
INTERNATIONAL JOURNAL OF c⃝ 2020 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 17, Number 3, Pages 404–433

A NUMERICAL APPROACH TO STUDY

THE THERMAL INFLUENCE ON GAS HYDRATES

BY PHYSICAL PROCESS SPLITTING

YURY POVESHCHENKO, PARVIN RAHIMLY, ORKHAN RAHIMLY,

VIKTORIIA PODRYGA, AND IRINA GASILOVA

Abstract. The method of numerical simulation based on the splitting by physical processes of gas-
hydrodynamic processes, which occur during the dissociation of gas hydrates in a porous medium,
is described. In this paper, a coupled discrete model of a two-component (H2O,CH4) three-phase
(water, methane, hydrate) filtration fluid dynamics and two-phase processes in a thawed zone with

absence of gas hydrates in thermodynamic equilibrium has been developed, by using the splitting
by physical processes as a valid assumption. The obtained split model is differentially equivalent
to the discrete initial balance equations of the system (conservation of the mass components of

the fluids and the total energy of the system), written in divergent form. Such an approach to
create completely conservative difference schemes in the studied fluid-hydrate medium requires the
introduction of a special free-volume nonlinear approximation of grid functions over time, which
depends on the volume fraction in the pores occupied by fluids, and is simple to implement. The

direct unsplit use of the studied system for the purposes of determining the dynamics of variables
and constructing the implicit difference scheme required for calculations of filtering processes
with large time steps is difficult. The paper also presents the method of coupled solutions of
systems of equations describing the processes in various fields, each of which is characterized by

its own set of coexisting phases, and the coordination of computational schemes for them is not an
automatic process. In the results of the calculations, the volumetric three-phase phase transitions
were numerically investigated using a single calculation with a variable number of phases region
of the entire plane of the P and T parameters. Using the example of the Messoyakha’s gas

hydrate deposit, the local processes of technogenic depressive impact directly near the wells on
the dynamics of the gas distribution of gas hydrates thawing and formation of thawed two-phase
zones were studied.

Key words. Gas hydrates, filtration, thawed zone, support operators, and completely conserva-
tive difference schemes.

1. Introduction

One of the risks arising from the exploration of hydrocarbon deposit in northern
areas is a possibility of sudden gas blowout. Such blowouts can be connected with
gas hydrates decomposition as a result of technogeneous impact during drilling and
exploitation of wells [1] and lead to crashes and environmental incidents especially
in case of sea reservoirs.

Mathematical simulation of the gas-hydrodynamic processes during dissociation
of gas hydrates in porous medium is an important part of the complex analysis of
the problem. The modeling consists of calculation of the pressure field, water and
hydrate saturation fields, and investigating the conditions leading to undesirable
effects. Whole research should include a joint study of heat transfer, fluid dynamics
and stress-strain state of the rocks in the investigated area. For the estimation of
the impact of every single factor on the whole process, it is necessary to investigate
each of them separately.
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In order to solve a wider class of problems, it is necessary to use numerical meth-
ods. As a base for mathematical modeling of the underground fluid dynamics with
respect to gas hydrates dissociation, the equations of mass, momentum and energy
balance are derived assuming that the processes are in thermodynamic equilibrium.
This is compliant with the time scale typical to the reservoirs exploration. The fil-
tration area is naturally divided into two zones: the three-phase zone with gas,
water and hydrate and thawed zone – without hydrates. Each zone has its own
system of partial differential equations describing fluid motion. So it is necessary
to sew them together in the whole (P - pressure, T - temperature) area to unified
numerical scheme. This is achieved by studying the analytical conditions for the
consistency of the equation systems with help of the method of characteristics.

In the proposed approach, in the three-phase zone, the initial system of equations
is transformed into a two-block mathematical model describing a multicomponent
flow in a porous medium, taking into account the dissociation of gas hydrates with
splitting by physical processes. The model includes a block with a system of hyper-
bolic equations for water saturation and thaw on the background of fixed filtration
rates, and a block containing the piezoconductivity equation for determining the
pressure in the reservoir with gas hydrate inclusions.

In the gas-water-hydrate thermodynamic equilibrium zone, the pressure and tem-
perature are related by well-studied dependencies, for which one of several approx-
imations is usually chosen [2]. In this paper, T = AlnP + B was used as the
approximation, where A and B are the empiric coefficients.

The initial boundary value problem is solved using the finite difference method.
In constructing schemes, an upwind approximation is used for water saturations
and a downwind approximation is used for thaw. This technique follows from the
analysis of the hyperbolicity of the system of equations against the background of
a fixed velocity field determined by Darcy’s law (see subsection 2.3).

The use of splitting by physical processes allows us to use an explicit-implicit
scheme, to use rather large time steps; it sharply increases the counting rate, which
makes it possible to carry out a number of calculations with various parameters
and compare the results.

In this work, a special technique is used to combine the calculations of a three-
phase zone containing gas, water and hydrate, and thawed zone, with the absence
of gas hydrates, into one calculation scheme (see subsection 5.6).

For more complex calculations that take into account non-one-dimensionality,
we can use an approach to numerical simulation based on the method of support
operators, those application to filtering problems was started in [3, 4]. This method,
based on the use of irregular grids, makes it possible to approximate regions of
complex geological and lithological structure, to take into account the different
scales of heterogeneities within a one difference scheme (from the near-well zone to
the size of the reservoir and even the region). In this paper it is expanded in the
case of filtration processes involving gas hydrates. In accordance with the proposed
algorithm for the splitting of the equilibrium model by physical processes, in the
thawed zone and in a medium with gas hydrate inclusions, a joint family of two-
layer completely conservative difference schemes of the support operators method
with spaced time scales has been constructed.

In the future, the function Sν we will denote the volume fraction in the pores
attributable to free water and gas in the hydrate-saturated part of the porous
medium. The function Sw we will denote water saturation.
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On the irregular metric grids of the theory of the support operators method as
applied to the specificity of the transfer processes of saturation and internal energy
of water and gas in a hydrated medium the methods of approximating the rela-
tive and absolute permeabilities of the medium corresponding to these processes
were considered, while simultaneously maintaining continuum properties divgrad
operations in their difference form related to the velocity field that provides this
transfer. This is connected with another computational problem of modeling the
filtration fluid dynamics of a hydrated medium, which consists in the need to ap-
proximate the squares of thermodynamic variables (internal energies or pressures
of free water and gas) near depressed well craters with singular features. Such gra-
dient quadratic forms are found in the discrete equation of the piezoconductivity of
filtration fluid dynamics of a hydrated medium studied in this work and determine
the dynamics of a nonlinear, quadratic in the gradient the transfer of thermody-
namic parameters of the medium. It is possible to ensure positive definiteness of
such quadratic forms by invoking the theory of metric grids of the support oper-
ators method, but only with preservation of the continual properties of divgrad
operations in their difference form related to the field of the velocities determining
this nonlinear transfer. Monotonization of the transfer of saturation processes by
functions Sν , Sw, when used in the classical form, violates the properties of self-
adjointness and sign-definiteness of these discrete vector analysis operations. In
this work, we use the mechanism of monotonization of the grid solution which si-
multaneously ensures effective monotonization of the approximation on Sν , Sw to
nonlinear transfer of the internal energies of free water and gas and preservation of
the sign-definiteness of the quadratic gradient values of thermodynamic quantities
in the hydrated piezoconductive part of the problem.

Filtration fluid dynamics of free water and gas in the presence of solid hydrate
inclusions in a porous medium has a number of specific features.

First of all, according to the rule of the Gibbs phase, such a thermodynamic
equilibrium two-component (H2O,CH4) three-phase (hydrate and free water and
gas) system has only one thermodynamic degree of freedom. That is, there is a
thermobaric connection Tdis = f(P ) between the dissociation temperature of the
gas hydrate and pressure. It is clear that in this situation any of them can be chosen
as the main thermodynamic variable (for example, the internal energies of water
or gas), if through them the temperature and pressure are expressed. In the future
we will need this in order to present the fluid dynamics of a hydrated medium by
Darcy laws in a discrete energy formulation (see 4). However, it must be borne in
mind that in calculations in the thawed hydrated zone in the medium there are two
independent thermodynamic parameters (P, T ).

In the results of the calculations, the region of three-phase volume phase transi-
tions was numerically investigated with a single calculation with a variable number
of phases in the entire plane of the P and T parameters. Using the example of
the Messoyakha’s gas hydrate deposit, local processes of technogenic depressive
effects directly near the wells on the dynamics of the spatial distributions of gas
hydrates thaw and the formation of thawed two-phase zones were studied. Also
on the tetrahedral grids in a spatially three-dimensional case, model calculations
of piezoconductive processes in a three-phase medium with hydrated solid-phase
inclusions near the depression wells are presented.

2. Formulation of the problem
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2.1. Three-phase medium with hydrate inclusions. In the spatial domain O
with the boundary ∂O, we consider the thermodynamic equilibrium two-component
(water, methane) three-phase equations of filtration fluid dynamics with gas hydrate
inclusions:

∂

∂t
{m [SνSwρw + (1− Sν) ρνβw]}+ div (ρwVw) + qw = 0,(1)

∂

∂t
{m [Sν(1− Sw)ρg + (1− Sν) ρν(1− βw)]}+ div (ρgVg) + qg = 0,(2)

Vw = −kkrw
µw

(∇P − gρwk),(3)

Vg = −kkrg
µg

(∇P − gρgk),(4)

(5)

∂

∂t
{m [Sν(Swρwεw + (1− Sw)ρgεg) + (1− Sν)ρνεν ] + (1−m)ρsεs}

+div {ρwεwVw + ρgεgVg + [P (Vw +Vg)]}+ divW + qε = 0,

W = −{m [Sν (Swλw + (1− Sw)λg) + (1− Sν)λν ] + (1−m)λs}∇T,(6)

Tdis = f(P )(7)

(with some boundary conditions) with the integral relation:

(8)

∫
O

(X∇u)dV +

∫
O

u divXdV =

∫
∂O

u(X, ds).

The indices l = g, w, ν, s refer to gas, water, hydrate, skeleton of porous medium.
Here (1) is the balance equation of the water mass, (2) is the balance equation of
the methane mass, (3) is Darcy’s law, which determines the velocity of free water
Vw in the pores of a two-component immiscible system (water, methane) with the
absolute permeability k = k(r, Sν , P ) and the relative permeability krw = krw(Sw).
µw is the viscosity of water. The equation (4) is understood in a similar way
as Darcy’s law for the free methane velocity Vg with the relative permeability
krg = krg(Sw) and the viscosity µg. Finally, (5) is the balance equation for the total
internal energy of the system, including the energies of free water, free methane,
hydrate, and skeleton. εl are understood as the internal energies of components
mass units. The equation (6) determines the total heat flow W in a medium with
the thermal conductivity λl(P, T ). gk is the gravitational acceleration, which is
directed vertically down; P is the pressure; Sw is the water saturation, ν is the
hydrate saturation; Sν = 1 − ν is the hydrate thaw; ρl(P, T ) are the densities of
the phases; βw is the mass fraction of water in hydrate; r is the radius vector; t is
time; qw, qg and qε are the corresponding source densities, which are dependent on
the parameters (t, r, Sw, Sν , P, T ). According to the Gibbs phase, the three-phase
two-component hydration system is multivariate, i.e. has one degree of freedom
(temperature or pressure) [10]. Hence, the dependence (7) is unambiguous for a
gas hydrate that is in equilibrium with liquid water or ice. u,X in (8) are the
arbitrary scalar (temperature, pressure, internal energy, etc.) and the arbitrary
vector which is physically related to the gradient flow of this scalar quantity.

The enthalpies of the unit mass il = εl + P/ρl of hydrate, free water, and gas
are thermodynamically consistent in the following relationship:

(9) βwiw + (1− βw)ig = iν + h,
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where h is the latent heat of a phase transition of a hydrate unit mass. The following
equation is also suitable [11] for the specific (per unit mass) enthalpies of phases:

(10) dil = cpl(−kdldP + dT )

with the throttling coefficients

(11) kdl =
1

cpl

[
T

(
∂Vl
∂T

)
p

− Vl

]
.

Here the index “p” at the parentheses means that the partial derivative with
respect to temperature is taken at constant pressure; cpl and Vl = 1/ρl are the
specific heat capacities (at constant pressure) and the phase volumes. In particular,
for the gas phase with the following equation of state:

(12) ρg =
P

zgRT
,

the throttling coefficients holds true

(13) kdg =
RT 2

cpgP

∂zg
∂T

,

which means the presence of the Joule-Thomson effect (kdg ̸= 0) for a nonideal gas
with a coefficient of supercompressibility zg in the studied processes of nonisother-
mal filtration.

We exclude Sw and Sν functions from the time derivative of equations (1), (2),
(5) and obtain the piezoconductivity equation for fluid dynamics with hydrate in-
clusions in the following form:

(14)

mδε

{
Sν

[
Sw

1

ρw

∂ρw
∂t

+ (1− Sw)
1

ρg

∂ρg
∂t

]
+ (1− Sν)

1

ρν

∂ρν
∂t

+
1

m

∂m

∂t

}
+

ψ

mρν
{m

{
Sν

[
Swρw

∂εw
∂t

+ (1− Sw)ρg
∂εg
∂t

]
+ (1− Sν)ρν

∂εν
∂t

}
+
∂[(1−m)ρsεs]

∂t
}+ δεDIG+

ψ

mρν
DIGε = 0.

Here

DIG =
1

ρw
div(ρwVw) +

1

ρg
div(ρgVg) +

qw
ρw

+
qg
ρg
,

DIGε = [div(ρwεwVw)− εwdiv(ρwVw)] + [div(ρgεgVg)− εgdiv(ρgVg)]

+div[P (Vw +Vg)] + divW + (qε − εwqw − εgqg)

= ρwVw∇εw + ρgVg∇εg + div[P (Vw +Vg)] + divW + (qε − εwqw − εgqg).

And
ψ

mρν
= (φ− 1

ρν
) ≥ 0, φ =

βw
ρw

+
(1− βw)

ρg
,

δε = βwεw + (1− βw)εg − εv ≥ 0,

are specific jumps (per unit mass) at the phase transition of the volume and internal
energy, respectively.

We also use the notation: ( )p =
∂
∂P .

The equation (14) is the main piezoconductive-dissipative thermodynamic equi-
librium equation of three-phase two-component fluid dynamics with hydrate inclu-
sions. This equation is split with the block (1), (2), (3), (4) of saturation processes
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transfer. This block has mainly hyperbolic properties against the background of
the thermodynamic parameters of the medium. We introduce a new value DP . It
is the the pressure coefficient of the hydrate system:

(15)

Dp = mδε{Sν [Sw
(ρw)p
ρw

+ (1− Sw)
(ρg)p
ρg

] + (1− Sν)
(ρν)p
ρν

+
(m)p
m

}

+
ψ

mρν
{m{Sν [Swρw(εw)p + (1− Sw)ρg(εg)p] + (1− Sν)ρν(εν)p}

+[(1−m)ρsεs]p}.

We rewrite equation (14) in a more compact form

(16) DP
∂P

∂t
+ δεDIG+

ψ

mρν
DIGε = 0.

The total pressure derivative is taken in (15) with respect to dependency (7).
Using this dependence (7) and choosing the corresponding internal energies εw and
εg as the unique thermodynamic degree of freedom in equations (3), (4), (14), we
obtain the equation (14) in the energy representation.

The physics of the piezoconductivity equation (14), (16) lies in its material coef-
ficients (δε, ψ/mρν , DP ). Note also that the terms associated with a free non-ideal
gas (g) in the non-stationary part of the piezoconductivity equation (14) and the
gradient quadratic forms of thermodynamic quantities in the terms correspond-
ing to gas in DIGε determine the Joule-Thompson effect in the medium under
study [12]. The piezoconductivity equation (14) does not contain time derivatives
of saturations (Sν , Sw) and in this sense is split with a block of saturation trans-
port equations (1), (2). For fixed saturation values, the absence of capillary and
gravitational terms (14) is a parabolic equation for pressure (or other thermody-
namic value), if we consider one thermodynamic degree of freedom of the system
(T = T (P )) in the sense of the Gibbs phase rule. However, in the piezoconduc-
tivity equation (14) there are terms of the gradient quadratic transfer of the form
ρV∇ε for free water and gas in accordance with the Darcy laws (3), (4). At the
discrete level, it is important to ensure the positivity of the approximation of the
squares of the gradients of their thermodynamic quantities in the integral sense
(
∫
O
ρV∇εdV ), in particular, this is due to the modeling of depression funnels near

the wells. Upwind approximation of expressions ρV∇ε is necessary to monotonize
a difference solution, understood as the process of energy transfer. Moreover, the
approximation of the Darcy laws (3), (4) in simple cases should also satisfy upwind
conditions for saturation Sw and downwind conditions for thawing Sν . Upwind
approximation is understood in the same way as upstream waiting to calculate the
phase mobility [5]. It is one of the possible methods for suppressing computational
instability in simulating the transfer processes of any nature and is understood by
us as monotonization (that is, the absence of oscillations) of a difference solution.
Its meaning is reduced to the fact that, for computational stability, the invariants
of the hyperbolic system of transport equations (or their approximations) are car-
ried along the corresponding characteristics, and not towards them. If this drift
coincides with the direction of the physical movement of the substance, then such
an approximation is called upwind. It should be noted that in a hyperbolic sys-
tem of equations describing the transfer process, its invariants can be transferred
by characteristics not from the direction of the physical movement of a substance
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(upwind), but from the opposite (downwind). This case takes place in the ap-
proximation of the thawing and is considered in subsection 2.3. The tools of the
support operator method for the simultaneous discrete implementation of the above
requirements (positive definiteness of quadratic forms, monotonization of difference
solutions with respect to saturations (Sν , Sw) and energies (εw, εg)) on irregular
grids are considered in section 3.

2.2. Two-phase thawed zone. Similarly to subsection 2.1, we assume the thaw-
ing is Sν = 1 and obtain a two-phase equation in the thawed zone,

∂

∂t
{mSwρw}+ div (ρwVw) + qw = 0,(17)

∂

∂t
{m(1− Sw)ρg}+ div (ρgVg) + qg = 0,(18)

(19)

∂

∂t
{m(Swρwεw + (1− Sw)ρgεg) + (1−m)ρsεs}

+div {ρwεwVw + ρgεgVg + [P (Vw +Vg)]}+ divW + qε = 0,

(20) W = −{m (Swλw + (1− Sw)λg) + (1−m)λs}∇T.
We exclude the function Sw from the time derivative of equations (17),(18),(19)

and obtain the equations that determine the nonisothermal process of piezoconduc-
tivity in the thawed zone:

Sw
ρw

∂(mρw)

∂t
+

1− Sw
ρg

∂(mρg)

∂t
+DIG = 0,(21)

m{Swρw
∂εw
∂t

+ (1− Sw)ρg
∂εg
∂t

}+ ∂[(1−m)ρsεs]

∂t
+DIGε = 0.(22)

Here, the combination of mass (DIG) and energy (DIGε) divergences with the
effect of the corresponding sources (qw, qg, qε) is determined similarly to (14).

2.3. Investigation of saturation transfer block properties. The system (1)-
(7) given in subsection 2.1 is a complex quasilinear system of equations of math-
ematical physics of mixed type. The linearized block of the saturation transfer
equations (1)-(4) in it with fixed thermodynamic parameters (P , T ) and the ab-
sence of capillary and gravitational terms in Darcy laws (3), (4) has hyperbolic
properties. This means that grid approximations must be constructed taking into
account that they correspond to the hyperbolicity of the system (if it exists) or
are simply admissible in its absence. On the other hand, even in the purely hyper-
bolic case, the application of classical difference schemes that carry the invariants
of the hyperbolic system of equations along the characteristics is too cumbersome
in the case of modeling gas-hydrate phenomena. After a theoretical analysis of the
hyperbolicity of the block of saturation transfer equations (1)-(4) for the direct con-
struction of the regularization of a difference algorithm it seems reasonable to go
into an approximate diagonal-characteristic form of writing hyperbolic equations.
In this form, both invariants are understood in a simplified way. They, in fact, are
the saturations themselves: thawing Sν and water saturation Sw. Their transfer
along the characteristics in the simplest cases is associated respectively with the
drift from the direction opposite to the physical movement of the substance (down-
wind) for Sν and from the direction of the movement of the substance (upwind) for
Sw.
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Consider the linearization of equations (1)-(4) in the one-dimensional approxi-
mation. Direct the X axis along the reservoir.

(Sν)
′

t +
k

′

Sν

Ψ
[
krw
µw

P
′

x +
krg
µg

P
′

x](Sν)
′

x +
k

Ψ
[
(krw)

′

Sw

µw
P

′

x +
(krg)

′

Sw

µg
P

′

x](Sw)
′

x =< ... >,

(Sw)
′

t −
k

′

Sν

mSνΨ
[
krw
µw

P
′

xΨg −
krg
µg

P
′

xΨw](Sν)
′

x −
k

mSνΨ
[
(krw)

′

Sw

µw
P

′

xΨg−

−
(krg)

′

Sw

µg
P

′

xΨw](Sw)
′

x =< ... >,

Here the stroke denotes the corresponding derivative. In the expressions < ... >
there are no spatial-temporal derivatives of saturations Sν , Sw. For the quantity

Ψ

mρν
=

[
βw
ρw

+
1− βw
ρg

]
− 1

ρν
> 0

of a jump in the specific volume during the phase decomposition of the unit of mass
of the hydrate (see subsection 2.1) it is introduced fragmentation Ψ = Ψw + Ψg,
exactly,

Ψw
mρν

=
βw
ρw

− Sw
ρv
,

Ψg
mρν

=
1− βw
ρg

− 1− Sw
ρν

.

Since a similar linearization in the thawed zone (17), (18) leads to expressions
of the form:

(Sw)
′

t −
k

m
[
(krw)

′

Sw

µw
P

′

x](Sw)
′

x =< ... >,

(Sw)
′

t −
k

m
[
−(krg)

′

Sw

µg
P

′

x](Sw)
′

x =< ... >,

then the corresponding upwind approximation for water saturation Sw, the condi-
tion of characteristic cross-linking (i.e., one-directionality of characteristics at the
transition across the phase boundary) of the hydrate-saturated three-phase and
non-hydrated flow regions will be

(krw)
′

Sw

µw
Ψg −

(krg)
′

Sw

µg
Ψw > 0.

Or more stringent conditions
Ψg

mρν
> 0, at Sw > (Sw)min,

Ψw

mρν
> 0, at Sw < (Sw)max.

Here krw(Sw) = 0 at Sw < (Sw)min and krg(Sw) = 0 at Sw > (Sw)max.
From the point of view of jumps in the specific (per unit mass) phase volume

during a phase transition, these requirements can be interpreted as follows. With
the complete decomposition of the hydrate mass unit, the volume of the released
gas must be greater than (1 − Sw), that is the fraction of the volume of the gas
hydrate phase. In this case, the volume of released water must be greater than Sw,
that is the fraction of the volume of the gas hydrate phase.
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We now introduce the notations

k̄w =
krw
µw

P
′

x, k̄g =
krg
µg

P
′

x,

k̄
′

w =
(krw)

′

Sw

µw
P

′

x, k̄
′

g =
(krg)

′

Sw

µg
P

′

x,

and rewrite the result of three-phase linearization in a more compact form

(Sν)
′

t +
k

′

sν

Ψ
[k̄w + k̄g](Sν)

′

x +
k

Ψ
[k̄

′

w + k̄
′

g](Sw)
′

x =< ... >,

(Sw)
′

t −
k

′

Sν

mSνΨ
[k̄wΨg − k̄gΨw](Sν)

′

x −
k

mSνΨ
[k̄

′

wΨg − k̄
′

gΨw](Sw)
′

x =< ... > .

The eigenvalues λ of the matrix of this system of differential equations composed
of the coefficients of the spatial derivatives satisfy the following differential equation.

λ2 − [
k

′

Sν

Ψ
(k̄w + k̄g)−

k

mSνΨ
(k̄wΨg − k̄gΨw)]λ+

kk
′

Sν

mSνΨ

(p
′

x)
2

µwµg
[krw(krg)

′

Sw
− krg(krw)

′

Sw
] = 0.

Since [krw(krg)
′

Sw
− krg(krw)

′

Sw
] ≤ 0 (because (krg)

′

Sw
≤ 0), the roots λ of the

characteristic equation are real and distinct. Moreover, they are different in sign,
that is, the block of saturation transfer equations (1) - (4) is hyperbolic and the
characteristics are directed in different directions. We also see that on the diagonal
of the linearized matrix in the equation for the thawing Sν there is a positive value
k
′
Sν

Ψ [krwµw
+

krg
µg

] > 0, which, in accordance with the Darcy laws (3), (4), corresponds

to a downwind approximation with respect to the thawing Sν . Similarly, the di-
agonal of the linearized matrix in the equation for water saturation Sw there is

a negative value − k
mSνΨ

[
(krw)

′
Sw

µw
Ψg −

(krg)
′
Sw

µg
Ψw] < 0, which, in accordance with

Darcy laws (3), (4), corresponds to the upwind approximation in water saturation
Sw. In more complex cases (taking into account gravity, the solid phase of ice in
the pores, various types of hydrates, etc.), a linearized analysis of the block of sat-
uration transfer equations can also be carried out similarly to the one above. As a
result, monotonization factors Wϕ(λ) > 0 locally corresponding to various types of
saturation approximations (upwind, downwind, symmetric, etc.) in the coefficients
of absolute and relative permeabilities are selected on the basis of the spatial grid
ϕ, on the edges λ forming them (see Section 3). These factors that tend to unity
when grinding the spatial grid Wϕ(λ) are corrections on the edges λ to the approx-
imation of the absolute and relative permeabilities in the central nodes of the grid
bases (see Section 3). Further, in the work by the method of support operators,
vector analysis operations are constructed, which are necessary for approximation
of equations (1)-(7) with allowance for some selected monotonizations on the grid
for saturation transfer processes (1)-(4).

3. The grids of the support operator method

3.1. Some general information. The support operators method (SOM) is used
for the approximation agreed in the sense of some integral identities, the conjugate
operations of vector analysis (div, grad, rot, etc.) necessary for the numerical simu-
lation of mathematical physics problems. In paper [13], divergent difference schemes
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were constructed for gas dynamics problems in Lagrangian variables that have the
property of component-wise integral conservation of internal and kinetic energies.
Mathematically, this became possible due to the approximation on the grid of some
integral identity, connecting the operations of vector analysis div and grad. Such
schemes began to be called completely conservative. In the future, the cycle of
works [3, 6, 7, 14, 15, 16, 17] was associated with the independent development of
this idea - the coordinated approximation of pairs of difference operations of vector
analysis (div, grad, rot, etc.) due to some integral identities connecting them. The
method of obtaining integrally consistent difference schemes with the pairs of con-
jugate operations of vector analysis included in them became known as the support
operator method (SOM). Works in this direction continue to develop, but among
those already published we will note two monographs. In [16], SOM is used to solve
elliptic-type equations, the heat equation, and Lagrangian gas dynamics problems.
Spatially one- and two-dimensional problems on non-orthogonal quadrangular grids
are considered. The properties of the resulting difference schemes are investigated
on classical solutions. In the monograph [7], in the spatially two-dimensional case
on irregular (three- and quadrilateral) grids, the conditions for convergence of dif-
ference schemes of the SOM with first order for the Poisson equation and the
equations of the linear theory of elasticity on classical and generalized solutions are
established. These conditions can be interpreted as some requirements of the clo-
sure of surfaces around the nodal domains of the grid metrically conjugated to the
original grid cells (see Fig. 5). In [6], for constructed SOM algorithms of arbitrary
dimension (including for tetrahedral grids) as applied to divergent-gradient prob-
lems and linear elasticity theory, the requirements for the closedness of a metrically
conjugate grid, which are similar to the spatial two-dimensional solution and are
the convergence condition for the difference solution, are generalized. Also in [7],
variational difference schemes of Lagrangian gas dynamics are studied on irregular
grids. It should be noted that the construction of the same vector analysis opera-
tions (div, grad, rot, etc.) using SOM, but in different problems of mathematical
physics has its own specifics and may be different. So the base operator SOM in
problems with the presence of physical fields (gravitational, electromagnetic) when
calculating the forces acting on the particles of the medium (Lorentz) is chosen
involuntarily from the approximation of the Gauss or Stokes theorems on the grid
cells, and following the variation of the gravitational or electromagnetic energy of
the physical process [17]. The application of SOM to filtration problems in sedimen-
tary basins and poroelasticity (the Bio problem) is presented in [3, 4]. Let us stop
on this in somewhat more detail. In the upper part of Fig. 3, the geological profile
of the Varandey-Adzvinskaya structural zone is presented, while in the lower part
of this figure its grid approximation is performed by a body of simple geometry.

This zone has a length of 70 km with a depth of 5 km and a transverse size of 20
km. Different colors are represented by discontinuous and geometrically complex
structured reservoir properties of layers, including geological shear deformations. To
study the processes of secondary migration of hydrocarbons in relation to the study
of the mechanisms of formation of hydrocarbon deposits in this region, numerical
modeling (SOM) of the two-phase filtration process of hydrothermal waters and gas
has been carried out.

Figure 4 shows the sequential advancement of the hydrocarbon fluid and filling
the traps. Initially, the medium was filled only with water. In the lower part of the
region, the boundary was set to a fluid flow containing the gas phase with some
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Figure 1. Geological profile of the Varandey-Adzvinskaya struc-
ture zone (above): K1-Q - Lower Cretaceous-Quaternary, J -
Jurassic, T3 - Upper Triassic, P2 - Upper Permian, P1 - Lower Per-
mian, C1-P1 - Lower Carboniferous-Lower Permian, D3 - Upper
Devonian, D2 - Mid Devonian, S1 - Lower Devonian Ordovician,
D - Devonian, S - Silurian, T -P - Triassic-Permian; grid approxi-
mation of the upper profile (bottom).

amplitude. Over a period of 100 years, the gas-fluid impulse reaches the surface
layers. The figure 2 shows the distribution of water saturation and it can be seen
that if the fluid impulse encounters fluid-impedances on its route, a hydrocarbon
deposit is formed. If there is no fluid-impedances, then the impulse is dissipated in
the atmosphere. Using the example of the above-described modeling, we see that
applying SOM to filtration and elasticity tasks in sedimentary basins requires the
ability to work with discontinuous physical properties of the substance, irregular
grids that simulate, in particular, shear zones and multiscale adaptation.

On these coarse grids, it is required not to lose the qualitative approximation of
saturation transfer processes in the medium and the thermodynamic gradients of
the discontinuities in the material properties of the medium. Also, the difference
model can approximate the identities of SOM at different layers in time and in this
case special interpolation technologies of these identities in time may be required.
For example, in section 4 in this situation, free volume weighing is applied. Below,
the work describes the SOM algorithms, taking into account the above specifics of
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Figure 2. Sequential advancement of hydrocarbon fluid and fill-
ing traps. The color indicates the water saturation distribution
Sw.

the filtration problems and the technical features that are present in the modeling
of piezoconductive processes with solid-phase inclusions.

3.2. SOM for piezoconductive problems with solid phase inclusions. The
results of this section are similar to those presented in [8], where the processes in
the thawed zone were not considered.

The presence of a closed conjugate (“shifted”) grids consisting, for example, of
domains d (ω) around nodes ω (see Fig.3) is typical for the grids of SOM consisting
of cells (Ω) formed by nodes (ω), faces (σ), and edges (λ).

The metric grid operator σ (λ) =
∑
φ(λ) Vφe

′
φ(λ) (see also below) determines the

faces of the node domain. Here, the bases φ(λ) are in pairs in the cells Ω (λ) adjacent
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to the edge λ. The metric calibration of the difference grid consists in choosing the
volumes of bases (with the natural normalization condition

∑
φ(Ω) Vφ = VΩ). It

defines the construction of a closed conjugate mesh for various classes of grids.
These are the triangular-quadrangular 2D grids, tetrahedral, parallelepiped, pris-

matic, etc. 3D grids and their mortar stitches, their adaptation (with the intro-
ducing the new nodes in the cells Ω) with preservation of self-adjointness and sign-
definiteness of the corresponding “divergent-gradient” operations of vector analysis
of continuous boundary value problems. The further presentation is general. The
example of a triangular-quadrangular 2D grid illustrates the specific choice of local
basis volumes Vφ.

We introduce a family of irregular difference grids in the region O. We consider
the case when the grid consists of triangular and quadrangular cells (Ω), bases (φ),
nodes (ω), edges (λ), and related to them the boundaries (σ (λ)) of the node balance
domains d(ω) (see Fig.3).

Figure 3. Construction of bases.

The system of initial (covariant) unit vectors e(λ) created by the edges forms the
bases φ. We accept the centers of cells Ω and edges λ like the arithmetic mean of
radius vectors of their nodes ω. The curve is a surface that connects these centers
(two adjacent cells through an edge or a cell with a boundary edge ∂λ)

σ(λ) =
∑
φ(λ)

vφe
′
φ(λ)

It is also oriented like the unit vector e(λ). Here e′φ(λ) are the unit vectors of the
reciprocal (contravariant) bases with respect to the initial bases formed by the unit
vectors e(λ). The base volume is given by the expression vφ = 1

6 |e(λ1)× e(λ2)| for
a triangular cell Ω containing a basis φ and the expression vφ = 1

4 |e(λ1)× e(λ2)| for
a quadrangular cell if λ1(φ) and λ2(φ) are the edges forming the basis φ. Finally,∑
φ(λ) is summation over all bases φ in the formation of which the edge λ took

part. The surfaces σ(λ(ω)) closed around the node ω form nodal domains d(ω).
The internal divergence of a vector field DINw : (φ) → (ω) is defined by approx-

imating of the Gauss‘s theorem on d(ω):

DINw X =
∑
λ(ω)

sλ(ω) τwX(λ),

τwX(λ) =
∑
φ(λ)

vφ(e
′
wφ(λ), Xφ),

e′wφ(λ) =Wφ(λ) · e′φ(λ).

Here
∑
λ(ω) is the summation over all edges λ having a common node ω.
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The grid vector field X is given by its representations in the bases Xφ. The
multipliersWφ(λ) > 0 given in the bases φ on the edges λ(φ) formed them relate to
the monotonization of the grid solutions in the following sense. The approximation
of absolute permeability k(Sν) is selected downwind in accordance with the analysis
of the hyperbolicity of the linearized group of equations (1), (2) for saturations in the
absence of gravity and at fixed pressure and temperature. Relative permeabilities
krw(Sw) and krg( 1−Sw) are taken upwind. It is taken into account when choosing
factors Wφ(λ). The absence of an index, written as w in expressions DINwX,
τwx(λ), e

′
wφ and GRADwu, automatically denotes Wφ(λ) = 1 in all bases φ on

the edges λ(φ) formed them. It means the absence of monotonization of the grid
solution in the approximations used in the above sense.

We use ( )∆ to denote the approximation of the corresponding differential ex-
pressions and have:

(

∫
O

(X,∇u) dv)∆ = −(

∫
O

u divXdv −
∫
∂O

u (X, ds))∆

= −
∑
ω

(uω,DINw X) =
∑
φ

vφ(Xφ, GRADw u).

Gradient vector field GRADw : (ω) → (φ) is given by its representations in
bases:

GRADwu =
∑
λ(φ)

∆λue
′
wφ(λ), ∆λu = −

∑
ω(λ)

sλ(ω)uω = uω∗ − uω.

We assume a vector fieldXwφ = KφGRADwu asXφ in the bases φ and we obtain
a self-adjoint nonnegative operator −DINwXw : (ω) → (ω) or −DINwK GRADw :
(ω) → (ω). Here the flow vector field Xw is given by its components in the bases
Xwφ. This flow vector field is determined by the gradient properties of the scalar
grid function u and the grid symmetric positive definite tensor field of conductivity
K. This scalar grid function u is given at the nodes ω and this tensor K is given
by their representations in the bases Kφ. This operator will be strictly positive if
the first boundary value problem is specified at least in one boundary node of a
connected difference grid, i.e. the scalar grid function becomes zero in this boundary
node.

It is also considered that the multipliers of the grid solution monotonization
tend to be unity with an increase in the approximation, i.e. Wφ(λ) → 1. More-
over, the operator −DINwK GRAD : (ω) → (ω) becomes close to a self-adjoint
nonnegative operator DIN K GRAD : (ω) → (ω), although it is not self-adjoint
and nonnegative in the strict sense (with the exception of an orthogonal grid).

Cells consisting of orthogonal bases do not violate the properties of self-adjointness
and sign-definiteness of the operator DINw, GRAD in the strict sense, despite the
presence in their bases the approximate monotonization of the grid solution.

We consider two families of approximations to preserve the properties of self-
adjointness and the sign-definiteness of this operator.

3.3. Schemes with limited monotonization of the grid solution. We select
the set of grid cells (Ω∗) in which there is at least one non-orthogonal basis φ
formed by the edges (λ(φ)). Wφ(λ) = 1 is considered in all bases (φ(Ω∗)) within
these cells Ω∗ (i.e. can be orthogonal). I.e. the monotonization of the grid solution
is absent in these bases. For example, the dependence of the representation of the
tensor field of conductivity Kφ on “hyperbolic” variables (hydrate thaw Sν , water
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saturation Sw, etc.) is approximated directly at the central node ω of the grid
forming the basis φ. Such schemes have a self-adjoint and a sign-definite operator
DINwK GRAD : (ω) → (ω). However, they do not have the monotonization on
the set of grid cells containing non-orthogonality.

3.4. Quasimonotone schemes. We denote the set of non-orthogonal grid bases
as (φ∗). Correspondingly, (φ)/(φ∗) are orthogonal bases. We introduce Xwφ =
KφGRAD

∗
wu,

GRAD∗
wu =

{
GRADu, φ ∈ (φ)/(φ∗)
GRADwu, φ ∈ (φ∗) to approximate a vector field X =

K grad u.
These schemes have self-adjoint and sign-definite operator DINwK GRAD∗

w :
(ω) → (ω). Since, the multipliers of the grid solution monotonization tend to be
unity with increasing approximation, i.e. Wφ(λ) → 1, then the operators GRADw :
(ω) → (φ) and GRAD : (ω) → (φ) approximate the differential operator grad.
The quasimonotone schemes with self-adjointness and the sign-definiteness of the
operator DINwK GRAD∗

w : (ω) → (ω) in nonorthogonal grid bases (φ∗) save
monotonicity in contradistinction to schemes with limited monotonization when
calculate fluxes in conjugate basis directions.

Approaches 1 and 2 can be applied locally, i.e. only in the part of non-orthogonal
bases (φ∗∗), where the condition (GRADu,GRADwu) ≥ 0 is not met at the ”pre-
dictor” stage (explicit time layer, known iteration, etc.). An appropriate set of
cells (Ω∗∗) is generated for schemes with limited monotonization in the formation
of which at least one basis of (φ ∗ ∗) took part. Such locally regularized schemes in
the sense of a sign-definiteness of the operator divgrad will not have strict properties
of sign-definiteness and self-adjointness of this operator. However, the preservation
of the sign-definiteness of quadratic forms is useful for physical applications because
it allows to correctly approximate the exact square of the gradient of the thermo-
dynamic quantities in the depression wells, in particular, the Joule-Thomson effect
in the nonisothermal filtration processes considered below.

In the model of the filtration fluid dynamics with gas hydrate inclusions, the
mechanism of monotonization of the grid solution Wφ(λ) > 0, taking into account
the hyperbolicity (with no gravity, g = 0) of the system (1), (2) investigated in ,
provides effective monotonization of the grid solution on Sν , Sw and Sg = 1− Sw.
Also, this mechanism ensures the preservation of the sign-definiteness of the qua-
dratic forms of the gradients of thermodynamic quantities in the piezoconductive
part of the discrete connected task of nonisothermal filtration considered below.

According to the studies of , the absolute permeability k(Sν) in the bases φ on the
edges (λ(φ)) forming these bases is always chosen downwind (along thaw). Relative
permeabilities krw(Sw) and krg(1− Sw), as a rule, are taken upwind (along water
and gas saturation), i.e. as in a two-phase thawed zone with no hydrate. However,
in accordance with the stability conditions analyzed in, a change in the sign of the
directwind (i.e, downwind along the water and gas saturations) is also possible here.

4. Free-volume approximation of divergent-piezoconductive difference
schemes in the thawed zone and the medium with gas hydrate in-
clusions

4.1. Three-phase medium with hydrate inclusions. We introduce some no-
tation for the grid functions of the support operator method (Section 3, see also
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Fig.3). We will refer to its nodes ω previously presented in the continuum model
quantities

m,Sν , Sw, ρν , ρw, ρg, ρs, P, T, εν , εw, εg, εs, µw, µg, krw, krg, qw, qg, qε.

We assign the vector functions to the grid bases φ in accordance with Section 3

Vw,Vg,∇P,∇T,W.

We assign the grid functions that represent the discontinuous material properties
of substances to cells Ω

m, k, λν , λw, λg, λs.

The relations are obvious

mω =
∑
φ(ω)

VφmΩ(φ), (1−m)ω =
∑
φ(ω)

Vφ(1−mΩ(φ)) = Vω −mω, Vω =
∑
φ(ω)

Vφ,

i.e. mω and (1−m)ω represent the volume of the pore domain d(ω) (see Fig.3)
and its frame part, respectively.

Then, we introduce the difference derivatives on time and the space-point (in
grid nodes ω) time interpolations at = (â− a)/τ , a(δ) = δâ+ (1− δ)a on the time

layers t and t̂ = t+ τ (τ > 0 is the time step). Here the interpolation weight δ may
depend on the spatial grid node ω.

Under the value

δν =
√
(mSν)̂/(√(mSν)̂ +

√
(mSν)

)
, 0 < Sν < 1,

we mean the free-volume time approximation of the grid functions given at the
nodes ω, i.e. interpolation weight δν is determined by the proportion of the pore
volume, intended for free movement of the liquid and gas. The choice of such an
approximation allows us to produce discrete transformations of equations related
to their splitting by physical processes, close to continual ones. Other arbitrary
interpolations with respect on time will be denoted by [ ] .̃ They can relate not
only to grid nodes ω, but also to its other elements (bases φ and etc.).

We understand by index S in vector analysis operations DINs and GRADs one
of the types of monotonization of the grid solution described above (or its absence)
monotonizing the transfer by saturation Sw and Sν and we write the approximation
of equations (1), (2) and (5) in the following form.

Equations of continuity, representing the balance of the mass of the water and
gas components, are

{m [SνSwρw + (1− Sν)ρνβw]}t +DINs(ρwVw)˜+ q∼
w = 0,(23)

{m [Sν(1− Sw)ρg + (1− Sν)ρv(1− βw)]}t +DINs(ρgVg)˜+ q∼
g = 0.(24)

With the help of the operator GRADs, fluxes of water (ρwVw)˜and gas (ρgVg)˜
are approximated in grid bases φ taking into account the discretization of Darcy’s
law (3), (4), for example, on the implicit time layer by any of the standard methods
[4, 6].

(ρwVw)
p∼
φ = −

(
ρw
kkrw
µw

)∼

∆φ

GRADsP
∼ +

(
ρ2w
kkrw
µw

)∼

∆φ

gk,

(ρgVg)
p∼
φ = −

(
ρg
kkrg
µg

)∼

∆φ

GRADsP
∼ +

(
ρ2g
kkrg
µg

)∼

∆φ

gk.
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Here we mean under ( ) ∆̃φ the approximations of the corresponding expressions
in grid bases φ with some interpolation in time.

However, in the presence of a thermobaric dependence of the form (7) for pre-
serving the continual properties of the sign-definiteness of the quadratic forms of
the gradients of thermodynamic quantities of the form

∫
ε div(ρV)dV (see also (27)

below), the form of the Darcy’s law in the energy formulation is more preferable.
We obtain it from the following considerations.

Taking into account the thermobaric dependence (7) in the three-phase equilib-
rium zone, hydrate-water-gas the following can be written

dεw = ε
′

wpdP, dεg = ε
′

gpdP,

where ε
′

wp and ε
′

gp are the total derivatives of the internal energy with respect to
pressure, taking into account (7).

Then the Darcy’s law (3), (4) in the grid bases φ (formed by the nodes in which
the thermobaric relation (7) is satisfied) can be represented in the energy form:

(ρwVw)
ε∼
φ = −

(
ρw

kkrw
µwε

′
wp

)∼

∆φ

GRADsε
(δv)
w +

(
ρ2w
kkrw
µw

)∼

∆φ

gk,

(ρgVg)
ε∼
φ = −

(
ρg

kkrg
µgε

′
gp

)∼

∆φ

GRADsε
(δν)
g +

(
ρ2g
kkrg
µg

)∼

∆φ

gk.

In this way

(ρwVw)
∼
φ = {(ρwVw)

p∼
φ |(ρwVw)

ε∼
φ }, (ρgVg)

∼
φ = {(ρgVg)

p∼
φ |(ρgVg)

ε∼
φ }.

The equation for the balance of internal energy approximating (5) has the form:{
m [Sν (Swρwεw + (1− Sw) ρgεg) + (1− Sν) ρνεν ] + (1−m)ρsεs

}
t
+

+DINs

[(
ε(δν)w

)
up

(ρwVw)
∼
]
+ DINs

[(
ε(δν)g

)
up

(ρgVg)
∼
]
+

+DIN {[P (Vw +Vg)]
∼}+ DINW∼ + q∼ε = 0.(25)

Index up in the expression for the energy of water (ε
(δν)
w )up indicates that the

respective values are taken up (upwind) by the water flux (ρwVw)˜in a previously
defined divergence DINs(ρwVw) .̃ Similarly, the index up is understood in the

expression for the energy of the gas (ε
(δν)
g )up.

Work of pressure forces [P (Vw+Vg)]˜and the total heat flux W˜in the medium
are approximated in grid bases φ, for example, on the implicit time layer in a
standard way [4, 6]:

[P (Vw +Vg)]
∼
φ =

(
P

ρw

)∼

φ

(ρwVw)
p∼
φ +

(
P

ρg

)∼

φ

(ρgVg)
p∼
φ .

Further, the discrete analogue of the piezoconductive equation (14) physically
split with the saturation block (23), (24), but difference-equivalent to the system
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of conservation laws of the model (23), (24), (25) has the form:

δ(δν)ε {[(mSν)Sw](1−δν)
(ρw)t

(ρw)
(δν)

+ [(mSν) (1− Sw)]
(1−δν) (ρg)t

(ρg)
(δν)

+[m (1− Sν)]
(1−δν) (ρν)t

(ρν)(δν)
+ (m)t}

+ [ψ/(mρν)] ˜{[(mSν)Swρw](1−δν) (εw)t + [(mSν) (1− Sw) ρg]
(1−δν) (εg)t

+[m (1− Sν) ρν ]
(1−δν) (εν)t +

[
(1−m)ρsεs

]
t
}

+δ(δν)ε DIG˜+ [ψ/(mρν)] ˜DIG ε̃ = 0,(26)

δε = [βwεw + (1− βw) εg]− εν ,

[ψ/(mρν)] ˜= [
βw/(ρw)

(δν) + (1− βw) /(ρg)
(δν)

]
− 1/(ρν)

(δν),

DIG˜= 1

(ρw)(δν)
DINs (ρwVw )̃ +

1

(ρg)(δν)
DINs (ρgVg )̃ +

qw̃
(ρw)(δν)

+
qg̃

(ρg)(δν)
,

DIG ε̃ =
[
DINs

{
(ε(δν)w )up(ρwVw)˜}− (εw)

(δν)DINs (ρwVw) ˜]
+
[
DINs

{
(ε(δν)g )up(ρgVg)˜}− (εg)

(δν)DINs (ρgVg) ˜]
+DIN {[P (Vw +Vg)] ˜}+DINW˜+ (

qε̃ − εw
(δν)qw̃ − εg

(δν)qg̃

)
.(27)

In the expression DIG ε̃, which appears in (26), there is a monotonic (upwind)
energy approximation for εw

(δν) and εg
(δν) in the corresponding combinations of

divergent expressions containing these quantities.

4.2. Two phase thawed zone. Similar to Section 4.1, we obtain a two-phase
family of completely conservative difference schemes in the thawed zone, setting the

grid function Sν = 1 at the nodes ω. The weight δ1 =
√
(m)̂/(√(m)̂ +

√
(m)

)
is respectively entered at the grid nodes ω, instead of interpolation weight δν .

The continuity equations, which are the mass balance of the water and gas
components in the thawed zone, are written as:

{mSwρw}t +DINs(ρwVw)˜+ q∼
w = 0,(28)

{m(1− Sw)ρg}t +DINs(ρgVg)˜+ q∼
g = 0.(29)

In the thawed zone, with the help of an operator GRADs, the flow of water
(ρwVw)˜and the flow of gas (ρgVg)˜are determined in a non-energy formulation,
i.e. they are approximated in the bases φ of the grid by the quantities (ρwVw)

p∼
φ

and (ρgVg)
p∼
φ , respectively (see Section 4.1).

The equation of internal energy balance in the thawed zone, approximating (19),
has the form: {

m (Swρwεw + (1− Sw) ρgεg) + (1−m)ρsεs

}
t
+

+DINs

[(
ε(δ1)w

)
up

(ρwVw)
∼
]
+DINs

[(
ε(δ1)g

)
up

(ρgVg)
∼
]
+

+DIN {[P (Vw +Vg)]
∼}+DINW∼ + q∼ε = 0.(30)
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The designation and understanding of difference objects (indices up, s, work of
pressure forces, heat flux) are the same as in the corresponding analogues in Section
4.1.

Further, we exclude the function Sw defined in the grid nodes ω from the sign
of the difference time derivative and we obtain completely conservative difference
equations that determine the non-isothermal process of piezoconductivity in the
thawed zone from equations (28),(29),(30):

(31)
(Sw)

(δ1)

(ρw)
(δ1)

[mρw]t +
(1− Sw)

(δ1)

(ρg)
(δ1)

[mρg]t +DIG˜= 0,

(m)(1−δ1){[Swρw](δ1) (εw)t + [(1− Sw) ρg]
(δ1) (εg)t}

+
[
(1−m)ρsεs

]
t
+DIG ε̃ = 0.(32)

The combination of mass difference (DIG∼) and energy (DIG ε̃) divergences in
the nodes ω together with the action of the corresponding sources (q∼w , q

∼
g , q

∼
ε ) are

determined similarly to (27), but with changing the interpolation weight δν to the
weight δ1.

5. Algorithms for the joint calculation of hydrate-containing and thawed
states of a fluid-dynamic medium

We match a fixed unit volume and the whole mass of water molecules Mw,the
mass of methane molecules Mg, and the total internal energy E of the system,
including the skeleton, located in this volume, to the node balanced domain d(ω)
of the grid. Then, the local thermodynamic equilibrium state of the medium is
uniquely determined, according to the parameters {1, Mw, Mg, E}. We also as-
sume that the range of variation of the balance parameters {Mw, Mg, E} is such
that either a thawed zone or a three-phase hydrate-containing medium occurs.

Therefore, either a solution {Sν , Sw, P, T} in a three-phase hydrate-containing
thermodynamic equilibrium state, or a solution {Sw, P, T} corresponding to the
thermodynamic equilibrium two-phase thawed zone are the mandatory alternative.
Further, we consider separately these two tasks.

5.1. Three-phase hydrate-containing state. The balance equations for the
mass of water Mw, the mass of methane Mg and the total internal energy of the
system E in a single node volume (with porosity mω = mω/Vω) are:

m [SνSwρw + (1− Sν)ρνβw] =Mw,(33)

m [Sν(1− Sw)ρg + (1− Sν)ρν(1− βw)] =Mg,(34)

m [Sν (Swρwεw + (1− Sw) ρgεg) + (1− Sν) ρνεν ] + (1−m) ρsεs = E.(35)

In addition, the thermobaric ratio Tdis = f(P ) is fulfilled.
The expression il = cplT, l = g, w, s is fulfilled for the enthalpies of the mass

unit il = εl + P/ρl, l = g, w, ν, s, where cpl are the corresponding specific heat
capacities at constant pressure.

The enthalpies of hydrate, free water, and gas are thermodynamically consistent
in the relation βwiw + (1− βw)ig = iν + h, where h is the latent heat of the phase
transition of the hydrate mass unit. The accounting for the nonideality of the gas
can be performed by replacing the heat capacity cpg with ig/T in the lower input
thawed heat capacities Φp and fpk (see Section 5.3), if the function ig(P, T ) is
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known. The same applies to replacing cpw with iw/T and cps with is/T in those
cases when the enthalpy is disproportionate to the temperature of the medium.
For example, the heat capacity of the simple skeleton cps is replaced by ik/T in
the below considered model of a double skeleton of the medium (see Section 5.3),
interpreted as a two-phase thawed zone (see (56)).

(36) Φp =Mw cpw +Mg cp g + (1−m) ρs cps > 0.

Here Φp is the thawed heat capacity at constant pressure of the system per unit
volume of medium.

We obtain the equation for the equilibrium pressure P in the system, excluding
the functions of thaw Sν and water saturation Sw in the system of equations (33),
(34), (35), after simple transformations:

−Φp +
1

T

[
P + E +

ψh
ψρ
ρνh

]
= 0,(37)

ψh = −(mρw −Mw)ρg +Mgρw, (mρw −Mw) > 0,(38)

ψρ = −(ρw − βwρν)ρg + (1− βw)ρνρw, (ρw − βwρν) > 0.(39)

On the solution of the system (33), (34), (35) the relation is satisfied:

(40) ψh = m (1− Sν)ψρ.

It allows to determine the thaw Sv according to the given thermodynamic pa-
rameters of the environment P and T = Tdis = f(P ), and then, for example, from
equation (33), to find water saturation Sw.

The initial approximation P∗ ∈ (Pi, Pa) and the physically acceptable pressure
range (Pi < Pa), in which the solution exists and is unique, are assumed to be given
for the iterative process (37), (38), (39) of definition of pressure P . We also note
the relations which follow from (38), (39):

ρg|ψρ=0 =
1− βw

ρw/ρν − βw
ρw < ρw,

ψh|ψρ=0 = [Mg − χw (1− βw)] ρw, χw = (mρw −Mw)/(ρw − βwρν) > 0.

5.1.1. Ideal gas approximation. We consider for methane the case of an ideal
gas, assuming in (12) a supercompressibility coefficient zg = 1 for methane. Also,
we choose the approximation [2], as the thermobaric relation (7):

T = A lnP +B, A > 0, B > 0

or

T = A ln (P/P0) , P0 = e−B/A > 0.

Then the dependence of gas density on pressure

ρg = P/ [AR ln (P/P0)]

has the form shown in Fig.4, and we can limit the range eP0 << Pi < Pa < P2|ψρ=0

in determining the iterative solution for (37), (38), (39) .
There are ρg0 = ρg|ψρ=0, P1 = P1|ψρ=0, P2 = P2|ψρ=0, ρgmin = eP0/ (A R) <

ρg|ψρ=0 in Fig.4.
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Figure 4. The dependence of gas density on pressure.

5.2. Two-phase equilibrium in the thawed zone. Similar to Section 5.1, the
balance equations have the form (we assume Sν = 1):

m [Swρw] =Mw,(41)

m [(1− Sw)ρg] =Mg,(42)

m [Swρwεw + (1− Sw) ρgεg] + (1−m) ρsεs = E.(43)

Since Sν = 1, then ψh = 0 follows from (40), i.e.:

−(mρw −Mw)ρg +Mgρw, (mρw −Mw) > 0.

In addition, from (37) it follows:

−Φp +
1

T
[P + E] = 0.

Here Φp > 0 according to (36).
Some initial approximation P∗ is given for nonideal gas (zg ̸= 1 in (12)) in the

iterative process (44) by definition of pressure P .

(44)
P

zg(P, T ) R T
=

Mgρw
mρw −Mw

, T =
P + E

Φp
.

The following relations can be used to determine the thermodynamic parameters
P and T in the case of an ideal gas (zg = 1 in (12)):

(45)
E

P
=

(mρw −Mw)

Mgρw

Φp
R

− 1, T =
P + E

Φp
.

Further, the water saturation Sw is determined by taking into account (41).

5.3. Double skeleton. We choose a value ∆ν < 1 close to one. We fix the close-
to-unit thaw Sν → 1, such that ∆ν < Sν < 1, as a parameter in this node ω.
In the physical sense, we produce the hydrated encapsulation in the node balance
domain d(ω) of the grid, i.e. we suppose that the new solid skeleton of the system
(labeled with an index k) consists of two parts: the old skeleton with a density ρs,
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the volume fraction of which is in space (1−m) and the encapsulated hydrate with
density ρν and volume fraction (m −mν). Here mν = mSν is interpreted as the
encapsulated porosity of the two-phase system, i.e. that fraction of the volume in
which the flow of free fluids (water and gas) occurs. Thus, we can write for the
density of the framework, for its internal energy and enthalpy per unit mass:

(46) ρk =
m−mν

1−mν
ρν +

1−m

1−mν
ρs,

(47) εk =
1

ρk

[
m−mν

1−mν
ρνεν +

1−m

1−mν
ρsεs

]
,

(48) ik = εk +
P

ρk
.

Here

(49) ik = fpk T − m−mν

1−mν

ρν
ρk
h,

(50) fpk =
1

ρk

{
m−mν

1−mν
ρν(βw cpw + (1− βw) cp g +

1−m

1−mν
ρs cp s)

}
.

Here fpk is the frame thawed heat capacity of a unit mass at constant pressure.
We write instead of the masses Mw and Mg (see the beginning of Section 5), the

part of them that falls on the flow of free water and gas and corresponds to the
encapsulated porosity mν = mSν :

Mνw =Mw −m(1− Sν)βwρν ,(51)

Mνg =Mg −m(1− Sν)(1− βw)ρν .(52)

Then we rewrite the system (33),(34),(35):

mν [Swρw] =Mνw ,(53)

mν [(1− Sw)ρg] =Mνg,(54)

mν [Swρwεw + (1− Sw) ρgεg] + (1−mν) ρkεk = E.(55)

It coincides with the system of equations (41),(42),(43) for a two-phase equilib-
rium thawed zone with a formal replacement:

(56) mν ↔ m, Mνw ↔Mw, Mνg ↔Mg, ρk ↔ ρs, εk ↔ εs.

The enthalpy ratio follows from (55):

(57) mν [Swρwiw + (1− Sw) ρgig] + (1−mν) ρkik = E + P.

Thus, we can switch the calculation mode from the three-phase hydrate-containing
state to the two-phase thawed zone with a double skeleton by recalculating the form
(56) in separate node-balanced domains d(ω) of the difference grid. Moreover, the
double skeleton can be interpreted as a medium with a simple skeleton. And the
reverse transitions from the two-phase thawed zone (with double skeleton or simple
skeleton) to the three-phase hydrate-containing state are also possible.

5.4. Evolutionary Transphase Algorithms. The information presented in the
previous sections allows us to suggest some regularization methods for evolutionary
transphase calculations of joint filtering problems in a piezoconductive medium
with gas hydrate inclusions and in the thawed free hydrate zone, with preserving
the complete conservatism of the corresponding difference algorithms.
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5.4.1. Double skeleton method. The transition from a three-phase medium
with gas hydrate inclusions to a two-phase thawed hydrate free zone using the
double skeleton method (see Section 5.3) at this time step is used as one of the
possible types of regularization of transphase calculations. Later, the double skele-
ton is transformed into a simple skeleton in subsequent time steps, if the system
has enough energy in the node balance domain d(ω) to remain two-phase (Section
5.2). That, the condition T ≥ Tdis is fulfilled. Or the system finds its thermody-
namic equilibrium as a three-phase hydrate-containing medium (Section 5.1) if its
temperature is below the dissociation temperature Tdis (see (7)).

5.4.2. Overheated thaw method. Overheated thaw with a balanced transition
to a two-phase thawed zone with a simple skeleton is as follows. If a three-phase
medium with gas-hydrate inclusions was calculated in the node balance domain
d(ω) and the thaw Sν exceeded a unit value (Sν ≥ 1), this means that three-phase
thermodynamic equilibrium determined by the parameters Mw, Mg, E according
to (33),(34),(35) does not exist. Since the thermodynamic equilibrium state of the
medium is determined uniquely, then the solution {Sw, P, T} corresponding to the
thermodynamic equilibrium two-phase thawed zone according to (41),(42),(43) is
determined by the same parameters (Mw, Mg and E). The subsequent calculation
in this node ω in subsequent time steps occurs already in the two-phase thawed
zone with a simple skeleton.

5.4.3. Supercooled thawed zone method. We calculate the two-phase thawed
zone in the node balance domain d(ω) (with a simple skeleton or a double skeleton)
and the temperature is below the dissociation temperature (i.e. T < Tdis = f(P ),
see (7)) at this time step in the node ω. Then, we use the values {Mw, Mg and
E} known from (41),(42),(43) in the thawed zone and we calculate {Sν , Sw, P
and T} according to (33),(34),(35) for the three-phase hydrate-containing state.
Further calculation in this node ω in subsequent time steps occurs in the three-phase
hydrate-containing zone. It is possible to modify this approach, if the condition
T < Tdis is fulfill in this node ω, then the recalculation according to equations
(33),(34),(35) is not performed and the three-phase hydrate-containing state on an
explicit time layer is Sν = 1 and the values Sw, P and T from the thawed zone are
known. In this case, the thermobaric condition (7) for the three-phase calculation
is performed only at an implicit time step.

6. Results of calculations

6.1. Numerical modeling of one-dimensional problems of dissociation of
gas hydrates in a porous medium. We consider the following spatial one-
dimensional process in the interval x ∈ [0, l], l is the length of the calculated area.
In it at the initial instant of time, three-phase equilibrium is observed, including
a volumetric distributed solid hydrated phase. In this state of the system, the
pressure P (x, 0) = 3 × 106Pa, water saturation Sw(x, 0) = S∗

w and hydrate thaw
Sν(x, 0) = S∗

ν are homogeneous in space in this system state, 0 < S∗
w < 1 and

0 < S∗
ν < 1 are constant values. Acceleration of gravity is not taken into account

(g = 0).The left boundary of the calculated area is impermeable solid “wall”, i.e.
the mass flow through it is zero: Vw|x=0 = 0, Vg|x=0 = 0, t > 0. In this time
the right boundary has depression pressure P (x, l) = 105 Pa. Heat fluxes at the
boundaries of the region are absent. Volumetric sources of mass and energy in the
medium are also absent: qw = 0, qg = 0, qε = 0. Methane in the calculations
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is taken like ideal gas (zg = 1). The pressure dimension in the formulas of Section
5.1.1 was measured in pascals: [P ] = Pa.

The parameters of the Messoyakha’s gas hydrate deposit [9] were selected for
simulation.

ρw = 103
kg

m3
, ρν = 910

kg

m3
, ρs = 2800

kg

m3
, βw = 0.9, m = 0.35, A = 7.28K,

B = 169.7K, µw = 10−3Pa · s, µg = 0.014 · 10−3Pa · s,

cpw = 4200
J

kg ·K
, cpg = 2500

J

kg ·K
, cps = 873

J

kg ·K
, M = 0.016

kg

mole
,

h = 514810
J

kg
, R = 8.31

J

mole ·K
, S∗

w = 0.6, S∗
ν = 0.75, k(Sν) = k0 · (Sν)3,

k0 = 10mD = 10−14m2, krw(Sw) = 1.477S5
w − 1.587S6

w + 1.11S7
w − 0.0473,

krg(Sw) = 1.044− 1.7Sw + 0.6S2
w

The minimum value of water saturation is Swmin = 0.55.

krw(Sw) = 0, krg(Sw) = krg(Swmin) at Sw ≤ Swmin.

The maximum value of water saturation is Swmax = 0.9.

krw(Sw) = krw(Swmax), krg(Sw) = 0 at Sw ≥ Swmax.

The thermal conductivity of the medium was taken into account according to
formulas (6) and (20) and was taken equal to λw = 0.561, λg = 0.0342, λν =

2.11, λs = 0.2 W
m·K .

The length of the model area was assumed to be equal to l = 1 m, a step in the
space coordinate was h = 0.01 m. Calculations were carried out for time moments
t = 500, 1000, 2000, 6000, 12000 s.

In Fig.5, 6, 7, 8, 9, 10, we can see that in the calculations a joint transphase
process of volumetric phase transitions of the medium in the emerging thawed zone
and in the rest of the collector piezoconductive medium with gas hydrate inclusions
is implemented. This process expands spatially from right to left inside the zone of
depression. Such transphase calculations, in particular, make it possible to study
local processes of technogenic depressive effects directly in the vicinity of wells on
the dynamics of the spatial distributions of gas hydrates thaw and the formation
of thawed two-phase zones.

Figure 5. The distribution of hydrate thaw for moments of time
500, 1000, 2000, 6000, 9000 and 12000 s. Two phase thawed zone
on the right is highlighted in red.
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Figure 6. The distribution of water saturation for moments of
time 500, 1000, 2000, 6000, 9000 and 12000 s. Two phase thawed
zone on the right is highlighted in red.

Figure 7. The distribution of pressure for moments of time 500,
1000, 2000, 6000, 9000 and 12000 s. Two phase thawed zone on
the right is highlighted in red.

Figure 8. The distribution of temperature for moments of time
500, 1000, 2000, 6000, 9000 and 12000 s. Two phase thawed zone
on the right is highlighted in red.

The pressure graphs (see Fig.7) show that the presence of water saturation and
hydrate thaw has little effect on the nature of the pressure distribution, and it
changes almost as in the one-phase case. At a developed stage of the process, the
pressure tends to be constant, and, accordingly, the velocities of gas and water
filtration, proportional to the pressure gradient, and the divergent terms of the
equations in the thawed zone (17), (18), (19) depending on them also tend to zero.
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Figure 9. The temperature dependence on pressure in the whole
plane P, T for moments of time 500, 1000, 2000, 6000, 9000 and
12000 s.

Figure 10. The temperature dependence on pressure in the zone
of violation of three-phase thermobaric equilibrium Tdis = f(P )
with the transition to the thawed zone for moments of time 500,
1000, 2000, 6000, 9000 and 12000 s.

Thus, the solution is stabilized, and the system of equations takes the form (41),
(42), (43). The values of water saturation and temperature determined in this case
are found from the stabilization of solutions of the non-stationary problem.

In the substantial absence of filtration at the final stage of the process, the
residual temperature dynamics (fractions of a degree) is determined by the thermal
conductivity.

From a comparison of the graphs Sν(x), T (x) (see Fig. 5, 8) for the same times
t, we can see the transition from the three-phase zone, where the pressure and
temperature are related by the formulas of Section 5.1.1 to the two-phase zone,
where the process flows almost isothermally, which corresponds to the assumptions
made in most cases that the two-phase filtration is isothermal.

This is confirmed by the graphs of the dependence T (P ) (see Fig. 9,10), where
two characteristic regions are visible, corresponding to the three-phase and two-
phase zones. Of further interest is the development of algorithms for the joint
calculation of three-phase hydrate-containing states and two-phase systems from
hydrate and free gas or water, as well as a generalization of the results obtained
in the case of the introduction of volume fractions of water and ice in the phase
equilibrium zone.
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6.2. Spatial-three-dimensional calculations of piezoconductive processes
in a three-phase hydrate-containing medium near the depression craters
of wells. In order to demonstrate the capabilities of the proposed technique, the
final section presents the solution of model three-dimensional problems with de-
pression funnels near the wells of the piezoconductivity equation (14), (16) in a
three-phase medium with hydration inclusions with fixed saturation value S∗

ν and
S∗
w (see also Section 4.1). In contrast to section 6.1, a spatial three-dimensional

cube is considered. In it, at the initial moment of time, a three-phase equilibrium is
observed, which includes the solid-hydrated phase, which is volume-distributed. In
this state, the pressure was taken P = 7.4× 106 Pa, while the depression pressure
in the wells was considered equal to the atmospheric pressure of −105 Pa. Water
saturation Sw = 0.6 and thawing Sν = 0.75 are homogeneous in space and do not
change. The acceleration due to gravity is not taken into account (g = 0). All
walls of the computational domain are also assumed to be leaky. Heat flows at the
borders of the region are also absent. In calculations, methane gas was taken as an
ideal (zg = 1), the pressure dimension in the formulas of section 5.1.1 measured in
Pascals: [P ] = Pa. The remaining values of the physical parameters are similar to
those presented in Section 6.1.

Two tasks were solved: for one downhole well and for the development zone
from several well clusters. All tasks were considered in a three-dimensional setting,
the score was kept on establishment. The size of a cylindrical well was 1 × 20 m.
All grids in the calculations are tetrahedral, thickening to the peculiarities of the
computational domain (wells).

Task 1. Study of one downhole. The size of the area is 500× 500× 500 m3. The
grid consists of 378,200 elements (Fig. 11). The volume distribution of pressure, as
well as pressure and temperature profiles are presented in Fig. 12, 13.

Figure 11. Calculation grid for modeling of one depression funnel.

For clarity, the depression funnel formed in the area of the well is shown upside
down.

Task 2. Modeling the development zone of two well clusters. The size of the area
is 2000× 2000× 2000 m3. The distance between the wells is about 100 m, between
the bushes −1 km. The size of the grid - 2114202 elements. The grid and volume
distribution of pressure are presented in Figures 14 and 15.

Figure 15 shows several types of pressure distribution in the central development
zone with different scales in order to more clearly show the effect of the central part
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Figure
12. Volumetric
pressure distribution:
the formation of a
depression funnel.

Figure 13. One-
dimensional pressure
and temperature
profiles for one well.

Figure 14. Calculation grid for modeling the central zone.

of the zone. It is seen that separately standing bushes of wells interact with each
other, thereby forming extended areas of depression.

The three-dimensional calculations of the piezoconductive-dissipative block of
equations (14), (16) show the typical pattern of pressure distribution in the bot-
tomhole zones and in the reservoir and do not contradict the actual situation that
occurs during the development of the field. Problems are solved in the case of
three-phase volume equilibrium of water, free gas and hydrates.

7. Conclusion

A mathematical model has been developed that allows to investigate numerically
the fluid dynamics in a porous medium within the framework of a single scheme,
taking into account gas hydrates both in the three-phase zone and in the thawed
zone containing only gas and water. The computer programs based on this model
for a one-dimensional case (linear and radial) are created. Difference schemes based
on the support operator method are constructed for solving problems of this type
in the non-one-dimensional case. The applicability of the support operator method
is shown for a unified description of fluid-dynamic and deformation processes in
a porous medium with allowance for gas hydrates. The method used in the work
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Figure 15. Volumetric pressure distribution of the central devel-
opment area: various types.

is based on the splitting of water and hydrate saturation transfer by the physical
processes, on the one hand, and the separation of piezoconductive processes that
take into account the presence of a solid hydrate phase in the pores, on the other
hand. The algorithms are written and the program implementation is developed. A
joint transphase calculation was performed with time-varying spatial localizations
of different numbers of phases. The results of calculations show the effectiveness of
the developed methods for calculating real problems associated with gas hydrates
deposits. They also show the effectiveness of the developed methods for the study
of complex transphase processes, as well as the dynamics of water and hydrate
saturation in the reservoir.
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