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MULTILEVEL FINITE VOLUME METHODS FOR 2D

INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

J. K. DJOKO, H. H. GIDEY*, AND B. D. REDDY

Abstract. In this work, implicit and explicit multilevel finite volume methods have been con-
structed to solve the 2D Navier-Stokes equation with specified initial condition and boundary
conditions. The multilevel methods are applied to the pressure-correction projection method us-
ing space finite volume discretization. The convective term is approximated by a linear expression
that preserves the physical property of the continuous model. The stability analysis of the nu-
merical methods have been discussed thoroughly by making use of the energy method. Numerical
experiments exhibited to illustrate some differences between the new (multilevel) and conventional
(one-level) schemes.
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1. Introduction

Let Ω = (0, L1) × (0, L2) ⊆ R
2 be an open and bounded region in R

2 with
smooth boundary ∂Ω and points denoted by (x, y) ∈ Ω = Ω ∪ ∂Ω. Let 〈·, ·〉 denote
the L2(Ω) inner product of vectors or matrix fields on Ω, depending on the context;
i.e.,

〈u,u〉 =
∫

Ω

u · v dΩ,(1)

where u and v are arbitrary vectors on Ω. The associated L2-norm is denoted by
‖ · ‖ =

√
〈·, ·〉. The spatial velocity field of the fluid filling the region Ω is denoted

by u(x, y, t), where t ∈ [0, T ], T ∈ R+.
The Navier-Stokes equations governing the dynamics of the viscous incompress-

ible and homogeneous fluids is written in the generic form [1]

ut +B(u)u = −∇p+ ν∆u+ f, in Ω(2)

divu = 0,(3)

associated with the following boundary conditions and initial data:

u = 0, on ∂Ω(4)

u|t=0 = u0 in Ω,(5)

where B(u)u is the convective term, ν > 0 is the kinematic shear viscosity, p is a
pressure field arising from incompressibility constraint div u = 0 and f is applied
body force.
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Let H be the space of L2(Ω)-smooth vector fields tangent to the boundary ∂Ω
and denote by Hdiv the subspace of divergence-free vector fields:

H :=
{
u ∈ L2(Ω)2 : u(0, y, t) = u(L1, y, t) = u(x, 0, t) = u(x, L2, t) = 0,(6)

x ∈ [0, L1], y ∈ [0, L2]}(7)

Hdiv := {u ∈ H : div u = 0 }.(8)

In this study, we consider the standard form of the convective term, i.e, B(u)ηηη =
(u·∇)ηηη, for any smooth H1(Ω)-vector field ηηη, with associated pressure field denoted
by p. Using integration by parts, we obtain

〈B(u)ηηη1, ηηη2〉 = −〈ηηη1, B(u)ηηη2〉 − 〈divuηηη1, ηηη2〉+
∫

Γ

(uηηη1 · ηηη2)(u · n)dΓ,(9)

for arbitrary H1(Ω)-smooth vector fields ηηη1, ηηη2 on Ω.

〈B(u)ηηη1, ηηη2〉 = −〈ηηη1, B(u)ηηη2〉,u ∈ Hdiv.(10)

〈B(u)ηηη,ηηη〉 = 0, for any H1(Ω) smooth vector field ηηη,(11)

only holds if the velocity field is divergence-free; u ∈ Hdiv.
Integrating equation (3) over a control volume and converting the volume integral

to a surface integral gives
∫

Ω

div u dx dy =

∮

S

u · n dx dy = 0.(12)

This shows that the inflow must be equal to the outflow.

Our objective is to construct multilevel finite volume methods based on the
work in [2-4] to compute the numerical solution of (2)-(5). Multilevel methods
were introduced to improve calculation speed in the simulation of complex physical
phenomena while maintaining good accuracy [3-8]. We construct implicit and ex-
plicit finite volume methods based on the work of Appadu et al. [2] and Bousquet
et al. [4]. The schemes we construct are easy to implement and the convective term
B(u)u is approximated such that the discrete analogue of the property (11) holds.

Our work can also be seen as continuation of investigations started in [1] because
in a way we are concerned with the stability of the new schemes that should preserve
(11). The main difference with the former investigation is that we are dealing here
with multilevel scheme, hence stability analysis is more complex, even with the use
of a simpler technique (energy method). We do not discuss existence of solutions of
the schemes formulated because we are dealing with linear scheme (for the implicit
multilevel method) and explicit multilevel method. Hence solvability of the implicit
scheme is a consequence of Lax-Milgram’s result in the discrete setting.

The next section is devoted to space discretization and some properties that are
helpful to our study. In section 3, we are concerned with the multilevel discretization
and time stepping algorithm. In sections 4 and 5, we present the implicit and
explicit multilevel finite volume methods, respectively and analyse their stability. In
section 6, we present the numerical results obtained from the two multilevel methods
and these results are compared with the full one-level finite volume methods on the
fine mesh and coarse mesh. Concluding remarks and some open questions are
reported in section 7.
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2. Some properties and space discretizations

In this section, we present the space discretization in a 2D rectangular region.
To develop finite volume approximations that satisfy the discrete analogue of (11),
we first introduce some standard notations and results. Let ∆x and ∆y are the
spatial step sizes in the x− and y− directions, respectively and let (ki,j) is the
(i, j) control volume of uniform area ∆x∆y. Let N1 and N2 are integers such that
∆xN1 = L1 and ∆y N2 = L2. For 0 ≤ i ≤ N1 and 0 ≤ j ≤ N2,

xi+1/2 = i∆x, yj+1/2 = j∆y,

so that

ki,j = (xi−1/2, xi+1/2)× (yj−1/2, yj+1/2), 1 ≤ i ≤ N1, 1 ≤ j ≤ N2.

(xi, yj) is the centre of the (i, j) control volume, which is given by the formula

(xi, yj) =

(
(i− 1)∆x+

∆x

2
, (j − 1)∆y +

∆y

2

)
.

In the rest of this work, we take h = (∆x,∆y). The approximate solutions,
the velocities and pressure, to the control volume average of the true solution at
tn = n∆t are given by

un
i,j ≈

1

∆x∆y

∫∫

ki,j

u(x, y, tn)dxdy for the velocity,

pni,j ≈
1

∆x∆y

∫∫

ki,j

p(x, y, tn)dxdy for the pressure,

for i = 1, 2, . . . , N1 and j = 1, 2, . . . , N2 where ∆t is the temporal step size such
that ∆tM = T , which is obtained recursively by starting with the initial average
value, u0

i,j , given by

u0
i,j =

1

∆x∆y

∫∫

ki,j

u0(x, y)dxdy.

To take into account the boundary conditions we introduce the fictitious cells
(ghost-cells)

k0,j = (−∆x, 0)× ((j − 1)∆y, j∆y), j = 1, . . . , N2,

kN1+1,j = (L1, L1 +∆x)× ((j − 1)∆y, j∆y), j = 1, . . . , N2,

ki,0 = ((i − 1)∆x, i∆x)× (−∆y, 0), i = 1, . . . , N1,

ki,N2+1 = ((i − 1)∆x, i∆x)× (L2, L2 +∆y), i = 1, . . . , N1.

Define the spaces Hh and Hdiv
h as

Hh =
{
u =

(
ui,j

)
i,j
,ui,j ∈ R

2
∣∣∣ u0,j = ui,0 = uN1+1,j = ui,N2+1 = 0

}
,

and

Hdiv
h =

{
u ∈ Hh

∣∣∣ div u = 0
}
,
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equipped with the inner product and discrete L2 norm

(u,v)h = ∆x∆y

N1∑

i=1

N2∑

j=1

ui,j · vi,j and ‖u‖h =


∆x∆y

N1∑

i=1

N2∑

j=1

|ui,j |2



1/2

,

respectively, h = (∆x,∆y).
For u ∈ Hh, we introduce the following difference operators:

∇−
1,hui,j =

1

∆x
(ui,j − ui−1,j) , ∇+

1,hui,j =
1

∆x
(ui+1,j − ui,j) ,(13)

∇−
2,hui,j =

1

∆y
(ui,j − ui,j−1) , ∇+

2,hui,j =
1

∆y
(ui,j+1 − ui,j) ,(14)

∆1,hui,j =
1

∆x2
(ui+1,j − 2ui,j + ui−1,j) ,(15)

∆2,hui,j =
1

∆y2
(ui,j+1 − 2ui,j + ui,j−1) ,(16)

From (13)-(16), we have

∇±
h ui,j =

( ∇±
1,hui,j ∇±

2,hui,j

∇±
1,hvi,j ∇±

2,hvi,j

)
, ∇±

h ui,j =

( ∇±
1,hui,j

∇±
2,hui,j

)
, ∆h = ∆1,h +∆2,h.

(17)

The discrete analogue of the derivative of product of functions is given as follows:
for u,v ∈ Hh,

∇+
1,h(ui,jvi,j) = (∇+

1,hui,j)vi+1,j + ui,j(∇+
1,hvi,j),(18)

∇+
2,h(ui,jvi,j) = (∇+

2,hui,j)vi,j+1 + ui,j(∇+
2,hvi,j),(19)

∇−
1,h(ui,jvi,j) = (∇−

1,hui,j)vi−1,j + ui,j(∇−
1,hvi,j),(20)

∇−
2,h(ui,jvi,j) = (∇−

2,hui,j)vi,j−1 + ui,j(∇−
2,hvi,j).(21)

We define the following semi-norm and norm

|u|1,h =


∆x∆y

N1+1∑

i=1

N2+1∑

j=1

(∇−
1,hui,j)

2 + (∇−
2,hui,j)

2 + (∇−
1,hvi,j)

2 + (∇−
2,hvi,j)

2




1

2

,

‖u‖h,∞ = max{max
i,j

|ui,j |,max
i,j

|vi,j |}

where u =

(
uuu
vvv

)
. We also have the following relations from the semi-discrete

norms:

|u|21,h ≤
(

4

∆x2
+

4

∆y2

)
‖u‖2h,(22)

‖u‖2h,∞ ≤ 1

∆x∆y
‖u‖2h.(23)

From the definition of Hh and the discrete product rules (18) - (21), one obtains

Lemma 2.1. Let u,www ∈ Hh. Then for k = 1, 2

N1∑

i=1

N2∑

j=1

wi,j · (∇+
k,hui,j) = −

N1∑

i=1

N2∑

j=1

ui,j · (∇−
k,hwi,j).
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For any u,w ∈ Hh

2(u−w,u)h = ‖u‖2h − ‖w‖2h + ‖u−w‖2h,(24)

2(u−w,w)h = ‖u‖2h − ‖w‖2h − ‖u−w‖|2h.(25)

It is important to note that if u belongs to Hh, then the discrete Poincaré’s
inequality holds; this is to say that there is c0 > 0, independent of ∆x and ∆y such
that

‖u‖h ≤ c0|u|1,h.(26)

For x ∈ [0, 1/2] we have

1− x ≥ 2−2x.(27)

In order to approximate the nonlinear term such that the discrete analogue of (11)
holds, we introduce the bilinear map: Ch : Hh ×Hh → (R2)N1×N2 in the form

Ch(u,w)i,j =

(
Cu

h (u,w)i,j
Cv

h(u,w)i,j

)
,(28)

where

Cu
h (u,w)i,j = α1

[
wi,j∇+

1,hui,j + ui,j∇−
1,hwi,j

+ ui+1,j∇+
1,hwi,j + wi,j∇+

2,hvi,j + vi,j∇−
2,hwi,j + vi,j+1∇+

2,hwi,j

]

+ α2

[
wi,j∇−

1,hui,j + ui,j∇+
1,hwi,j + ui−1,j∇−

1,hwi,j

+ wi,j∇−
2,hvi,j + vi,j∇+

2,hwi,j + vi,j−1∇−
2,hwi,j

]
,(29)

Cv
h(u,w)i,j = α1

[
si,j∇+

1,hui,j + ui,j∇−
1,hsi,j

+ ui+1,j∇+
1,hsi,j + si,j∇+

2,hvi,j + vi,j∇−
2,hsi,j + vi,j+1∇+

2,hsi,j

]

+ α2

[
si,j∇−

1,hui,j + ui,j∇+
1,hsi,j + ui−1,j∇−

1,hsi,j

+ si,j∇−
2,hvi,j + vi,j∇+

2,hsi,j + vi,j−1∇−
2,hsi,j

]
,(30)

u =

(
uuu
vvv

)
, w =

(
www
sss

)
,

and α1 and α2 are constants.

Lemma 2.2. For any u,w ∈ Hh, the following hold.

(Ch(u,w),w)h = 0.(31)

|(Ch(u,u),w)h| ≤ 3
√
2
(
|α1|+ |α2|

)
‖u‖h,∞|u|1,h‖w‖h.(32)

Proof. Let u =

(
uuu
vvv

)
,w =

(
www
sss

)
. From the definition of the discrete inner

product, we have

(Ch(u,w),w)h = ∆x∆y

N1∑

i=1

N2∑

j=1

[Cu
h (u,w)i,jwi,j + Cv

h(u,w)i,jsi,j ] .
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We see each of the terms in (29) and (30) and apply Lemma 2.1. From the definition
of the discrete operators, we have

wi,j∇+
1,hui,jwi,j = wi,j∇+

1,h(ui,jwi,j)− wi,j(∇+
1,hwi,j)ui+1,j ,

and then taking the sum and applying Lemma (2.1), we obtain

N1∑

i=1

N2∑

j=1

wi,j∇+
1,hui,jwi,j =

N1∑

i=1

N2∑

j=1

wi,j∇+
1,h(ui,jwi,j)−

N1∑

i=1

N2∑

j=1

wi,j(∇+
1,hwi,j)ui+1,j ,

=−
N1∑

i=1

N2∑

j=1

wi,j

[
ui,j∇−

1,hwi,j + ui+1,j∇+
1,hwi,j

]
.

Similarly, we obtain

N1∑

i=1

N2∑

j=1

wi,j∇−
1,hui,jwi,j = −

N1∑

i=1

N2∑

j=1

wi,j

[
ui,j∇+

1,hwi,j + ui−1,j∇−
1,hwi,j

]
,

N1∑

i=1

N2∑

j=1

wi,j∇+
2,hvi,jwi,j = −

N1∑

i=1

N2∑

j=1

wi,j

[
vi,j∇−

2,hwi,j + vi,j+1∇+
2,hwi,j

]
,

N1∑

i=1

N2∑

j=1

wi,j∇−
2,hvi,jwi,j = −

N1∑

i=1

N2∑

j=1

wi,j

[
vi,j∇+

2,hwi,j + ui,j−1∇−
2,hwi,j

]
.

Thus using the definition of Cu
h , we obtain

N1∑

i=1

N2∑

j=1

Cu
h (u,w)i,jwi,j = 0.(33)

In a similar way, we obtain

N1∑

i=1

N2∑

j=1

Cv
h(u,w)i,jsi,j = 0,(34)

and hence the first argument of the Lemma, (31), holds.

To prove the inequality, we majorize each of the terms in the inner product.
From the definition of Ch, we have

(Ch(u,u),w)h = ∆x∆y

N1∑

i=1

N2∑

j=1

[Cu
h (u,u)i,jwi,j + Cv

h(u,u)i,jsi,j ] .
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∆x∆y

N1∑

i=1

N2∑

j=1

Cu
h (u,u)i,jwi,j

=∆x∆y

N1∑

i=1

N2∑

j=1

[
α1

(
ui,j∇+

1,hui,j + ui,j∇−
1,hui,j + ui+1,j∇+

1,hui,j

)
wi,j

+ α1

(
ui,j∇+

2,hvi,j + vi,j∇−
2,hui,j + vi,j+1∇+

2,hui,j

)
wi,j

+ α2

(
ui,j∇−

1,hui,j + ui,j∇+
1,hui,j + ui−1,j∇−

1,hui,j

)
wi,j

+ α2

(
ui,j∇−

2,hvi,j + vi,j∇+
2,hui,j + vi,j−1∇−

2,hui,j

)
wi,j

]

=α1(I1 + I2) + α2(I3 + I4).

To majorize the terms I1, I2, I3 and I4, we use the fact that

N1∑

i=1

N2∑

j=1

ui,j∇+
1,hui,jwi,j =

N1∑

i=0

N2∑

j=1

ui,j∇+
1,hui,jwi,j =

N1+1∑

i=1

N2∑

j=1

ui−1,j∇−
1,hui,jwi−1,j .

(35)

Then

|I1| ≤∆x∆y

N1+1∑

i=1

N2∑

j=1

(
|ui−1,j ||∇−

1,hui,j||wi−1,j |

+ |ui,j||∇−
1,hui,j ||wi,j |+ |ui,j ||∇−

1,hui,j ||wi−1,j |
)

≤‖u‖h,∞∆x∆y

N1+1∑

i=1

N2∑

j=1

(
|∇−

1,hui,j ||wi−1,j |+ |∇−
1,hui,j ||wi,j |+ |∇−

1,hui,j ||wi−1,j |
)

≤3‖u‖h,∞


∆x∆y

N1+1∑

i=1

N2∑

j=1

(∇−
1,hui,j)

2




1/2 
∆x∆y

N1∑

i=1

N2∑

j=1

w2
i,j




1/2

.

(36)

In a similar way, we have

|I2|, |I4| ≤‖u‖h,∞





∆x∆y

N1+1∑

i=1

N2∑

j=1

(∇−
2,hvi,j)

2




1/2

+2


∆x∆y

N1∑

i=1

N2+1∑

j=1

(∇−
2,hui,j)

2




1/2

×


∆x∆y

N1∑

i=1

N2∑

j=1

w2
i,j




1/2

,(37)

and

|I3| ≤ 3‖u‖h,∞


∆x∆y

N1+1∑

i=1

N2∑

j=1

(∇−
1,hui,j)

2




1/2 
∆x∆y

N1∑

i=1

N2∑

j=1

w2
i,j




1/2

.(38)

Using (36)-(38), we obtain
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|∆x∆y

N1∑

i=1

N2∑

j=1

Cu
h (u,u)i,jwi,j | ≤ 3(|α1|+ |α2|)‖u‖h,∞|u|1,h


∆x∆y

N1∑

i=1

N2∑

j=1

w2
i,j




1

2

.

(39)

Similarly, we obtain

|∆x∆y

N1∑

i=1

N2∑

j=1

Cv
h(u,u)i,jsi,j | ≤ 3(|α1|+ |α2|)‖u‖h,∞|u|1,h


∆x∆y

N1∑

i=1

N2∑

j=1

s2i,j




1

2

.

(40)

Combining (39) and (40), we obtain (32). Hence the proof is complete.
�

3. Multilevel discretization and time stepping algorithm

Multilevel methods were introduced to improve calculation speed in the simu-
lation of complex physical phenomena while maintaining a good level of accuracy,
see [3-8]. This section is an application of the work presented in [4], in which the
shallow water equations are analyzed. Here, we are concerned with the two di-
mensional incompressible Navier-Stokes equations (2)-(3) with Dirichlet boundary
conditions. We formulate in the spirit of [4] two methods approximating (2)-(3),
namely: an implicit multilevel finite volume method and an explicit multilevel finite
volume method. These new methods are next studied thoroughly and compared
with respect to L2-errors and CPU time with the associated one-level methods. To
make this text self-contained for the reader, we recall below the multilevel finite
volume approximation as described in Appadu et al. [2] and Bousquet et. al. [4].

Since the number of control volumes on the fine mesh is a multiple of three, we
replaceN1 and N2 in section 2 by 3N1 and 3N2, respectively such that 3N1∆x = L1

and 3N2∆y = L2. We discretize Ω into fine meshes and coarse meshes. The fine
mesh consists of 3N1 × 3N2 regular cells (ki,j)1≤i≤3N1,1≤j≤3N2

of uniform area
∆x∆y. The coarse mesh consists of N1N2 control volumes (Kl,m)1≤l≤N1,1≤m≤N2

of uniform area 9∆x∆y, where

Kl,m = (x3l−2−1/2, x3m+1/2)× (y3m−2−1/2, y3m+1/2).

We denote the approximate solutions on the fine grid by ui,j , 1 ≤ i ≤ 3N1, 1 ≤ j ≤
3N2. The approximation on the coarse mesh is given by

Ul,m =
1

9

2∑

α,β=0

u3l−α,3m−β , 1 ≤ l ≤ N1, 1 ≤ m ≤ N2,

and the incremental unknowns are given by the relation

Z3l−α,3m−β = u3l−α,3m−β −Ul,m.(41)

Let M be an integer such that ∆tM = T . Let τ > 1 and q > 1 be two fixed
integers. We discretize (2) on the fine mesh by using time step ∆t/τ and on the
coarse mesh by using time step ∆t. We assume that n is a multiple of q + 1 and
(un

i,j)1≤i≤3N1, 1≤j≤3N2
are known, where un

i,j is an approximation of the average
value of u over ki,j at the grid t = n∆t, for i = 1, . . . , 3N1, j = 1, . . . , 3N2. For

r = 0, 1, . . . , τ and s = 1, 2, . . . , q + 1, we let u
n+r/τ
i,j be the approximate solution

of the mean values over ki,j at time tn+t/τ = n∆t+ r∆t/τ for i = 1, . . . , 3N1, j =
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1, . . . , 3N2 and Un+s
l,m the approximate solution of the mean value on the coarse

mesh Kl,m at time tn+s = (n+ s)∆t for l = 1, . . . , N1 and m = 1, . . . , N2.

Remark 3.1. Note that the ghost-cells are defined for both fine and coarse dis-

cretizations.

At each time step, we use the fractional step/projection method to to solve the
full problem (2)-(5) in a sequence of decoupled equations for the velocity and pres-
sure. The concept of projection methods was introduced by Chorin et al. [9]; since
then, several projection methods have been developed: see [10-13]. In this study,
we consider for simplicity the pressure-correction projection method of Chorin et
al. [9].

4. Implicit method

In this section based on the works of Chorin et al. [9] and Bousquet et al. [4],
we construct a linearized implicit multilevel finite volume scheme. The nonlinear
convective term (u · ∇)u is approximated in a linear way using the bilinear map
Ch defined by (28). The approximation of the convective term on the fine mesh is
given as follows:

(u · ∇)u
∣∣∣
t=∆t(n+(r+1)/τ)

≈ Ch(ũ
n+r/τ ,un+(r+1)/τ ),

where ũn+r/τ = a0u
n+r/τ + a1u

n+(r−1)/τ + · · · + ar0u
n+(r−r0)/τ , for r > r0 with

a0 + a1 + · · · + ar0 = 1, ensuring consistency. For λ ≤ r0, ũ
n+λ/τ = un+λ/τ . The

approximation of the convective term of the coarse mesh can be defined in a similar
way.

For r = 0, 1, . . . , τ − 1 and s = 1, 2, . . . , q, we discretize (2)-(3) as follows:

τ

∆t
(û

n+(r+1)/τ
i,j − u

n+r/τ
i,j ) + Ch(ũ

n+r/τ , ûn+(r+1)/τ )i,j

=ν∆hû
n+(r+1)/τ
i,j + f

n+(r+1)/τ
i,j ,(42)

τ

∆t
(u

n+(t+1)/τ
i,j − û

n+(r+1)/τ
i,j ) = −∇−

h p
n+(r+1)/τ
i,j ,(43)

∇+
h · un+(r+1)/τ

i,j = 0,(44)

u
n+(r+1)/τ
0,j = u

n+(r+1)/τ
3N1+1,j = u

n+(r+1)/τ
i,3N2+1 = u

n+(r+1)/τ
i,0 = 0,(45)

u0
i,j =

1

∆x∆y

∫∫

ki,j

u0(x, y) dx dy,(46)

1

∆t
(Û

n+s+1

l,m −Un+s
l,m ) + Ch(Ũ

n+s
, Û

n+s+1
)l,m + ν∆3hÛ

n+s+1

l,m + Fn+s+1
l,m ,(47)

1

∆t
(Un+s+1

l,m − Û
n+s+1

l,m ) = −∇−
3hP

n+s+1
l,m ,(48)

∇+
3h ·Un+s+1

l,m = 0,(49)

Un+m+1
l,0 = Un+s+1

N1+1,m = Un+s+1
l,N2+1 = Un+s+1

0,m = 0,(50)

where i = 1, . . . , 3N1, j = 1, . . . , 3N2, l = 1, . . . , N1,, m = 1, . . . , N2 and û and Û

are temporary non-divergence-free velocity fields on the fine mesh and coarse mesh,
respectively.
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We split the full equation by first computing the velocity field without considering
the pressure, (42), and then adding the pressure, (43). Combining equations (42)
and (43), we obtain a numerical approximation to equation (2) on the fine mesh.

We first compute (42) to determine the non-divergence free velocity û
n+(r+1)/τ
i,j ;

then using the divergence free condition on the final velocity field (44), the pressure
is determined from (43). By taking the divergence of (43) and using (44), we obtain
a Poisson equation for the pressure:

∆hp
n+(r+1)/τ
i,j =

τ

∆t
∇h · ûn+(r+1)/τ

i,j .(51)

From (51), the pressure p
n+(r+1)/τ
i,j in the projection method satisfies the artifi-

cial Neumann boundary condition
∂p

∂n

∣∣∣
∂Ω

= 0, see [13, 14]. Hence, the boundary

conditions for the pressure on the fine mesh are given by

p0,j = p1,j , p3N1+1,j = p3N1,j , pi,0 = p1,j , pi,3N2+1 = pi,3N2
,(52)

for i = 1, . . . , 3N1 and j = 1, . . . , 3N2. The boundary conditions of the pressure on
the coarse mesh are defined in a similar way.

Once the pressure has been found, the final velocity field is obtained from (43).
The same procedure applies on (48) and (49) to find the final velocity field and
pressure on the coarse mesh.

Theorem 4.1. The finite volume discretization (42)-(50) is conditionally stable;

that is, for ∆t ≤ 1

2η
,

‖un‖2h ≤ 22Tη
[
‖u0‖2h + TηM

]
,(53)

where M = max
n

‖fn‖h and η =

(
1− 2ν

c0

)
.

Proof: To prove this result we use the energy method. First taking the scalar

product of (42) with
2

τ
∆t∆x∆y û

n+(r+1)/τ
i,j and taking the sum, we obtain

2(ûn+(r+1)/τ − un+r/τ , ûn+(r+1)/τ )h

=
2∆t

τ
ν(ûn+(r+1)/τ ,∆hû

n+(r+1)/τ )h +
2∆t

τ
(fn+(r+1)/τ , ûn+(r+1)/τ )h

=− 2∆t

τ
ν(∇hû

n+(r+1)/τ ,∇hû
n+(r+1)/τ )h +

2∆t

τ
(fn+(r+1)/τ , ûn+(r+1)/τ )h

=− 2∆t ν

τ
|ûn+(r+1)/τ |21,h +

2∆t

τ
(fn+(r+1)/τ , ûn+(r+1)/τ )h.(54)

Using (24), (26) and Young’s inequality, equation (54) gives

[
1 +

∆t

τ

(
2ν

c0
− 1

)]
‖ûn+(r+1)/τ‖2h − ‖un+r/τ‖2h + ‖ûn+(r+1)/τ − un+r/τ‖2h

≤∆t

τ
‖fn+(r+1)/τ‖2h.

(55)

Since f is a bounded function, we have
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‖fn+(r+1)/τ‖2h ≤ M0,

where

M0 = sup
t∈[0,T ]

‖f(x, y, t)‖.

Thus from (55) we have
[
1− ∆t

τ

(
1− 2ν

c0

)]
‖ûn+(r+1)/τ‖2h − ‖un+r/τ‖2h ≤ ∆t

τ
M2

0 .(56)

Based on (27) for

∆t ≤ τ

2η
,(57)

we have

‖ûn+(r+1)/τ‖2h ≤ 2
2∆tη

τ

[
‖un+r/τ‖2h +

∆t

τ
M2

0

]
,(58)

where η =

(
1− 2ν

c0

)
.

Multiplying (43) with
2

τ
∆t∆x∆y u

n+(r+1)/τ
i,j and summing, we get

‖un+(r+1)/τ‖2h − ‖ûn+(r+1)/τ‖2h+ ‖un+(r+1)/τ − û
n+(r+1)/τ‖2h

=− 2∆t

τ
(∇hppp

n+(r+1)/τ ,un+(r+1)/τ )h

=
2∆t

τ
(pppn+(r+1)/τ ,∇h · un+(r+1)/τ )h.(59)

Applying (43), (59) yields

‖un+(r+1)/τ‖h ≤ ‖ûn+(r+1)/τ‖h.(60)

Combining (58) and (60), we get

‖un+(r+1)/τ‖2h ≤ 2
2∆tη

τ

[
‖un+r/τ‖2h +

∆t

τ
M2

0

]
.

After τ iterations, we obtain

‖un+1‖2h ≤ 2
2∆t η

ε2 ‖un‖2h +
∆tM2

0

τ




τ∑

j=1

(
2

2∆t j η

τ

)



≤ 22∆t η
[
‖un‖2h +∆tM2

0

]
.(61)

We now perform q iterations on the coarse grid, (47), using time step ∆t and the
relations (41). At time tn+s = (n+ s)∆t, 2 ≤ s ≤ q+ 1, the incremental unknowns
Zi,j are frozen at time (n+1)∆t. As in the case on the fine mesh, taking the scalar

product of (47) with 18∆t∆x∆y Û
n+s+1

l,m and adding the equalities for l = 1, . . . , N1

and m = 1, . . . , N2, together with (24), (26) and Young’s inequality, we obtain

[1−∆t η] ‖Ûn+s+1‖23h − ‖Un+s‖23h ≤ ∆tM2
0 .(62)
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Using (27) for

∆t ≤ 1

2η
,(63)

(62) gives

‖Ûn+s+1‖23h ≤ 22∆t η
[
‖Un+s‖23h +∆tM2

0

]
.(64)

Using (64) and the fact that ‖Un+s+1‖23h ≤ ‖Ûn+s+1‖23h, we get

‖Un+s+1‖23h ≤ 22∆t η
[
‖Un+s‖23h +∆tM2

0

]
.(65)

From the definition of the increments Zn+1
3l−α,3m−β , we have

un+s
3l−α,3m−β = Un+s

l,m + Zn+1
3l−α,3m−β, 1 ≤ l ≤ N1, 1 ≤ m ≤ N2, α, β = 0, 1, 2.

Taking the sum over α and β, we get

2∑

α,β=0

|un+s
3l−α,3m−β |2 =

2∑

α,β=0

|Un+s
l,m + Zn+1

3l−α,3m−β |2 = 9|Un+s
l,m |2 +

2∑

α,β=0

|Zn+1
3l−α,3m−β |2,

where |.| is an Euclidean norm in 2D. For s = 1, . . . , q + 1, the following relation
holds:

‖un+s‖2h = ‖Un+s‖23h + ‖Zn+1‖2h.(66)

By adding ‖Zn+1‖2h to both sides of inequality (65) and using (66), we get

‖un+s+1‖2h ≤ 22∆t η
[
‖un+s‖2h +∆tM2

0

]
.

After q iterations, and using (61), we have

‖un+q+1‖2h ≤ 22∆t (q+1) η
[
‖un‖2h +∆t(q + 1)M2

0

]
.

By induction over n, we obtain

‖un‖2h ≤ 22∆tnη
[
‖u0‖2h +∆tnM2

0

]

≤ 22Tη
[
‖u0‖2h + TM2

0

]

This completes the proof. �

Remark 4.1. From (56) and (62), for big enough ν, that is for ν ≥ c0
2
, we have

‖un‖2h ≤ ‖u0‖2h +∆tnM2
0 ≤ ‖u0‖2h + TM2

0 ,

for n = 1, . . . ,M .

Remark 4.2. The conditions for the stability of the implicit multilevel finite volume

method are given in (57) and (63). This shows that the method is more restricted

on the coarse mesh than the fine mesh.
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5. Explicit method

In this section, we consider the projection method of [9] to discretize (2) using
explicit multilevel finite volume schemes where the convective term is approximated
by

(u · ∇)u
∣∣∣
t=(n+1)∆t

≈ Ch(u
n,un),

and the approximations on the fine and coarse meshes are obtained similarly.
For 0 ≤ r ≤ τ − 1 and 1 ≤ s ≤ q, we discretize (2) using explicit multilevel finite

volume method.
τ

∆t
(û

n+(r+1)/τ
i,j − u

n+r/τ
i,j ) + (Ch(u

n+r/τ ,un+r/τ ))i,j

= ν∆hu
n+r/τ
i,j + f

n+r/τ
i,j ,(67a)

τ

∆t
(u

n+(t+1)/τ
i,j − û

n+(r+1)/τ
i,j ) = −∇−

h p
n+(r+1)/τ
i,j ,(67b)

∇+
h · un+(r+1)/τ

i,j = 0,(67c)

u
n+r/τ
0,j = u

n+r/τ
i,0 = u

n+r/τ
3N1+1,j = u

n+r/τ
i,3N2+1 = 0,(67d)

u0
i,j =

1

∆x∆y

∫∫

ki,j

u0(x, y) dx dy,(67e)

1

∆t
(Û

n+s+1

l,m −Un+s
l,m )− (C3h(U

n+s,Un+s))l,m = ν∆3hU
n+s
l,m + Fn+s

l,m .(67f)

1

∆t
(Un+s+1

l,m − Û
n+s+1

l,m ) = −∇−
3hP

n+s+1
l,m ,(67g)

∇+
3h ·Un+s+1

l,m = 0,(67h)

Un+s
0,m = Un+s

l,0 = Un+s
N1+1,m = Un+s

l,N2+1 = 0,(67i)

where 1 ≤ i ≤ 3N1, 1 ≤ l ≤ N1, 1 ≤ j ≤ 3N2 and 1 ≤ m ≤ N2. The pressure is
associated with homogeneous Neumann boundary condition.

Theorem 5.1. We assume that the following are satisfied for some δ, 0 < δ < 1:

16∆t

(
1

∆x2
+

1

∆y2

)
≤ 1− δ

ν
min{τ, 9},(68)

72∆t

∆x∆y

(
|α1|+ |α2|

)2

≤ νδ

2D
min{τ, 9}.(69)

Then the multilevel method defined by the equations (67a)-(67i) is L∞(0, T ;Hh)
stable in the sense that

‖un‖2h ≤ D, n = 1, 2 . . . ,M,

where

D = ‖u0‖2h + T

(
c20
ν

+ 2T

)
‖f‖h,

‖f‖h = max
n

‖f n‖h.

Proof. To prove this result we use once again the energy method. We assume n is a

multiple of q+1. Taking the scalar product in Hh of (67a) with
2∆t∆x∆y

τ
û
n+r/τ
i,j
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and taking the sum for i = 1, . . . , 3N1 and j = 1, . . . , 3N2, we obtain

‖ûn+(r+1)/τ‖2h − ‖un+r/τ‖2h − ‖ûn+(r+1)/τ − un+r/τ‖2h +
2∆tν

τ
|un+r/τ |21,h

=
2∆t

τ
(un+r/τ , fn+r/τ )h.(70)

Eq. (70) together with (25) and (26) gives

‖ûn+(r+1)/τ‖2h − ‖un+r/τ‖2h − ‖ûn+(r+1)/τ − un+r/τ‖2h +
∆tν

τ
|un+r/τ |21,h

≤∆tc20
τ

‖fn+r/τ‖h.(71)

To estimate the term ‖ûn+(r+1)/τ −un+r/τ‖2h, we take the scalar product in Hh

(67a) with
2∆t∆x∆y

τ
(û

n+(r+1)/τ
i,j − u

n+r/τ
i,j ) and sum from i = 1 to i = 3N1 and

from j = 1 to j = 3N2, then gives

2‖ûn+(r+1)/τ − un+r/τ‖2h =− 2∆t

τ
(Ch(u

n+r/τ ,un+r/τ ), ûn+(r+1)/τ − un+r/τ )

+
2∆tν

τ
(∆hu

n+r/τ , ûn+(r+1)/τ − un+r/τ )h

+
2∆t

τ
(fn+r/τ , ûn+(r+1)/τ − un+r/τ )h

≤2∆t

τ
|(Ch(u

n+r/τ ,un+r/τ ), ûn+(r+1)/τ − un+r/τ )h|

+
2∆tν

τ
|un+r/τ |1,h |ûn+(r+1)/τ − un+r/τ |1,h

+
2∆t

τ
‖fn+r/τ‖h ‖ûn+(r+1)/τ − un+r/τ‖h.

Using (22), (23), Young’s inequality and Lemma 2.2, we have

2∆tν

τ
|(Ch(u

n+r/τ ,un+r/τ ), ûn+(r+1)/τ − un+r/τ )h|

≤6∆t
√
2

τ

(
|α1|+ |α2|

)
‖un+r/τ‖h,∞|un+r/τ |1,h‖ûn+(r+1)/τ − un+r/τ‖h

≤72∆t2

τ2

(
|α1|+ |α2|

)2

‖un+r/τ‖2h,∞|un+r/τ |21,h +
1

4
‖ûn+(r+1)/τ − un+r/τ‖2h

≤ 72∆t2 γ

∆x∆y τ2
‖un+r/τ‖2h|un+r/τ |21,h +

1

4
‖ûn+(r+1)/τ − un+r/τ‖2h,

and

2∆tν

τ
|un+r/τ |1,h |ûn+(r+1)/τ − un+r/τ )h|1,h

≤4∆t ν

τ

(
1

∆x2
+

1

∆y2

)1/2

|un+r/τ |1,h ‖ûn+(r+1)/τ − un+r/τ‖h

≤16∆t2 ν2

τ2

(
1

∆x2
+

1

∆y2

)
|un+r/τ |21,h +

1

4
‖ûn+(r+1)/τ − un+r/τ‖h,

and

2∆t

τ
‖fn+r/τ‖h ‖ûn+(r+1)/τ − un+r/τ‖h ≤ 2∆t2

τ2
‖fn+r/τ‖2h +

1

2
‖ûn+(r+1)/τ − un+r/τ‖2h,
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where γ =
(
|α1|+ |α2|

)2

, which yields

‖ûn+(r+1)/τ − un+r/τ‖2h ≤16∆t2 ν2

τ2

(
1

∆x2
+

1

∆y2

)
|un+r/τ |21,h

+
72∆t2 γ

∆x∆y τ2
‖un+r/τ‖2h|un+r/τ |21,h +

∆t2

τ2
|fn+r/τ |2h.

Using (68), we obtain

‖ûn+(r+1)/τ − un+r/τ‖2h ≤∆t ν(1 − δ)

τ
|un+r/τ |21,h

+
72∆t2 γ

∆x∆y τ2
‖un+r/τ‖2h|un|21,h +

2∆t2

τ2
|fn+r/τ |2h.

Going back to (71), we get

‖ûn+(r+1)/τ‖2h − ‖un+r/τ‖2h +
∆t

τ

(
νδ − 72∆t γ

∆x∆y τ
‖un+r/τ‖2h

)
|un+r/τ |21,h

≤ ∆t

τ

(
c20
ν

+ 2
∆t

τ

)
‖fn+r/τ‖2h

≤ ∆t

τ

(
c20
ν

+ 2T

)
‖f‖2h.

Letting D0 =

(
c20
ν

+ 2T

)
‖f‖2h, we have

‖ûn+(r+1)/τ‖2h − ‖un+r/τ‖2h +
∆t

τ

(
νδ − 72∆t γ

∆x∆y τ
‖un+r/τ‖2h

)
|un+r/τ |21,h ≤ ∆t

τ
D0.

(72)

From (67b) and the divergence free property, the inequality (60) holds. Thus, from
(72), we obtain

‖un+(r+1)/τ‖2h − ‖un+r/τ‖2h +
∆t

τ

(
νδ − 72∆t γ

∆x∆y τ
‖un+r/τ‖2h

)
|un+r/τ |21,h ≤ ∆t

τ
D0.

(73)

In a similar fashion, from (67f) together with the assumption (68), we obtain

‖Un+s+1‖23h − ‖Un+s‖23h +∆t

(
νδ − 8∆t γ

∆x∆y
‖Un+s‖23h

)
|Un+s|21,3h ≤ ∆tD0.

(74)

Now we need to prove the following by induction on n:

‖un+(r+1)/τ‖2h +
∆t νδ

2τ
|un+r/τ |21,h ≤ ‖un+r/τ‖2h +

∆t

τ
D0, for r = 0, 1, . . . , τ − 1,

(75)

‖Un+s+1‖23h +
∆t νδ

2
|Un+s|21,3h ≤ ‖Un+s‖23h +∆tD0, for s = 1, 2, . . . , q.(76)

We first show (75) and (76) hold by induction on r and s when n = 0. We first
show that

‖u1‖2h +
∆t νδ

2τ

τ−1∑

r=0

|ur/τ |21,h ≤ ‖u0‖2h +∆tD0.(77)
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For n = 0, the relation (73) becomes

‖u(r+1)/τ‖2h − ‖ur/τ‖2h +
∆t

τ

(
νδ − 72∆t γ

∆x∆y τ
‖ur/τ‖2h

)
|ur/τ |21,h ≤ ∆t

τ
D0.(78)

For r = 0 using (69), we get

‖u1/τ‖2h +
∆t νδ

τ
|u0|21,h ≤‖u0‖2h +

∆t

τ
D0 +

72∆t2 γ

∆x∆y τ2
‖u0‖2h|u0|21,h

≤‖u0‖2h +
∆t

τ
D0 +

∆t

τ

νδ

2
|u0|21,h,

which gives

‖u1/τ‖2h +
∆t νδ

2τ
|u0|21,h ≤ ‖u0‖2h +

∆t

τ
D0.

Let us assume that (77) holds up to r−1. From the assumption for s = 1, 2, . . . , r−1,
we have

‖us/τ‖2h ≤ ‖u0‖2h +
s∆t

τ
D0 ≤ D.

The relation (78) becomes

‖u(r+1)/τ‖2h +
∆t νδ

τ
|ur/τ |21,h ≤ ‖ur/τ‖2h +

∆t

τ

72∆t γ

∆x∆y τ
‖ur/τ‖2h|ur/τ |21,h +

∆t

τ
D0

≤ ‖ur/τ‖2h +
∆tνδ

2τ
|ur/τ |21,h +

∆t

τ
D0(79)

which shows us that (75) is true for n = 0. From (79), we have

‖u1‖2h +
∆t νδ

2τ

τ−1∑

r=0

|ur/τ |21,h ≤ ‖u0‖2h +∆tD0,

which implies

‖u1‖2h ≤ ‖u0‖2h +∆tD0.(80)

We then show (76) by using induction on s for n = 0. From the definition of U,
we have

‖Un‖23h ≤ ‖un‖2h.(81)

For s = 1, from (74), we have

‖U2‖23h − ‖U1‖23h +∆t

(
νδ − 8∆t γ

∆x∆y
‖U1‖23h

)
|U1|21,3h ≤ ∆tD0.

Then using (80) and (81) together with (69), we arrive at

‖U2‖23h +
∆t νδ

2
|U1|21,3h ≤ ‖U1‖23h +∆tD0.

We now assume that (76) holds true up to the order q − 1; that is,

‖Us+1‖23h +
∆t νδ

2
|Us|21,3h ≤ ‖Us‖23h +∆tD0 for s = 1, . . . , q − 1,

and we observe that

‖Us+1‖23h ≤ ‖Us‖23h +∆tD0 ≤ D, for s = 1, . . . , q − 1.(82)

From (74) and (82) together with (69) we obtain the result. Thus using (41) and
(66), we find that

‖us+1‖2h ≤ D, for s = 0, . . . , q.
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(a) u: fine (b) v: fine (c) p: fine

(d) u: ML (e) v: ML (f) p: ML
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Figure 1. Velocities and pressure obtained from implicit methods
for N = 64 and ∆t = 0.0001 at T = 0.01 for Example 1.

Using the same approach as in the case n = 0, it can be easily proved by induction
on r and s. Hence, (75) and (76) hold for any n = z(q + 1), where z is a positive
integer. Therefore, the proof is complete. �

6. Numerical results

In this section, we present the numerical results of the multilevel finite volume
methods developed for the 2D incompressible Navier-Stokes equations defined on
a unit square domain Ω = [0, 1]× [0, 1]. The multilevel finite volume methods are
compared with the respective traditional one-level finite volume methods on the
fine and coarse meshes. For the traditional one-level methods on the fine mesh, we
use the time step ∆t/p and spatial step sizes ∆x = ∆y, that is N1 = N2 = N , and
the one-level methods on the coarse mesh, we use the time step size ∆t and spatial
step sizes 3∆x = 3∆y. In the following, we refer the one-level methods on the fine
mesh as “fine”, one-level methods on the coarse mesh as “coarse” and multilevel
methods as “ML”.
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(a) Explicit fine (b) Implicit fine
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Figure 2. Absolute error fields of Example 1 for N = 64 and
∆t = 0.0001 at T = 0.01.

We consider three numerical examples. For each example different uniform grid
sizes are used for some time step sizes where the viscosity coefficient is chosen as
ν = 0.01. The other parameters used for all the numerical results presented here
are α1 = α2 = 1

6 , p = 5, and q = 8.
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Figure 3. Velocities and pressure obtained from explicit methods
when N = 16,∆t = 10−4 and T = 0.01 for some cell centres x and
y Example 1.

The following error norms for the velocity and pressure are defined to evaluate
the accuracy of the numerical methods:

L2
u-error =

√√√√∆x∆y

N∑

i=1

N∑

j=1

[(
uM
i,j − u(xi, yj, T )

)2
+
(
uM
i,j − u(xi, yj, T )

)2]
;

L2
p-error =

√√√√∆x∆y

N∑

i=1

N∑

j=1

(
pMi,j − p(xi, yj , T )

)2
.

The approximations of the convective term for the implicit method are given as
follows [2]:
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(a) u: exact (b) v: exact (c) p: exact

(d) u: fine (e) v: explicit fine (f) p: fine

(g) u: ML (h) v: ML (i) p: ML
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Figure 4. Velocities and pressure profiles obtained from explicit
methods for N = 64 and ∆t = 0.0001 at T = 0.01 and their exact
solutions for Example 1.

• For the implicit multilevel method, for a non-negative integer z and n =
z(q + 1), we use the following approximations:

ũn+r/τ =
1

2

(
un+r/τ + un+(r−1)/τ

)
, for r = 1, . . . , τ − 1,

ũn = un,

Ũ
n+s

=
1

2

(
Un+s +Un+s−1

)
, for s = 1, . . . , q.
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Figure 5. Velocities when ∆t = 10−5 and N = 16 for some cell
centres x and y at T = 0.001 for Example 2.

• For the implicit one-level method, ũn is approximated by the relation:

ũn =
1

2

(
un + un−1

)
, for n = 1, 2, . . . ,M − 1.

• For both implicit methods we use ũ0 = u0.

Example 1

We consider the exact solutions [13]

u(x, y, t) = π sin t sin(2πy) sin2(πx)(83)

v(x, y, t) = −π sin t sin(2πx) sin2(πy)(84)

p(x, y, t) = sin t cos(πx) sin(πy),(85)
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(a) u: exact (b) v: exact (c) p: exact

(d) u: fine (e) v: fine (f) p: fine
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Figure 6. Velocities and pressure obtained from explicit methods
when N = 64 and ∆t = 10−4 at T = 0.001 and their exact profiles
for Example 2.

where the source term is obtained on substitution to equation (2) and the initial
condition for the velocity, u0, is obtained from (83) and (84) at t = 0.

Table 1 tabulates the errors and rates obtained from the numerical methods and
the CPU time used to run each simulation at time T = 0.01. The 3D plots for the
exact solutions and approximated solutions from the explicit and implicit methods
are shown in Figures 4 and 1. In Figure 2, we show the velocities and pressure



MULTILEVEL FVMS FOR 2D INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 507

(a) u: fine (b) v: fine (c) p: fine
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Figure 7. Velocities and pressure obtained from implicit methods
when N = 64 and ∆t = 10−4 at T = 0.001 for Example 2.

absolute error fields at T = 0.01 for time step ∆t = 0.0001 with 64× 64 mesh grid.
Figure 3 shows the 2D plots of the velocities and pressure at some grid cells with
peak velocity values.

From Table 1, we observe that the multilevel methods have better pressure ap-
proximation for N = 16 and N = 32 than the full one-level methods on fine
and coarse mesh. It is also shown from Figures 3(g) and 3(h) at the cell centers
y = 0.2812 and x = 0.2812, respectively, that the pressure obtained from the ex-
plicit multilevel method are in a good agreement with the results obtained from
the one-level method on the fine mesh, while the pressure obtained from the one-
level method on the coarse mesh is relatively far from the exact solution. For the
approximation of the velocities, it is seen that the multilevel method works better
for small space step, where the L2

u-errors lie between the errors of the one-level
methods. The 2D plots of the velocities at the peak values and at the cells next
(right side) to the mid point are shown by Figures 3(a)-3(f). From these plots, we
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(a) u: fine explicit (b) v: fine explicit (c) p: fine explicit

(d) u: ML explicit (e) v: ML explicit (f) p: ML explicit

(g) u: fine implicit (h) v: fine implicit (i) p: fine implicit

(j) u: ML implicit (k) v: ML implicit (l) p: ML implicit

Figure 8. Absolute error fields of Example 2 when N = 64 and
∆t = 10−4 at T = 0.001.

observe that the velocities obtained from the multilevel method lies between the
results from the one-level methods on the fine and coarse meshes.
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(c) Zoomed in (left 9(b))

x
0 0.2 0.4 0.6 0.8 1

v

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Exact
Fine
Coarse
Multilevel
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(i) Zoomed in (left 9(h))

x
0 0.2 0.4 0.6 0.8 1

p

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Exact
Fine
Coarse
Multilevel

(j) p : N = 8, y = 0.5625

x
0 0.2 0.4 0.6 0.8 1

p

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Exact
Fine
Coarse
Multilevel

(k) p : N = 16, y = 0.5312
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Figure 9. Velocities and pressure obtained from explicit methods
when ∆t = 10−4 for some x and y at T = 0.001 for Example 2.

Example 2

We consider the exact solutions [15]

u(x, y, t) = (t+ 1)2 x2 (1 − x)2 (2y − 6y2 + 4y3)

v(x, y, t) = (t+ 1)2 y2 (1− y)2 (−2x+ 6x2 − 4x3)

p(x, y) = x2 − y2,
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(g) u : N = 16, y = 0.7812
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(h) v : N = 16, x = 0.7812

Figure 10. Velocities obtained from explicit methods when ∆t =
10−4 for some cell centres x and y at T = 0.001 for Example 2.

where the source term is obtained on substitution to the equation (2). The initial
condition of the velocity is obtained by substituting t = 0. In this example we
consider T = 0.001 and two time steps, ∆t = 10−5 and ∆t = 10−4. The L2-errors
obtained from the numerical methods with their CPU time are given in Table 2.
Exact velocities and pressure are shown in Figures 4(a)-4(c). Figure 5 shows the
2D plots for the peak velocities when ∆t = 10−5 at some cells for N = 16. The
3D numerical profiles obtained from the explicit methods, when the time step is
∆t = 10−4, are shown in Figures 6(d)-6(l) and from the implicit methods are given
by Figure 7. The absolute error fields obtained from the multilevel and the one-level
method on the fine mesh are shown by Figure 8. Figures 9-12 show the 2D plots of
the velocities and pressure obtained from the numerical methods for some selected
cells.

From Tables 1-3, we can see that the multilevel methods are intermediate be-
tween the one-level methods on the fine mesh and on the coarse mesh.
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Figure 11. Velocities and pressure obtained from implicit meth-
ods when ∆t = 10−4 for some x and y at T = 0.001 for Example
2.

Example 3: The driven cavity problem

The driven cavity problem is a standard benchmark for testing the performance
of numerical methods for incompressible Navier-Stokes equations [16]. This problem
has been studied by several researchers where the most detailed was studied by
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(h) v : N = 16, x = 0.7812

Figure 12. Velocities obtained from implicit methods when ∆t =
10−4 for some cell centres x and y at T = 0.001 for Example 2.

Ghia et al [17] in which they quote many solutions and data for different Reynolds
numbers. We consider the square cavity problem corresponding to a flow in a unit
square domain (Ω = [0, 1] × [0, 1]) with tangential velocity prescribed on the top
boundary to a normalized value u = 1, which is given as follows:

ui,N+1 = 1, ui,0 = u0,j = uN,j = 0,

vi,N+1 = vi,0 = v0,j = vN,j = 0,

for i = 1, . . . , N and j = 1, . . . , N . The velocity profiles are compared with the
benchmark solutions by Ghia et al. [17]. Here, we present the numerical results
obtained in the simulation of the driven cavity flow, until the long term time in-
dependent steady state solution is achieved. A steady state is achieved at T = 10,
where the relative error between the two time steps reached below a value 10−4.
Figure 13 illustrates the u-velocity along the vertical line passing through the center
x = 1/2 and the v-velocity along the horizeontal line passing through the center
y = 1/2. The computations have been done for the Renolds number Re= 1

ν = 100
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(h) Implicit: u,N = 32

Figure 13. Driven cavity: profiles of velocities from implicit
methods when ∆t = 10−2 at T = 10.

with N = 16, N = 32 and ∆t = 0.01. The velocities at the centrelines are calcu-
lated by taking the average of the values of the neighboring cells, that is, cells with
centres at 1/2±∆x/2 and 1/2±∆y/2, for the u-velocity and v-velocity, respectively.
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Table 1. CPU time and Errors when ∆t = 0.0001 at T = 0.01.

Methods N L2
u-error Rate L2

p-error Rate CPU time

Implicit

Fine
16 6.0064× 10−4 0.0135 46.966
32 3.1144× 10−4 0.9475 0.0085 0.6674 363.694
64 1.5830× 10−4 0.9763 0.0037 1.1999 4448.832

ML
16 0.0020 0.0134 7.075
32 8.6070× 10−4 1.3539 0.0074 0.8566 47.803
64 3.0992× 10−4 1.4736 0.0057 0.3766 548.532

Coarse
16 0.0017 0.0273 1.402
32 8.8301× 10−4 0.9450 0.0171 0.6749 3.937
64 4.5744× 10−4 0.9488 0.0114 0.5850 20.802

Explicit

Fine

16 6.0056× 10−4 0.0136 7.263
32 3.1139× 10−4 0.9476 0.0086 0.6612 25.399
64 1.5824× 10−4 0.9766 0.0038 1.1783 85.393

ML

16 0.0020 0.0133 1.741
32 8.5996× 10−4 1.3552 0.0075 0.8265 4.134
64 3.0661× 10−4 1.4879 0.0056 0.4215 14.572

Coarse

16 0.0017 0.0268 0.621
32 8.8263× 10−4 0.9457 0.0173 0.6315 1.036
64 4.5710× 10−4 0.9493 0.0113 0.6144 2.681

Table 2. CPU time and Errors when ∆t = 0.00001 at T = 0.001.

Methods N L2
u-error Rate L2

p-error Rate CPU time

Implicit

Fine
16 2.3034× 10−4 0.0043 85.053
32 1.1690× 10−4 0.9785 0.0022 0.9668 422.695
64 5.9377× 10−5 0.9773 0.0013 0.7590 4621.472

ML
16 5.2706× 10−4 0.0044 12.618
32 1.7704× 10−4 1.5739 0.0025 0.8156 57.843
64 6.8815× 10−5 1.3633 0.0019 0.3959 582.124

Coarse
16 6.6442× 10−4 0.0130 2.668
32 3.4151× 10−4 0.9602 0.0064 1.0224 7.744
64 1.7391× 10−4 0.9819 0.0032 1.0000 28.734

Explicit

Fine
16 2.3034× 10−4 0.0043 45.761
32 1.1690× 10−4 0.9785 0.0022 0.9668 74.554
64 5.9376× 10−5 0.9773 0.0013 0.7590 271.386

ML
16 5.2706× 10−4 0.0044 7.078
32 1.7704× 10−4 1.5739 0.0025 0.8156 13.278
64 6.8815× 10−5 1.3633 0.0019 0.3959 44.111

Coarse
16 6.6442× 10−4 0.0130 1.422
32 3.4151× 10−4 0.9602 0.064 1.0224 4.299
64 1.7391× 10−4 0.9736 0.0032 1.0000 10.307

7. Conclusion

In this paper, two numerical methods have been presented and analyzed. The
implicit multilevel method discussed here is linear and easy to implement. The two
multilevel methods are conditionally stable, where the implicit scheme is uncon-
ditionally stable for large values of viscosity. We compare the multilevel methods
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Table 3. CPU time and Errors when ∆t = 10−4 at T = 0.001.

Methods N L2
u-error Rate L2

p-error Rate CPU time

Implicit

Fine
8 4.5068× 10−4 0.0086 2.208
16 2.3034× 10−4 0.9683 0.0043 1 8.504
32 1.1690× 10−4 0.9785 0.0021 1.0339 41.009
64 5.9389× 10−5 0.9770 0.0012 0.8074 450.003

ML
8 4.8847× 10−4 0.0087 1.184
16 2.3860× 10−4 1.0337 0.0044 0.9835 2.631
32 1.1910× 10−4 1.0024 0.0024 0.8745 9.513
64 6.0106× 10−5 0.9866 0.0018 0.4150 94.738

Coarse
8 0.0013 0.0261 0.227
16 6.6441× 10−4 0.9684 0.0130 1.0055 0.379
32 3.4149× 10−4 0.9602 0.0064 1.0224 0.829
64 1.7390× 10−4 0.9736 0.0031 1.0458 2.850

Explicit

Fine
8 4.4652× 10−4 0.0086 1.426
16 2.2986× 10−4 0.9580 0.0043 1 4.671
32 1.1686× 10−4 0.9760 0.0022 0.9668 7.323
64 5.9380× 10−5 0.9767 0.0013 0.7590 26.791

ML
8 4.8847× 10−4 0.0087 0.817
16 2.3860× 10−4 1.0337 0.0044 0.9835 1.538
32 1.1910× 10−4 1.0024 0.0025 0.8156 2.180
64 6.0090× 10−5 0.9870 0.0019 0.3959 6.620

Coarse
8 0.0012 0.0261 0.149
16 6.5015× 10−4 0.8842 0.0130 1.0055 0.231
32 3.3978× 10−4 0.9362 0.064 1.0224 0.528
64 1.7371× 10−4 0.9679 0.0032 1.0000 1.131

with the traditional one-level methods by computing the L2-errors and CPU time.
It is seen that the multilevel methods provide an efficient approach to obtaining
results of good accuracy. Our future work is to extend this work to multiphase flow
models.
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