unk )3 − 3(Un)T (D1H)Un

 .
(33)

5.1. Single solitary wave. The periodic problem (1) has soliton solutions [15],
e.g., for c arbitrary,

(34) u(x, t) =
2cδ2

1−
√

1− δ2 cos(cδ(x− ct− x0))
, with δ =

π

cL
.
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Figure 1. Solitary wave at t0 = 0 with c = 0.4.

Table 1. The L∞, L2 and L1 errors and convergence orders in
time for the second-order energy-preserving scheme.

∆t L∞ Order L2 Order L1 Order
1/2 3.501050e-04 - 5.942609e-04 - 1.624535e-03 -
1/4 8.751689e-05 2.000154 1.488174e-04 1.997554 4.090576e-04 1.989651
1/8 2.187900e-05 2.000015 3.721994e-05 1.999395 1.027569e-04 1.993069
1/16 5.469744e-06 2.000001 9.305985e-06 1.999845 2.571423e-05 1.998596
1/32 1.367436e-06 2.000000 2.326559e-06 1.999961 6.429772e-06 1.999727

Table 2. The L∞, L2 and L1 errors and convergence orders in
time for the fourth-order energy-preserving scheme.

∆t L∞ Order L2 Order L1 Order
1/2 1.908176e-06 - 2.672955e-06 - 6.918758e-06 -
1/4 1.058457e-07 4.172160 1.512783e-07 4.143158 4.143091e-07 4.061734
1/8 6.422192e-09 4.042753 9.289610e-09 4.025444 2.625850e-08 3.979851
1/16 3.987093e-10 4.009657 5.781807e-10 4.006026 1.646343e-09 3.995448
1/32 2.487455e-11 4.002622 3.609793e-11 4.001525 1.029830e-10 3.998738

In order to estimate the errors of the schemes, we take c = 0.4 and compute the
solution of (1) with period 2L = 64 over [−32, 32]. The initial state of the solitary
wave is shown in Fig 1.

Table 1 and Table 2 list the L∞, L2 and L1 errors and convergence orders in
time for the second-order and the fourth-order energy-preserving schemes. We take
h = 1/4 and therefore the errors due to space discretization is negligible. The
numerical results clearly show that the proposed scheme can reach second-order
and fourth-order accuracy in time, respectively, that coincide with the Theorem1.

We perform a simulation with space step h = 1/4 and time step ∆t = 0.1
for a single solitary wave over the interval [−32, 32]. Fig 2 (left) shows that the
solitary wave moves to the right at a constant speed and unchanged amplitude as is
expected. We also calculate the relative errors of the invariants evaluated along the
numerical solution with respect to the conserved quantities at t = 0. Fig 2 (right)
shows that the time second-order scheme preserves the discrete mass and energy to
within the machine precision. The numerical results coincide with Theorem1.

Concerning the conservation of the invariants in long-term simulations, we ap-
proximate the single solitary wave with the time fourth-order scheme with space
step h = 1/4 and time step ∆t = 0.1 on the time interval [0, 1000]. Fig 3 (left)
shows that the solitary wave propagates with constant speed without changing its
amplitude. And Fig 3 (right) indicates that the scheme preserves the discrete mass
and energy to within the machine precision.
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Figure 2. Left : Numerical solution of HBVM(2,1) with c = 0.4,
x0 = 0, h = 0.25, ∆t = 0.1 and T = 1. Right : The relative errors
of the invariants.

Figure 3. Left : Numerical solution of HBVM(3,2) with c = 0.4,
x0 = 0, h = 0.25, ∆t = 0.1 and T = 1000. Right : The relative
errors of the invariants.

5.2. Interaction of two solitary waves. We consider the solution involving two
solitary waves. The exact solution is given by

u(x, t) =
2c1δ

2
1

1−
√

1− δ2
1 cos(cδ1(x− c1t− x01))

+
2c1δ

2
2

1−
√

1− δ2
2 cos(c2δ(x− c2t− x02))

,

where c1 = 0.8, c2 = 0.25, x01 = −20, x02 = −5 and δi = π/(ciL), i = 1, 2. We
simulate the problem by the fourth-order scheme (31) over the region [−32, 32] up to
time T = 40 with step size h = 0.25 and ∆t = 0.1. Fig 4 shows that the numerical
simulations at four different moments. The taller solitary wave was initially located
at the left and catch up with the shorter wave at around t = 15. The two waves
started to separate about t = 30 and the taller wave overtook the shorter one and
travelled to the right after t = 40. The interaction between the two solitary waves
can also be observed from Fig 5 (left) and the scheme preserves the mass and the
energy to within the machine precision.

6. Conclusion

In this paper, we proposed the new time high-order energy-preserving schemes
for the nonlocal Benjamin-Ono equation. We discretize the equation by a Fourier
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Figure 4. Numerical simulations of the collision of two solitary
waves by HBVM(3,2) with c1 = 0.8, c2 = 0.25, x01 = −20, x02 =
−5, h = 0.25 and ∆t = 0.1 at T = 0 (upper left), T = 15 (upper
right), T = 30 (lower left) and T = 40 (lower right).

Figure 5. Left : Numerical solution of HBVM(3,2) with c1 =
0.8, c2 = 0.25, x01 = −20, x02 = −5, h = 0.25 and ∆t = 0.1. Right :
The relative errors of the invariants.

pseudospectral method in space and apply the HBVM in time to the discrete Hamil-
tonian system. We tested the proposed schemes to be second-order and fourth-order
in time. Our numerical examples also showed that the two schemes are stable in
simulations of solitary waves and conserve mass and energy in the discrete forms.
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