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NUMERICAL INVESTIGATION ON WEAK GALERKIN FINITE

ELEMENTS

JUNPING WANG, XIU YE, AND SHANGYOU ZHANG

Abstract. The weak Galerkin (WG) finite element method is an effective and robust numeri-
cal technique for the approximate solution of partial differential equations. The essence of the
method is the use of weak finite element functions and their weak derivatives computed with a
framework that mimics the distribution or generalized functions. Weak functions and their weak
derivatives can be constructed by using polynomials of arbitrary degrees; each chosen combination
of polynomial subspaces generates a particular set of weak Galerkin finite elements in application
to PDE solving. This article explores the computational performance of various weak Galerkin
finite elements in terms of stability, convergence, and supercloseness when applied to the model
Dirichlet boundary value problem for a second order elliptic equation. The numerical results are
illustrated in 31 tables, which serve two purposes: (1) they provide detailed and specific guidance
on the numerical performance of a large class of WG elements, and (2) the information shown in
the tables may open new research projects for interested researchers as they interpret the results
from their own perspectives.

Key words. Weak Galerkin, finite element methods, weak gradient, second-order elliptic prob-
lems, stabilizer-free.

1. Introduction

The weak Galerkin (WG) finite element method is an effective and robust nu-
merical technique for the approximate solution of partial differential equations. It
is a natural extension of the standard conforming Galerkin finite element method
by substituting the classical derivatives with weakly defined discrete derivatives for
discontinuous functions. The WG method was first introduced in [17, 18], and since
then, it has been applied/extended to several classes of partial differential equations
such as biharmonic equations, Stokes equations, Navier-Stokes equations, Brinkman
equations, parabolic equations, Helmholtz equation, convection dominant problems,
hyperbolic equations, and Maxwell’s equations [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 19].

The main idea of weak Galerkin finite element methods is the use of weak func-
tions and their corresponding weak derivatives. For simplicity, we demonstrate the
idea by using the second order elliptic problem that seeks an unknown function u
satisfying

−∇ · (∇u) = f in Ω,(1)

u = g on ∂Ω,(2)

where Ω is a polygonal domain in R2. The primal weak form for the problem (1)-(2)
seeks u ∈ H1(Ω) such that u = g on ∂Ω and satisfying

(∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω).(3)

For the variational problem (3), the weak functions possess the form of v = {v0, vb}
with v = v0 inside of each element and v = vb on the boundary of the element.
Both v0 and vb can be approximated by polynomials in P`(T ) and Ps(e) respectively,
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where T stands for an element and e the edge of T , ` and s are non-negative integers
with possibly different values. Weak derivatives are defined for weak functions in the
sense of distributions. Denote byGm(T ) the vector space for weak gradient. Typical
choices for Gm(T ) are [Pm(T )]d or the Raviart-Thomas elements RTm(T ). Each
particular combination of (P`(T ), Ps(e), Gm(T )) leads to a class of weak Galerkin
finite element methods tailored for specific partial differential equations.

Weak Galerkin finite element methods have two forms for the problem (1)-(2).
The first one is the standard formulation [11, 17] which seeks uh ∈ Vh such that
uh = Qbg on ∂Ω and satisfying

(∇wuh,∇wv) + s(uh, v) = (f, v) ∀v ∈ V 0
h ,(4)

where s(·, ·) is a parameter independent stabilizer. Another one is the stabilizer-free
formulation [1, 20, 21]: find uh ∈ Vh such that uh = Qbg on ∂Ω and satisfying

(∇wuh,∇wv) = (f, v) ∀v ∈ V 0
h .(5)

Removing the stabilizer from the original WG scheme simplifies the formulation and
reduces the programming complexity arising from the stabilizer, but at the cost of
increasing the computational complexity for the weak derivative. To have desired
stability and convergence, stabilizer-free WG methods must use relatively high val-
ues ofm for approximating weak gradient in the WG element (P`(T ), Ps(e), Gm(T )).

The purpose of this paper is to investigate the performance of different WG
elements computationally in the weak Galerkin finite element methods with or
without stabilizers. The numerical results will be illustrated in 31 tables that
are informative and clearly demonstrate special properties of each WG element.
It should be noted that not all of the numerical phenomena shown in the tables
have theoretical justifications in existing literature; researchers are encouraged to
conduct a theoretical investigation for those of their interests.

Table 3 shows that the WG element (Pk(T ), Pk(e), [Pk+1]
2) has two orders of

supercloseness in both energy and L2 norms on rectangular partitions. Motivated
by this computational result, we will provide a theoretical justification for this su-
perconvergence in a forthcoming paper. We note that it has been proved in [2] that
the WG element (Pk(T ), Pk+1(e), [Pk+1]

2) has two orders of supercloseness in both
energy norm and L2 norm, on general triangular meshes in Table 18. Furthermore,
to overcome the poor performance of the WG element (Pk(T ), Pk−1(e), [Pk+1]

2)
shown in Table 24 and 29, a new weak gradient was introduced in [22] so that the
element can still converge in optimal order on general polytopal meshes.

The WGmethods are designed for discontinuous approximations on general poly-
topal meshes. Due to limited space, this paper shall only consider the finite element
partitions with rectangular and triangular elements.

2. Weak Galerkin Finite Element formulations

Let Th be a partition of the domain Ω consisting of rectangles or triangles. Denote
by Eh the set of all edges in Th, and let E0

h = Eh\∂Ω be the set of all interior edges
or flat faces. For every element T ∈ Th, we denote by hT its diameter and mesh
size h = maxT∈Th

hT for Th. Let Pk(T ) consist all the polynomials defined on T of
degree less or equal to k.

Definition 1. For T ∈ Th and `, s ≥ 0, define a local WG element W`,s(T ) as,

(6) W`,s(T ) = {v = {v0, vb} : v0|T ∈ P`(T ), vb|e ∈ Ps(e), e ⊂ ∂T}.
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Definition 2. For any v = {v0, vb} ∈ W`,s(T ), a weak gradient ∇wv ∈ Gm(T ) is
defined as a unique solution of the following equation

(7) (∇wv,q)T = −(v0,∇ · q)T + 〈vb,q · n〉∂T ∀q ∈ Gm(T ).

A typical choice of Gm(T ) is [Pm(T )]d, or RTm(T ). Different combinations of
(`, s,m) associated with a WG element W`,s(T )/Gm(T ) leads to different weak
Galerkin finite element formulations. The weak gradient ∇w defined in (7) is an
approximation of ∇ that is computed on each element T .

Remark 1. Please note that the space Gm(T ) is used to calculated weak gradient
and does not introduce additional degrees of freedom to the resulting linear system.

Definition 3. Define a WG finite element space Vh associated with Th as follows

(8) Vh = {v = {v0, vb} : v|T ∈ W`,s(T ), ∀T ∈ Th}.

We would like to emphasize that any function v ∈ Vh has a single value vb on each
edge e ∈ Eh. The subspace of Vh consisting of functions with vanishing boundary
value is denoted as V 0

h .
Let Q0 and Qb be the two element-wise defined L2 projections onto P`(T ) and

Ps(e) on each T ∈ Th, respectively. Define Qhu = {Q0u,Qbu} ∈ Vh. Let Qh be the
element-wise defined L2 projection onto Gm(T ) on each element T ∈ Th.

For simplicity, we adopt the following notations,

(v, w)Th
=

∑
T∈Th

(v, w)T =
∑
T∈Th

∫
T

vwdx,

〈v, w〉∂Th
=

∑
T∈Th

〈v, w〉∂T =
∑
T∈Th

∫
∂T

vwds.

Weak Galerkin Algorithm 1. A numerical approximation for (1)-(2) can be
obtained by seeking uh = {u0, ub} ∈ Vh satisfying ub = Qbg on ∂Ω and the following
equation:

(9) (∇wuh,∇wv)Th
+ s(uh, v) = (f, v0) ∀v = {v0, vb} ∈ V 0

h ,

where the stabilizer s(·, ·) is defined as

(10) s(uh, v) =
∑
T∈Th

hj
T 〈Qbu0 − ub, Qbv0 − vb〉∂T .

Let j = ∞ in (10), we mean s(uh, v) = 0, i.e., we have the following stabilizer-free
WG formulation,

(11) (∇wuh,∇wv)Th
= (f, v0) ∀v = {v0, vb} ∈ V 0

h .

In the following sections, we will conduct extensive numerical tests to study the
performance of different WG elements and record the results in 31 tables. In all
the tables below, j = ∞ refers to the stabilizer free WG formulation (11), where j
is defined in (10). The element RTk(T ) standards for the Raviart-Thomas element
on triangles throughout the paper.
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Figure 1. The first three level rectangular grids.

Table 1. Element (Pk(T ), Pk(e), [Pk−1(T )]
2) on rectangular

mesh, ||| · ||| = O(hr1) and ‖ · ‖ = O(hr2 ).

element Pk(T ) Pk(e) [Pk−1(T )]2 j r1 r2 Proved

1.1 −1 1 2 Yes
1.2 0 0.5 1 No

1.3 P1(T ) P1(e) [P0(T )]2 1 0 0 No
1.4 ∞ −∞ −∞ No
1.5 −1 2 3 Yes
1.6 0 1.5 2 No

1.7 P2(T ) P2(e) [P1(T )]2 1 1 1 No
1.8 ∞ −∞ −∞ No
1.9 −1 3 4 Yes
1.10 0 2.5 3 No

1.11 P3(T ) P3(e) [P2(T )]2 1 2 2 No
1.12 ∞ −∞ −∞ No

Table 2. Element (Pk(T ), Pk(e), [Pk(T )]
2) on rectangular mesh,

||| · ||| = O(hr1 ) and ‖ · ‖ = O(hr2).

element Pk(T ) Pk(e) [Pk(T )]2 j r1 r2 Proved
2.1 −1 0 0 No
2.2 0 0.5 1 No

2.3 P0(T ) P0(e) [P0(T )]2 1 0 0 No
2.4 ∞ −∞ −∞ No
2.5 −1 1 2 Y/N
2.6 0 1.5 2 No

2.7 P1(T ) P1(e) [P1(T )]2 1 1 1 No
2.8 ∞ −∞ −∞ No
2.9 −1 2 3 Y/N
2.10 0 2.5 3 No

2.11 P2(T ) P2(e) [P2(T )]2 1 2 2 No
2.12 ∞ −∞ −∞ No

3. The WG elements with ` = s on rectangular mesh

Next we will study convergence rate for the WG element (P`(T ), Ps(e), Gm(T ))
with ` = s on rectangular meshes. The rectangular meshes used in the computation
are illustrated in Figure 1.

Table 1 demonstrates the convergence rates for (Pk(T ), Pk(e), [Pk−1(T )]
2) with

a stabilizer of different j defined in (10) on rectangular mesh.
Table 2 demonstrates the convergence rates for (Pk(T ), Pk(e), [Pk(T )]

2) with a
stabilizer of different j on rectangular mesh.

Remark 2. Theorem 4.9 in [16] guarantees the optimal convergence rate of the
WG element 2.5 in the ||| · ||| norm. However the optimal convergence rate in the L2

norm is not proved in [16]. Therefore, we still mark proved = Y/N in the case 2.5.
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Table 3. Element (Pk(T ), Pk(e), [Pk+1(T )]
2) on rectangular

mesh, ||| · ||| = O(hr1) and ‖ · ‖ = O(hr2 ).

element Pk(T ) Pk(e) [Pk+1(T )]2 j r1 r2 Proved

3.1 −1 0 0 No
3.2 0 1 1 No

3.3 P0(T ) P0(e) [P1(T )]2 1 2 2 No
3.4 ∞ 2 2 No

3.5 −1 1 2 Y/N
3.6 0 2 3 No

3.7 P1(T ) P1(e) [P2(T )]2 1 3 4 No
3.8 ∞ 3 4 Yes

3.9 −1 2 3 Y/N
3.10 0 3 4 No

3.11 P2(T ) P2(e) [P3(T )]2 1 4 5 No
3.12 ∞ 4 5 Yes

Table 4. Element (Pk(T ), Pk(e), [Pk+2(T )]
2) on rectangular

mesh, ||| · ||| = O(hr1) and ‖ · ‖ = O(hr2 ).

element Pk(T ) Pk(e) [Pk+2(T )]2 j r1 r2 Proved
4.1 −1 0 0 No
4.2 0 0 0 No

4.3 P0(T ) P0(e) [P2(T )]2 1 0 0 No
4.4 ∞ 0 0 No

4.5 −1 1 2 Y/N
4.6 0 1 2 No

4.7 P1(T ) P1(e) [P3(T )]2 1 1 2 No
4.8 ∞ 1 2 Yes

4.9 −1 2 3 Y/N
4.10 0 2 3 No

4.11 P2(T ) P2(e) [P4(T )]2 1 2 3 No
4.12 ∞ 2 3 Yes

Table 3 demonstrates the convergence rates for (Pk(T ), Pk(e), [Pk+1(T )]
2) with

a stabilizer of different j on rectangular mesh.
Table 4 demonstrates the convergence rates for (Pk(T ), Pk(e), [Pk+2(T )]

2) with
a stabilizer of different j on rectangular mesh.

Remark 3. For the Pk(T )− Pk(e) element, Tables 1-4 demonstrate that the per-
formance of the WG solutions are getting better when the degree of the polynomials
for weak gradient is increasing from k − 1 to k + 1. Specially the WG element
(Pk(T ), Pk(e), [Pk+1(T )]

2) shows order two supercloseness in Table 3. However,
for the element (Pk(T ), Pk(e), [Pk+2(T )]

2, the numerical tests in Table 4 show the
convergence rate of the WG solution decreasing. Remember that increasing m in
[Pm(T )]2 for weak gradient does not introduce additional degrees of freedom for the
resulting linear systems.

Table 5 demonstrates the convergence rates for (Pk(T ), Pk(e), RTk(T )) with a
stabilizer of different j on rectangular mesh.

4. The WG elements for ` = s on triangular mesh

The triangular meshes used in the computation are displayed in Figure 2.
Table 6 demonstrates the convergence rates for (Pk(T ), Pk(e), [Pk−1(T )]

2) with
a stabilizer of different j on triangular mesh.

Table 7 demonstrates the convergence rates for (Pk(T ), Pk(e), [Pk(T )]
2) with a

stabilizer of different j on triangular mesh.
Table 8 demonstrates the convergence rates for (Pk(T ), Pk(e), [Pk+1(T )]

2) with
a stabilizer of different j on triangular mesh.
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Table 5. Element (Pk(T ), Pk(e), RTk(T )) on rectangular mesh,
||| · ||| = O(hr1 ) and ‖ · ‖ = O(hr2).

element Pk(T ) Pk(e) RTk(T ) j r1 r2 Proved
5.1 −1 0 0 No
5.2 0 1 1 No
5.3 P0(T ) P0(e) RT0(T ) 1 2 2 No
5.4 ∞ 2 2 No
5.5 −1 1 2 No
5.6 0 1.5 2 No
5.7 P1(T ) P1(e) RT1(T ) 1 1 1 No
5.8 ∞ 1 1 No
5.9 −1 2 3 No
5.10 0 2.5 3 No
5.11 P2(T ) P2(e) RT2(T ) 1 2 2 No
5.12 ∞ 2 2 No
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Figure 2. The first three level triangular meshes.

Table 6. Element (Pk(T ), Pk(e), [Pk−1(T )]
2) on triangular mesh,

||| · ||| = O(hr1 ) and ‖ · ‖ = O(hr2).

element Pk(T ) Pk(e) [Pk−1(T )]2 j r1 r2 Proved
6.1 −1 1 2 Yes
6.2 0 0.5 1 No

6.3 P1(T ) P1(e) [P0(T )]2 1 0 0 No
6.4 ∞ −∞ −∞ No
6.5 −1 2 3 Yes
6.6 0 1.5 2 No

6.7 P2(T ) P2(e) [P1(T )]2 1 1 1 No
6.8 ∞ −∞ −∞ No
6.9 −1 3 4 Yes
6.10 0 2.5 3 No

6.11 P3(T ) P3(e) [P2(T )]2 1 2 2 No
6.12 ∞ −∞ −∞ No

Table 7. Element (Pk(T ), Pk(e), [Pk(T )]
2) on triangular mesh, ||| ·

||| = O(hr1) and ‖ · ‖ = O(hr2).

element Pk(T ) Pk(e) [Pk(T )]2 j r1 r2 Proved
7.1 −1 0 0 No
7.2 0 0.5 1 No

7.3 P0(T ) P0(e) [P0(T )]2 1 0 0 No
7.4 ∞ −∞ −∞ No
7.5 −1 1 2 Y/N
7.6 0 1.5 2 No

7.7 P1(T ) P1(e) [P1(T )]2 1 1 1 No
7.8 ∞ −∞ −∞ No
7.9 −1 2 3 Y/N
7.10 0 2.5 3 No

7.11 P2(T ) P2(e) [P2(T )]2 1 2 2 No
7.12 ∞ −∞ −∞ No
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Table 8. Element (Pk(T ), Pk(e), [Pk+1(T )]
2) on triangular mesh,

||| · ||| = O(hr1 ) and ‖ · ‖ = O(hr2).

element Pk(T ) Pk(e) [Pk+1(T )]2 j r1 r2 Proved

8.1 −1 0 0 No
8.2 0 0 0 No

8.3 P0(T ) P0(e) [P1(T )]2 1 0 0 No
8.4 ∞ 0 0 No
8.5 −1 1 2 Y/N
8.6 0 1 2 No

8.7 P1(T ) P1(e) [P2(T )]2 1 1 2 No
8.8 ∞ 1 2 Yes
8.9 −1 2 3 Y/N
8.10 0 2 3 No

8.11 P2(T ) P2(e) [P3(T )]2 1 2 3 No
8.12 ∞ 2 3 Yes

Table 9. Element (Pk(T ), Pk(e), RTk(T )) on triangular mesh, ||| ·
||| = O(hr1) and ‖ · ‖ = O(hr2).

element Pk(T ) Pk(e) RTk(T ) j r1 r2 Proved
9.1 −1 0 0 No
9.2 0 1 1 No
9.3 P0(T ) P0(e) RT0(T ) 1 1 2 No
9.4 ∞ 1 2 Yes
9.5 −1 1 2 No
9.6 0 2 3 No
9.7 P1(T ) P1(e) RT1(T ) 1 2 3 No
9.8 ∞ 2 3 Yes
9.9 −1 2 3 No
9.10 0 3 4 No
9.11 P2(T ) P2(e) RT2(T ) 1 3 4 No
9.12 ∞ 3 4 Yes

Table 10. Element (Pk(T ), Pk+1(e), [Pk−1(T )]
2) on rectangular

mesh, ||| · ||| = O(hr1) and ‖ · ‖ = O(hr2 ).

element Pk(T ) Pk+1(e) [Pk−1(T )]d j r1 r2 Proved
10.1 −1 1 2 Y/N
10.2 0 0.5 1 No

10.3 P1(T ) P2(e) [P0(T )]2 1 0 0 No
10.4 ∞ −∞ −∞ No
10.5 −1 2 3 Y/N
10.6 0 1.5 2 No

10.7 P2(T ) P3(e) [P1(T )]2 1 1 1 No
10.8 ∞ −∞ −∞ No
10.9 −1 3 4 Y/N
10.10 0 2.5 3 No

10.11 P3(T ) P4(e) [P2(T )]2 1 2 2 No
10.12 ∞ −∞ −∞ No

Remark 4. The WG element (Pk(T ), Pk(e), [Pk+1(T )]
2) performs much better on

rectangular meshes than triangular meshes.

Table 9 demonstrates the convergence rates for (Pk(T ), Pk(e), RTk(T )) with a
stabilizer of different j on triangular mesh.

5. The WG elements with ` < s on rectangular mesh

The following table demonstrates the convergence rates for (Pk(T ), Pk+1(e), [Pk−1(T )]
2)

with a stabilizer of different j on rectangular mesh.
The following table demonstrates the convergence rates for (Pk(T ), Pk+1(e), [Pk(T )]

2)
with a stabilizer of different j on rectangular mesh.

Table 12 demonstrates the convergence rates for (Pk(T ), Pk+1(e), [Pk+1(T )]
2)

with a stabilizer of different j on rectangular mesh.
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Table 11. Element (Pk(T ), Pk+1(e), [Pk(T )]
2) on rectangular

mesh, ||| · ||| = O(hr1) and ‖ · ‖ = O(hr2 ).

element Pk(T ) Pk+1(e) [Pk(T )]2 j r1 r2 Proved

11.1 −1 0 0 No
11.2 0 0.5 1 No

11.3 P0(T ) P1(e) [P0(T )]2 1 0 0 No
11.4 ∞ −∞ −∞ No
11.5 −1 1 2 Y/N
11.6 0 1.5 2 No

11.7 P1(T ) P2(e) [P1(T )]2 1 1 1 No
11.8 ∞ −∞ −∞ No
11.9 −1 2 3 Y/N
11.10 0 2.5 3 No

11.11 P2(T ) P3(e) [P2(T )]2 1 2 2 No
11.12 ∞ −∞ −∞ No

Table 12. Element (Pk(T ), Pk+1(e), [Pk+1(T )]
2) on rectangular

mesh, ||| · ||| = O(hr1) and ‖ · ‖ = O(hr2 ).

element Pk(T ) Pk+1(e) [Pk+1(T )]2 j r1 r2 Proved
12.1 −1 0 0 No
12.2 0 0.5 1 No

12.3 P0(T ) P1(e) [P1(T )]2 1 1 2 No
12.4 ∞ 1 2 No
12.5 −1 1 2 Y/N
12.6 0 1.5 3 No

12.7 P1(T ) P2(e) [P2(T )]2 1 2 4 No
12.8 ∞ 2 4 No
12.9 −1 2 3 Y/N
12.10 0 2.5 4 No

12.11 P2(T ) P3(e) [P3(T )]2 1 3 5 No
12.12 ∞ 3 5 No

Table 13. Element (Pk(T ), Pk+1(e), [Pk+2(T )]
2) on rectangular

mesh, ||| · ||| = O(hr1) and ‖ · ‖ = O(hr2 ).

element Pk(T ) Pk+1(e) [Pk+2(T )]2 j r1 r2 Proved

13.1 −1 0 0 No
13.2 0 0 0 No

13.3 P0(T ) P1(e) [P2(T )]2 1 0 0 No
13.4 ∞ 0 0 No
13.5 −1 1 2 Y/N
13.6 0 1 2 No

13.7 P1(T ) P2(e) [P3(T )]2 1 1 2 No
13.8 ∞ 1 2 No
13.9 −1 2 3 Y/N
13.10 0 2 3 No

13.11 P2(T ) P3(e) [P4(T )]2 1 2 3 No
13.12 ∞ 2 3 No

Table 13 demonstrates the convergence rates for (Pk(T ), Pk+1(e), [Pk+2(T )]
2)

with a stabilizer of different j on rectangular mesh.

Remark 5. The WG element (Pk(T ), Pk+1(e), [Pk+1(T )]
2) performs better than

WG element (Pk(T ), Pk+1(e), [Pk+2(T )]
2) although the later element uses higher

degree polynomials for weak gradient.

Table 14 demonstrates the convergence rates for (Pk(T ), Pk+1(e), RTk(T )) with
a stabilizer of different j on rectangular mesh.

Table 15 demonstrates the convergence rates for (Pk(T ), Pk+1(e), RTk+1(T ))
with a stabilizer of different j on rectangular mesh.
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Table 14. Element (Pk(T ), Pk+1(e), RTk(T )) on rectangular
mesh, ||| · ||| = O(hr1) and ‖ · ‖ = O(hr2 ).

element Pk(T ) Pk+1(e) RTk(T ) j r1 r2 Proved
14.1 −1 0 0 No
14.2 0 0.5 1 No
14.3 P0(T ) P1(e) RT0(T ) 1 1 2 No
14.4 ∞ 2 2 No
14.5 −1 1 2 No
14.6 0 1.5 2 No
14.7 P1(T ) P2(e) RT1(T ) 1 1 1 No
14.8 ∞ −∞ −∞ No
14.9 −1 2 3 No
14.10 0 2.5 3 No
14.11 P2(T ) P3(e) RT2(T ) 1 2 2 No
14.12 ∞ −∞ −∞ No

Table 15. Element (Pk(T ), Pk+1(e), RTk+1(T )) on rectangular
mesh, ||| · ||| = O(hr1) and ‖ · ‖ = O(hr2 ).

element Pk(T ) Pk+1(e) RTk+1(T ) j r1 r2 Proved

15.1 −1 0 0 No
15.2 0 0 1 No
15.3 P0(T ) P1(e) RT1(T ) 1 0 2 No
15.4 ∞ 0 2 No
15.5 −1 1 2 No
15.6 0 1 2 No
15.7 P1(T ) P2(e) RT2(T ) 1 1 2 No
15.8 ∞ 1 2 No
15.9 −1 2 4 No
15.10 0 2 4 No
15.11 P2(T ) P3(e) RT3(T ) 1 2 4 No
15.12 ∞ 2 4 No

Table 16. Element (Pk(T ), Pk+1(e), [Pk−1(T )]
2) on triangular

mesh, ||| · ||| = O(hr1) and ‖ · ‖ = O(hr2 ).

element Pk(T ) Pk+1(e) [Pk−1(T )]2 j r1 r2 Proved

16.1 −1 1 2 Y/N
16.2 0 0.5 1 No

16.3 P1(T ) P2(e) [P0(T )]2 1 0 0 No
16.4 ∞ −∞ −∞ No
16.5 −1 2 3 Y/N
16.6 0 1.5 2 No

16.7 P2(T ) P3(e) [P1(T )]2 1 1 1 No
16.8 ∞ −∞ −∞ No
16.9 −1 3 4 Y/N
16.10 0 2.5 3 No

16.11 P3(T ) P4(e) [P2(T )]2 1 2 2 No
16.12 ∞ −∞ −∞ No

6. The WG elements for ` < s on triangular mesh

Table 16 demonstrates the convergence rates for (Pk(T ), Pk+1(e), [Pk−1(T )]
2)

with a stabilizer of different j on triangular mesh.
Table 17 demonstrates the convergence rates for (Pk(T ), Pk+1(e), [Pk(T )]

2) with
a stabilizer of different j on triangular mesh.

Table 18 demonstrates the convergence rates for (Pk(T ), Pk+1(e), [Pk+1(T )]
2)

with a stabilizer of different j on triangular mesh.

Remark 6. The WG element (Pk(T ), Pk+1(e), [Pk+1(T )]
2) has order two super-

closeness on triangular mesh.

Table 19 demonstrates the convergence rates for (Pk(T ), Pk+1(e), [Pk+2(T )]
2)

with a stabilizer of different j on triangular mesh.
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Table 17. Element (Pk(T ), Pk+1(e), [Pk(T )]
2) on triangular

mesh, ||| · ||| = O(hr1) and ‖ · ‖ = O(hr2 ).

element Pk(T ) Pk+1(e) [Pk(T )]2 j r1 r2 Proved

17.1 −1 0 0 No
17.2 0 0.5 1 No

17.3 P0(T ) P1(e) [P0(T )]2 1 0 0 No
17.4 ∞ −∞ −∞ No
17.5 −1 1 2 Y/N
17.6 0 1.5 2 No

17.7 P1(T ) P2(e) [P1(T )]2 1 1 1 No
17.8 ∞ −∞ −∞ No
17.9 −1 2 3 Y/N
17.10 0 2.5 3 No

17.11 P2(T ) P3(e) [P2(T )]2 1 2 2 No
17.12 ∞ −∞ −∞ No

Table 18. Element (Pk(T ), Pk+1(e), [Pk+1(T )]
2) on triangular

mesh, ||| · ||| = O(hr1) and ‖ · ‖ = O(hr2 ).

element Pk(T ) Pk+1(e) [Pk+1(T )]2 j r1 r2 Proved

18.1 −1 0 0 No
18.2 0 1 1 No

18.3 P0(T ) P1(e) [P1(T )]2 1 2 2 No
18.4 ∞ 2 2 Yes
18.5 −1 1 2 Y/N
18.6 0 2 3 No

18.7 P1(T ) P2(e) [P2(T )]2 1 3 4 No
18.8 ∞ 3 4 Yes
18.9 −1 2 3 Y/N
18.10 0 3 4 No

18.11 P2(T ) P3(e) [P3(T )]2 1 4 5 No
18.12 ∞ 4 5 Yes

Table 19. Element (Pk(T ), Pk+1(e), [Pk+2(T )]
2) on triangular

mesh, ||| · ||| = O(hr1) and ‖ · ‖ = O(hr2 ).

element Pk(T ) Pk+1(e) [Pk+2(T )]2 j r1 r2 Proved
19.1 −1 0 0 No
19.2 0 0 0 No

19.3 P0(T ) P1(e) [P2(T )]2 1 0 0 No
19.4 ∞ 0 0 No
19.5 −1 1 2 Y/N
19.6 0 1 2 No

19.7 P1(T ) P2(e) [P3(T )]2 1 1 2 No
19.8 ∞ 1 2 No
19.9 −1 2 3 Y/N
19.10 0 2 3 No

19.11 P2(T ) P3(e) [P4(T )]2 1 2 3 No
19.12 ∞ 2 3 No

Table 20 demonstrates the convergence rates for (Pk(T ), Pk+1(e), RTk(T )) with
a stabilizer of different j on triangular mesh.

Table 21 demonstrates the convergence rates for (Pk(T ), Pk+1(e), RTk+1(T ))
with a stabilizer of different j on triangular mesh.

7. The WG elements for ` > s on rectangular mesh

Table 22 demonstrates the convergence rates for (Pk(T ), Pk−1(e), [Pk−1(T )]
2)

with a stabilizer of different j on rectangular mesh.
Table 23 demonstrates the convergence rates for (Pk(T ), Pk−1(e), [Pk(T )]

2) with
a stabilizer of different j on rectangular mesh.

Remark 7. The WG element 23.1 achieves optimal convergence rates on triangular
mesh while Theorem 4.9 in [16] predict only suboptimal convergence rate.
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Table 20. Element (Pk(T ), Pk+1(e), RTk(T )) on triangular mesh,
||| · ||| = O(hr1 ) and ‖ · ‖ = O(hr2).

element Pk(T ) Pk+1(e) RTk(T ) j r1 r2 Proved
20.1 −1 0 0 No
20.2 0 0.5 1 No
20.3 P0(T ) P1(e) RT0(T ) 1 1 2 No
20.4 ∞ 1 2 No
20.5 −1 1 2 No
20.6 0 1.5 3 No
20.7 P1(T ) P2(e) RT1(T ) 1 2 3 No
20.8 ∞ −∞ −∞ No
20.9 −1 2 3 No
20.10 0 2.5 4 No
20.11 P2(T ) P3(e) RT2(T ) 1 3 4 No
20.12 ∞ −∞ −∞ No

Table 21. Element (Pk(T ), Pk+1(e), RTk+1(T )) on triangular
mesh, ||| · ||| = O(hr1) and ‖ · ‖ = O(hr2 ).

element Pk(T ) Pk+1(e) RTk+1(T ) j r1 r2 Proved
21.1 −1 0 0 No
21.2 0 0 0 No
21.3 P0(T ) P1(e) RT1(T ) 1 0 0 No
21.4 ∞ 0 0 No
21.5 −1 1 2 No
21.6 0 1 2 No
21.7 P1(T ) P2(e) RT2(T ) 1 1 2 No
21.8 ∞ 1 2 No
21.9 −1 2 3 No
21.10 0 2 3 No
21.11 P2(T ) P3(e) RT3(T ) 1 2 3 No
21.12 ∞ 2 3 No

Table 22. Element (Pk(T ), Pk−1(e), [Pk−1(T )]
2) on rectangular

mesh, ||| · ||| = O(hr1) and ‖ · ‖ = O(hr2 ).

element Pk(T ) Pk−1(e) [Pk−1(T )]d j r1 r2 Proved

22.1 −1 1 2 Yes
22.2 0 0.5 1 No

22.3 P1(T ) P0(e) [P0(T )]2 1 0 0 No
22.4 ∞ −∞ −∞ No
22.5 −1 2 3 Yes
22.6 0 1.5 2 No

22.7 P2(T ) P1(e) [P1(T )]2 1 1 1 No
22.8 ∞ −∞ −∞ No
22.9 −1 3 4 Yes
22.10 0 2.5 3 No

22.11 P3(T ) P2(e) [P2(T )]2 1 2 2 No
22.12 ∞ −∞ −∞ No

Table 23. Element (Pk(T ), Pk−1(e), [Pk(T )]
2) on rectangular

mesh, ||| · ||| = O(hr1) and ‖ · ‖ = O(hr2 ).

element Pk(T ) Pk−1(e) [Pk(T )]d j r1 r2 Proved
23.1 −1 1 2 No
23.2 0 1.5 2 No

23.3 P1(T ) P0(e) [P1(T )]2 1 1 1 No
23.4 ∞ −∞ −∞ No
23.5 −1 2 3 No
23.6 0 2.5 3 No

23.7 P2(T ) P1(e) [P2(T )]2 1 2 2 No
23.8 ∞ −∞ −∞ No
23.9 −1 3 4 No
23.10 0 3.5 4 No

23.11 P3(T ) P2(e) [P3(T )]2 1 3 3 No
23.12 ∞ −∞ −∞ No
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Table 24. Element (Pk(T ), Pk−1(e), [Pk+1(T )]
2) on rectangular

mesh, ||| · ||| = O(hr1) and ‖ · ‖ = O(hr2 ).

element Pk(T ) Pk−1(e) [Pk+1(T )]d j r1 r2 Proved

24.1 −1 0 0 No
24.2 0 0 0 No

24.3 P1(T ) P0(e) [P2(T )]2 1 0 0 No
24.4 ∞ 0 0 No
24.5 −1 1 2 Y/N
24.6 0 1 2 No

24.7 P2(T ) P1(e) [P3(T )]2 1 1 2 No
24.8 ∞ 1 2 No
24.9 −1 2 3 Y/N
24.10 0 2 3 No

24.11 P3(T ) P2(e) [P4(T )]2 1 2 3 No
24.12 ∞ 2 3 No

Table 25. Element (Pk(T ), Pk−1(e), RTk−1(T )) on rectangular
mesh, ||| · ||| = O(hr1) and ‖ · ‖ = O(hr2 ).

element Pk(T ) Pk−1(e) RTk−1(T ) j r1 r2 Proved
25.1 −1 1 2 No
25.2 0 1.5 2 No
25.3 P1(T ) P0(e) RT0(T ) 1 1 1 No
25.4 ∞ −∞ −∞ No
25.5 −1 2 3 No
25.6 0 1.5 2 No
25.7 P2(T ) P1(e) RT1(T ) 1 1 1 No
25.8 ∞ −∞ −∞ No
25.9 −1 3 4 No
25.10 0 2.5 3 No
25.11 P3(T ) P2(e) RT2(T ) 1 2 2 No
25.12 ∞ −∞ −∞ No

Table 26. Element (Pk(T ), Pk−1(e), RTk(T )) on rectangular
mesh, ||| · ||| = O(hr1) and ‖ · ‖ = O(hr2 ).

element Pk(T ) Pk−1(e) RTk(T ) j r1 r2 Proved

26.1 −1 0 0 No
26.2 0 0 1 No
26.3 P1(T ) P0(e) RT1(T ) 1 0 1 No
26.4 ∞ 0 1 No
26.5 −1 1 2 No
26.6 0 1 2 No
26.7 P2(T ) P1(e) RT2(T ) 1 1 2 No
26.8 ∞ 1 2 No
26.9 −1 2 3 No
26.10 0 2 3 No
26.11 P3(T ) P2(e) RT3(T ) 1 2 3 No
26.12 ∞ 2 3 No

Table 24 demonstrates the convergence rates for (Pk(T ), Pk−1(e), [Pk+1(T )]
2)

with a stabilizer of different j on rectangular mesh.

Remark 8. The numerical results in Table 24 show that the WG element (Pk(T ), Pk−1(e), [Pk+1(T )]
2)

has suboptimal convergence rates on rectangular mesh. A new stabilizer free WG
method is proposed in [22] for the element (Pk(T ), Pk−1(e), [Pk+1(T )]

2) with opti-
mal convergence rate, on general polygonal meshes.

Table 25 demonstrates the convergence rates for (Pk(T ), Pk−1(e), RTk−1(T ))
with a stabilizer of different j on rectangular mesh.

Table 26 demonstrates the convergence rates for (Pk(T ), Pk−1(e), RTk(T )) with
a stabilizer of different j on rectangular mesh.
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Table 27. Element (Pk(T ), Pk−1(e), [Pk−1(T )) on triangular
mesh, ||| · ||| = O(hr1) and ‖ · ‖ = O(hr2 ).

element Pk(T ) Pk−1(e) [Pk−1(T )]2 j r1 r2 Proved
27.1 −1 1 2 Yes
27.2 0 0.5 1 No

27.3 P1(T ) P0(e) [P0(T )]2 1 0 0 No
27.4 ∞ −∞ −∞ No
27.5 −1 2 3 Yes
27.6 0 1.5 2 No

27.7 P2(T ) P1(e) [P1(T )]2 1 1 1 No
27.8 ∞ −∞ −∞ No
27.9 −1 3 4 Yes
27.10 0 2.5 3 No

27.11 P3(T ) P2(e) [P2(T )]2 1 2 2 No
27.12 ∞ −∞ −∞ No

Table 28. Element ((Pk(T ), Pk−1(e), [Pk(T )]
2)) on triangular

mesh, ||| · ||| = O(hr1) and ‖ · ‖ = O(hr2 ).

element Pk(T ) Pk−1(e) [Pk(T )]2 j r1 r2 Proved

28.1 −1 0 0 Y/N
28.2 0 0 0 No

28.3 P1(T ) P0(e) [P1(T )]2 1 0 0 No
28.4 ∞ −∞ −∞ No
28.5 −1 1 2 Y/N
28.6 0 1 2 No

28.7 P2(T ) P1(e) [P2(T )]2 1 1 2 No
28.8 ∞ −∞ −∞ No
28.9 −1 2 3 Y/N
28.10 0 2 3 No

28.11 P3(T ) P2(e) [P3(T )]2 1 2 3 No
28.12 ∞ −∞ −∞ No

Table 29. Element ((Pk(T ), Pk−1(e), [Pk+1(T )]
2)) on triangular

mesh, ||| · ||| = O(hr1) and ‖ · ‖ = O(hr2 ).

element Pk(T ) Pk−1(e) [Pk+1(T )]2 j r1 r2 Proved

29.1 −1 0 0 Y/N
29.2 0 0 0 No

29.3 P1(T ) P0(e) [P2(T )]2 1 0 0 No
29.4 ∞ 0 0 No
29.5 −1 1 2 Y/N
29.6 0 1 2 No

29.7 P2(T ) P1(e) [P3(T )]2 1 1 2 No
29.8 ∞ 1 2 No
29.9 −1 2 3 Y/N
29.10 0 2 3 No

29.11 P3(T ) P2(e) [P4(T )]2 1 2 3 No
29.12 ∞ 2 3 No

8. The WG elements for ` > s on triangular mesh

Table 27 demonstrates the convergence rates for (Pk(T ), Pk−1(e), [Pk−1(T )]
2)

with a stabilizer of different j on triangular mesh.
Table 28 demonstrates the convergence rates for (Pk(T ), Pk−1(e), [Pk(T )]

2) with
a stabilizer of different j on triangular mesh.

Remark 9. The WG element (Pk(T ), Pk−1(e), [Pk(T )]
2) performs better on rect-

angular mesh than on triangular mesh.

Table 29 demonstrates the convergence rates for (Pk(T ), Pk−1(e), [Pk+1(T )]
2)

with a stabilizer of different j on triangular mesh.
Table 30 demonstrates the convergence rates for (Pk(T ), Pk−1(e), RTk−1(T ))

with a stabilizer of different j on triangular mesh.
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Table 30. Element (Pk(T ), Pk−1(e), RTk−1(T )) on triangular
mesh, ||| · ||| = O(hr1) and ‖ · ‖ = O(hr2 ).

element Pk(T ) Pk−1(e) RTk−1(T ) j r1 r2 Proved
30.1 −1 1 2 No
30.2 0 1 2 No
30.3 P1(T ) P0(e) RT0(T ) 1 1 1 No
30.4 ∞ −∞ −∞ No
30.5 −1 2 3 No
30.6 0 2 3 No
30.7 P2(T ) P1(e) RT1(T ) 1 2 2 No
30.8 ∞ −∞ −∞ No
30.9 −1 3 4 No
30.10 0 3 4 No
30.11 P3(T ) P2(e) RT2(T ) 1 3 3 No
30.12 ∞ −∞ −∞ No

Table 31. Element (Pk(T ), Pk−1(e), RTk(T )) on triangular mesh,
||| · ||| = O(hr1 ) and ‖ · ‖ = O(hr2).

element Pk(T ) Pk−1(e) RTk(T ) j r1 r2 Proved
31.1 −1 0 0 No
31.2 0 0 0 No
31.3 P1(T ) P0(e) RT1(T ) 1 0 0 No
31.4 ∞ 0 0 No
31.5 −1 1 2 No
31.6 0 1 2 No
31.7 P2(T ) P1(e) RT2(T ) 1 1 2 No
31.8 ∞ 1 2 No
31.9 −1 2 3 No
31.10 0 2 3 No
31.11 P3(T ) P2(e) RT3(T ) 1 2 3 No
31.12 ∞ 2 3 No

Table 31 demonstrates the convergence rates for (Pk(T ), Pk−1(e), RTk(T )) with
a stabilizer of different j on triangular mesh.
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