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SOME NEW DEVELOPMENTS OF POLYNOMIAL PRESERVING

RECOVERY ON HEXAGON AND CHEVRON PATCHES

HAO PAN, ZHIMIN ZHANG, AND LEWEI ZHAO

Abstract. Polynomial Preserving Recovery (PPR) is a popular post-processing technique for
finite element methods. In this article, we propose and analyze an effective linear element PPR
on the equilateral triangular mesh. With the help of the discrete Green’s function, we prove

that, when using PPR to the linear element on a specially designed hexagon patch, the recovered

gradient can reach O(h4| lnh|
1
2 ) superconvergence rate for the two dimensional Poisson equation.

In addition, we apply PPR to the quadratic element on uniform triangulation of the Chevron

pattern with an application to the wave equation, which further verifies the superconvergence
theory.

Key words. Finite element method, post-processing, gradient recovery, superconvergence.

1. Introduction

In recent years, since the development of the high accuracy post-processing and
a posteriori error estimate ([1] and [2]), there has been growing interest in the su-
perconvergence and other kinds of high accuracy methods such as defect correction
and extrapolation. Finite element recovery techniques are post-processing methods
that reconstruct numerical approximations from finite element solutions to achieve
better results. We consider only C0 finite element methods, although generalization
to other finite element methods, such as non-conforming and discontinuous Galerkin
methods, are feasible. Let u be a solution of certain differential equation, and uh

be the finite element approximation of u. The goal of a recovery technique is to
construct Ghuh based on uh such that Ghuh is a better approximation of ∇u than
∇uh. Naturally, the mathematical background of recovery techniques is closely re-
lated to the finite element superconvergence theory, see, e.g., the monographs [3]
and [4].

Zienkiewicz and Zhu first introduced the gradient recovery method Supercon-
vergence Patch Recovery (SPR, ([5]) in 1992 based on a local discrete least-squares
fitting. Later, Zhang and Naga proposed an alternative strategy ([6]) called Poly-
nomial Preserving Recovery (PPR) to recover the gradient. Theoretical analysis
reveals that PPR has better superconvergence properties than SPR ([7]). It has
been implemented by commercial finite element software COMSOL Multiphysics as
a superconvergence tool. There have been further developments on applications of
PPR in numerical methods. For example, Guo and Yang ([8]) generalized the study
of PPR to high-frequency wave propagation in 2016. Wang etc.al establish the su-
perconvergence for Maxwell equations and combine with PPR that leads to global
superconvergence for recovered quantities in energy norms ([9]). Du and Zhang
study the superclosesness property of the linear Discontinous Galerkin finite ele-
ment method and its superconvergence behavior after post-processing by the PPR
([10]). Guo et al.generalized the idea of PPR to the general polygons, which only
uses the degrees of freedom and has the consistency on arbitrary polygonal meshes
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by the polynomial preserving property([11]). They prove the polynomial preserving
and boundedness properties of the generalized gradient recovery operator.

In practice, PPR is performed on an element patch ωz (around z) which is a union
of elements that covers all nodes needed for the construction of Ghuh(z). Different
mesh patterns and selection of patches result in different recovery. Some popular
mesh patterns include the regular pattern, the Chevron pattern, the Union-Jack
pattern, etc. ([6] and [7]). In general, PPR can attain h2 superconvergence rate
for the recovered gradient at an element vertex z for the linear element (Theorem
8.17 of [7]). In this article, we design a hexagon patch on equilateral triangulation

(Section 3.1) to reach a surprising superconvergence rate h4| lnh| 12 for the recovered
gradient from the linear element (Theorem 7). Standard approximation theory fails
to prove such a higher order superconvergence. In order to prove our theory, we use
the asymptotic error expansion in [12] and interior maximum norm estimates for the
discrete Green’s function in Section 3.2. Furthermore, an equal superconvergence
phenomenon is found on equilateral triangulation (Theorem 8). In addition, we
apply PPR to the quadratic element on the uniform triangulation of the Chevron
pattern, which further verifies the superconvergence stated in Theorem 3.1 in [6].
We also perform the quadratic PPR numerical experiments for a wave equation on
the Chevron pattern mesh.

An outline of this paper is as follows. We devote Section 2 to existed theory for
PPR. The general set up for the linear element PPR on the Hexagon patch is then
constructed in Section 3. Finally the applications of the PPR to the quadratic ele-
ment on the uniform triangulation of the Chevron pattern are presented in Section
4.

2. Some preliminaries of PPR

In this section, we introduce some basic knowledge of PPR in 2D. We consider
the following variational problem on a polygonal domain Ω : Find u ∈ H1

0 (Ω) such
that

(1) a(u, v) = f(v), ∀v ∈ H1
0 (Ω),

where

a(u, v) =

∫
Ω

[(A∇u+ bu) · ∇v + cuv].

We assume that all the coefficient functions are smooth, A is a 2×2 symmetric pos-
itive definite matrix, f(.) is a linear functional, and the bilinear form is continuous
and satisfies the inf-sup condition (8.3.14)-(8.3.15) of [7] on H1(Ω).

Let Th = {K} be a finite regular triangulation of Ω of width h with all its
boundary vertices on ∂Ω. Corresponding to Th, we define the following finite ele-
ment spaces:

Sh(Ω) = {vh ∈ C(Ωh) : vh is piecewise polynomial of degree≤ k on each K ∈ Th}
S0
h(Ω) = {v ∈ Sh : supp(v) ∈ Ωh}.

where Ωh = ∪{K ∈ Th}. Then the finite element approximation uh ∈ S0
h(Ω)

satisfies

(2) a(uh, v) = f(v), ∀v ∈ S0
h(Ωh).

To ensure the uniqueness of the finite element solution, we assume the discrete
inf-sup condition (8.3.17) of [7].

Given a node z, we select n ≥ (k + 2)(k + 3)/2 sampling points adjacent to z,
and fit a polynomial of degree k+ 1, in the least square sense, with values of uh at
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those sampling points. In other words, we are looking for pk+1 ∈ Pk+1 such that

n∑
j=1

(pk+1 − uh)
2(zj) = min

q∈Pk+1

n∑
j=1

(q − uh)
2(zj).

The PPR recovers the gradient at z,and is defined as

Ghuh(z) = ∇pk+1(z).

It was proved in [13] that certain rank condition and geometric condition guarantee
the uniqueness of pk+1, and Gh is a linear operator from Sh to Sh × Sh. We list
three important properties of Gh below. Their proof and other properties can be
found in [6] and [7].

Proposition 1. (Polynomial preserving) Gh is polynomial preserving in the sense
that GhuI = ∇u for any u ∈ Pk+1, where uI ∈ Sh is the Lagrange interpolation of
u. If zi is a mesh symmetry center of involved nodes and k = 2r, then Gh preserves
polynomials of degrees up to k + 2 at zi.

Proposition 2. Let the coefficients in the differential operator given in (1) be
constants, and let the finite element space, which includes piecewise polynomials
of degree k, be translation invariant in directions on Ω, and let u ∈ W k+2,∞(Ω).
Assume uh ∈ Sh is the finite element solution of (2). Assume further that Theorem
5.5.2 in [4] is applicable. Then on any interior region Ω0 ⊂⊂ Ω,

∥∇u−Ghuh∥L∞(Ω0) . (ln
1

h
)r̄hk+1∥u∥Wk+2,∞(Ω) + ∥u− uh∥W−s,q(Ω),

for some s ≥ 0 and q ≥ 1.

Proposition 3. Consider an interior patch ωz ∈ Ωd ⊂ Ω1,h with d = dist(ωz, ∂Ωd) ≥
Kh for some constant K > 0. Let u ∈ H3(Ω) ∩W 2,∞(Ω) and uh ∈ Sh be the ex-
act and the linear element solution of (1) and (2),respectively. Assume Condition
(α, σ) is satisfied. Then

|(∇u−Ghuh)(z)| . h1+min(1,α)∥u∥3,∞,ωz+d−1h2 ln
1

h
∥u∥2,∞,Ω+h1+α ln

d

h
|u|2,∞,Ωd

.

In view of Proposition 3, linear element PPR can reach the order of 2 for a
general patch. In the next section, we will construct a new special patch in the
equilateral triangle mesh to get ultraconvergence as h4| lnh| 12 .

3. Linear element PPR on the Hexagon patch in equilateral triangle
mesh

3.1. A new PPR patch. For the linear element in equilateral triangle mesh,
performing the discrete least squares fitting, we obtain the coefficients of the cubic
polynomial at 13 vertices (Pj , j=0....12 ) of the scaled patch ωz in Figure 1: vertex 0
is the patch center z, vertex 1 to 6 are adjacent to the center, and vertex 7 to 12 are
other vertices. Thereby recovering the gradient of u with Ghuh(x, y) = ∇p3(x, y)
on the patch ωz.

(3) Ghuh(z) =
12∑
j=0

cjuh(Pj)

h
,

where
∑12

j=0 cj = 0 by Proposition 8.6 of [7].
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Figure 1. The linear element PPR for Ghuh = ∇p3.

Let p3(z) = uo + a1x+ a2y+ a3x
2 + a4xy+ a5y

2 + a6x
3 + a7x

2y+ a8xy
2 + a9y

3,
then in the local reference coordinate Ghuh(0, 0) = ∇p3(0, 0) = (a1, a2),
(4)

Ghxuh(0, 0) =
1

2h
[(u1 − u4) + (

u2 + u6

2
− u3 + u5

2
)] +

1

6h
(
u10 + u11

2
− u7 + u8

2
),

Ghyuh(0, 0) =

√
3

2h
[(
u2 + u3

2
− u5 + u6

2
) +

1

9
(u12 −

u7 + u10

2
) +

1

9
(
u8 + u11

2
− u9)],

uj = uh(Pj).

By Taylor expansion analysis,

(5)
|(GhxuI −

∂u

∂x
)(0, 0)| = 1

80
h4 ∂

5u

∂x5
(0, 0) +O(h6),

|(GhyuI −
∂u

∂y
)(0, 0)| = 3

160
h4 ∂

5u

∂y5
(0, 0) +O(h6).

To analyze the error, we decompose

(6) ∇u−Ghuh = (∇u−GhuI) +Gh(uI − uh).

Then the first term |(∇u − GhuI)(z)| ≤ Ch4 by Taylor approximation (5). So we
only need to consider the second term |Gh(uh − uI)|.

3.2. Interior estimates for the discrete Green’s function. From the view of
(3), the recovery operator Gh is a linear combination of the solution values uh(Pj),
which is divided by h. By Proposition 8.7 in [7], Gh is a bounded operator in the
sense

(7) |Ghv(z)| . |v|W 1,∞(ωz), ∀v ∈ Sh.

So by directed analysis,

|Gh(uh − uI)(z)| ≤ |Gh||uh − uI |W 1,∞(ωz).

The derivative will cause the error estimation to lose one order less than the super-
convergence rate we expect. To overcome such a difficulty, we adopt the interior
estimate technique in the superconvergence analysis of [6] and the proof of Theo-
rem 8.17 in [7]. We introduce a separation parameter d = dist(ωz, ∂Ωd) ≥ Kh for
some constant K to separate ωz ⊂⊂ Ωd ⊂ Ω such that this loss in one order h−1 is
replaced by fixed d−1 to obtain the expected superconvergence. Motivated by this
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technique, we now set up the interior estimates for the discrete Green’s function
that will be used in the proof of superconvergence.

Definition 4. Let gzh ∈ S0
h be the discrete Green’s function defined by (1.10) of [3]

:

(8) a(gzh, v) = v(z) ∀v ∈ S0
h(Ω).

The analysis in this section closely follows the argument of Lemma 3.2 in [14]

Lemma 5. For bounded domains Ω0 and Ωd with Ω0 ⊂⊂ Ωd, where d = dist(∂Ω0, ∂Ωd).
We shall assume that the meshes are locally quasi-uniform of size h; we shall then
require d ≥ Kh for K > 0 large enough, then

(9) ∥gzh∥W 1,∞(Ω0) . d−1| lnh| 12 .

Proof. It suffices to prove our result with Ω0 replaced by a ball Bd and Ωd by a
concentric ball B3d. We scale this situation by introducing a new variable y = x/d,
we have with g̃zh(y) = gzh(yd).

It is elementary to check that

(10) |gzh|W 1,∞(Bd) + d−1∥gzh∥L∞(Bd) = d−1∥g̃zh∥W 1,∞(B1).

We shall also let δ̃ = δ̃j,x0 (j = x, y) be such that, for x0 ∈ B1,

Djv(x0) = (Djv, δ̃) ∀v ∈ Sh.

We let V ∈ H1(B3) be defined by (3.10) in [14] and the projection ΠV ∈ Sh(B3)
given by

a(V −ΠV, v) = 0 ∀v ∈ Sh.

We then obtain, for x0 ∈ B1,

(11) Dj g̃
z
h(x0) = (Dj g̃

z
h, δ̃) = −(g̃zh, Dj δ̃) = a(g̃zh, V ) = a(g̃zh,ΠV ).

Now let χh ∈ S̊h(B1.4) with χh = ΠV in B1.3 such that

(12) ∥ΠV − χh∥H1(B1.5\B1.3) . ∥ΠV ∥H1(B1.5\B1.2).

Such a χh exists by Lemma 2.3 of [14]. From (11) we then have

(13) Dj g̃
z
h(x0) = a(g̃zh,ΠV − χh) + χh(z).

Here, by (12)

(14) |a(g̃zh,ΠV − χh)| . ∥g̃zh∥H1(B1.5)∥ΠV ∥H1(B1.5\B1.2).

By Theorem 3.5 of [3]

(15) ∥g̃zh∥2H1(B1.5)
. | lnh|.

Further, since a(v,ΠV ) = 0 for v ∈ S̊h(B2\B1.1), from Lemma 2.6 of [14], we obtain

(16) ∥ΠV ∥H1(B1.5\B1.2) . ∥ΠV ∥W 1,1(B3\B1.1).

Using Lemma 2.1 and Lemma 3.1 in [3], we conclude that

(17) ∥ΠV ∥W 1,1(B3\B1.1) . ∥V ∥W 1,1(B3\B1.1) + ∥V −ΠV ∥W 1,1(B3) ≤ C.

Hence, from (14)-(17)

(18) |a(g̃zh,ΠV − χh)| . | lnh| 12 .
From (13) and (18), we now have

|Dj g̃
z
h(x0)| . | lnh| 12 .

Then we obtain (9) from (10). �
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3.3. Asymptotic error expansion for linear finite elements on equilateral
triangulation. This part is based on Blum, Lin and Rannacher’s result in 1986
([12]). They showed the elliptic Ritz projection with linear finite elements to admit
asymptotic error expansions on certain uniform meshes. Its success depends on the
presence of an asymptotic error expansion of the type

uh(z) = u(z) +

n∑
k=1

h2ke(k)(z) + o(h2n)

in mesh points z, where the coefficients e(k)(z) are independent of the mesh size
parameter h. They consider the model Dirichlet problem

(19)
−∆u = f in Ω,

u = b on ∂Ω,

where Ω is a polygonal domain, and f and b are smooth functions. Then the finite
element solution uh satisfies

(20)

∫
Ωh

∇uh∇vdx =

∫
Ωh

fvdx ∀v ∈ S0
h(Ω).

When Th is a uniform three-directional triangulation (generated by the same unit
vectors t1, t2 and t3), let A = αh2 and hi = λih (i=1,2,3), the following simplifica-
tions occur ([12]) :

(1) The area integrals (Identity 2.12 in [12]) combine to
∑(n)

h (z;u) =
∑n−1

k=1 h
2k

·e(k)h (z;u), where

e
(k)
h (z;u) =

λ1λ2λ3

4α2
βk

∫
Ω

gzh(D1D2D3

3∑
i=1

λ2k+1
i D3

i )udx,

βk ∈ C1
0 (Si) ∩ C2(Si) (k=2,3), Di is the directional derivative along Si.

(2) The remainder terms add up to

R
(n)
h (z;u) = h2n

3∑
i=1

λ2n+1
i λi+2

2α
Φi(z;u),

where

Φi(z;u) =
∑

K∈Th

∫
Si

βn(s)Di+2g
z
3hD

6
i uds,

and the indices are used mod(3).

Their improved result is the following theorem (Theorem 1 of [12]).We will use this
theorem to prove superconvergence.

Theorem 6. If u ∈ C2n+ϵ(Ω̄), for some ϵ ≥ 0. Then

(21) uh(z) = uI(z) +
n−1∑
k=1

h2ke
(k)
h (z;u) +Rn

h(z;u),

where the remainder term is uniformly of the order O(h2n| lnh|) if ϵ = 0, and
O(h2n) if ϵ > 0.

As a further by-product of Theorem 6, they gave the following superconvergence
result (Corollary 3 of [12]).
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Corollary 6.1. If u ∈ C4+ϵ(Ω̄) for some ϵ > 0, and if the uniform triangulation
consists of equilateral triangles, then there holds

(u− uh)(z) = O(h4)

uniformly in nodal points z ∈ Ω.

On the equilateral triangulation,

λ1 = λ2 = λ3 D1 +D2 +D3 = 0,

and consequently, e
(1)
h = 0. Then the Corollary 6.1 follows from Theorem 6.

3.4. Expansion analysis for the superconvergence theory. As summarized
in [15], there are three kinds of approaches to investigating superconvergence prop-
erties of finite element methos. One is the Chinese approach based on element
analysis ([16] and [17]), with which one can get exact information on the error and
derive asymptotic expansions. Moreover, one can prove the global results. It de-
pends on some uniform (with perturbation) properties of the meshes. The second
approach is based on the local symmetry of the mesh. It can deal with more general
meshes but it can only be able to get interior superconvergence ([4]). The third one
is based on numerical valiadtion([18]).We use the idea of Corollary 6.1 but expand
the error expression (21) to n = 3 (We need higher smoothness requirement C6+ϵ)
rather than n = 2 in Corollary 6.1. Then e1h = 0 and e2h becomes the main error
term. We analyze e2h and obtain the following superconvergence result.

Theorem 7. Consider an interior Hexagon pattern 13 vertices-patch (Figure 1)
ωz ⊂⊂ Ωd ⊂ Ω in the equilateral triangle mesh with d = dist(ωz, ∂Ωd) ≥ Kh for
some constant K. Let u ∈ C6+ϵ(Ω) for some ϵ > 0 and uh ∈ Sh be the exact and
the linear element solution of (19) and (20) respectively.The recovery operator Gh

is defined by PPR on ωz. Then there is a constant C independent of h and u such
that

|(∇u−Ghuh)(z)| ≤ Ch4| lnh| 12 .

Proof. By the decomposition in (6), we only need to consider the second term
|Gh(uh − uI)|.

The length of equilateral triangle (in vertices 8-9-11 and 7-10-12) side Si is 3h

and its area A =
√
3
4 (3h)2. By the Theorem 6 with λi = 3 and α = 9

√
3

4 , we have

(uh − uI)(z) = h4e
(2)
h (z;u) +R

(3)
h (z;u),

where

e
(2)
h (z;u) = 81β2

∫
Ω

gzh(D1D2D3

3∑
i=1

D3
i )udx,

R
(3)
h (z;u) = 486

√
3h6

3∑
i=1

Φi(z;u),

Φi(z;u) =
∑

K∈Th

∫
Si

β3(s)Di+2g
z
hD

6
i uds.

Then

(22) Gh(uh − uI)(z) = h4Ghe
(2)
h (z;u) +GhR

(3)
h (z;u).

By (3),

Ghe
(2)
h (z;u) = 81β2

∫
Ω

(Ghg
z
h)(D1D2D3

3∑
i=1

D3
i )u.
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Figure 2. Linear element PPR on the Hexagon pattern reaches
4th order convergence for L2 error and L∞ error of ∇u−Ghu.

Now gzh ∈ Sh, and by (7)

|Ghg
z
h| . |gzh|W 1,∞(ωz).

By Lemma 5,

|gz3h|W 1,∞(ωz) . d−1| lnh| 12 .

Therefore, |Ghe
(2)
h (z;u)| is of order h4| lnh| 12 , and |GhR

(3)
h (z;u)| is of higher order

at least h5. The conclusion follows by applying (6) and (22). �

Remark. As a particular consequence of Lemma 3 in [12] we see that on an equi-
lateral triangulation the Ritz projection of a 5th degree polynomial coincides with
its interpolant and Ghuh = ∇u for polynomials with degree less than or equals 4.

3.5. Numerical example. Let Ω be a hexagon with the center at origin where
each side length is 1. The refinement is made by bisecting each side. The initial
mesh size is h = 1

2 . The equation −∆u = 2π2 sin(πx) sin(πy) satisfies the Dirchlet
condition where u equals the exact solution value u(x, y) = sin(πx) sin(πy) on the
boundary, and ωz is Hexagon pattern 13 vertices-patch (Figure 1). Define the error

(23)

∥∇u−Ghuh∥l∞(Ω) = max
ωz∈Ω

|(∇u−Ghuh)(z)|,

∥∇u−Ghuh∥l2(Ω) = (
∑
ωz∈Ω

|(∇u−Ghuh)(z)|2)
1
2 .

Superconvergence of 4th order is observed when the hexagon pattern is used (See
Table 1 and Figure 2).

Table 1. Numerical results of the linear element case on the
Hexagon pattern.

Dof h ∥∇u−Ghuh∥l∞(Ω) order ∥∇u−Ghuh∥l2(Ω) order
38 1/4 0.0817 - 0.0315 -
254 1/8 0.0056 3.8749 0.0020 3.972
1262 1/16 0.0004 3.9630 0.0001 4.0275
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Figure 3. Nodes nj (j=0,...,6) forms a hexagon.

3.6. Natural superconvergence points on the antisymmetric axis for the
linear element in an equilateral triangle mesh. In one dimension, we have
the superconvergence result for the Possion equation −u′′ = f in the Dirichlet
condition that the finite element solution equals the exact solution at nodes. In
two dimensions, we find the following exactly equal superconvergence results.

Theorem 8. Let Ω be a symmetric domain in R2 with respect to a straight line
l that can be discretized by an equilateral triangle mesh. Considering the finite
element solution to the Possion equation −∆u = f with the Dirichlet boundary
condition where f is antisymmetric with respect to l . That is, if there are 2 points,
z1 and z2 are symmetric with respect to l, then f(z1) = −f(z2). And u is a
constant on this line l. Then the finite element solution values at the nodes on the
antisymmetric axes l equal their exact solution value on l.

Proof. Suppose u ≡ Cl on l, and without loss of generality, assume Cl = 0 since we
can let ū = u− Cl. Let the matrix form of the finite element solution be

N∑
j=0

aijuh(xj) = bi (i = 0, ..., N).

Let node n0 ∈ int(Ω), nj (j=1,...,6) are nodes adjacent to the node n0 (Figure 3).
Then we compute the load term bn0 by the quadrature rule.

When n0 ∈ l, nodes ni and nk (1 ≤ i, k ≤ N) are symmetric with respect to l,
the antisymmetry of f with respect to l gives bn0 = 0 and bni = −bnk

.
A direct calculation by Cramer’s Rule and Laplace expansion of n0th column

leads to

uh(xn0) =
∑
n0∈l

bn0An0 +
∑
i,k ̸=0

(bni + bnk
)Aik = 0,

where Aik are corresponding cofactors. In a general case uh(xn0) = u(xn0) ≡ Cl.
For example, Ω is a hexagon centered at the origin, and the x-axis is the anti-

symmetric axis for f(x, y) = 2π2 cosπx sinπy. The linear element solution values
at the nodes on the x-axis will then equal their exact solution values. �

Remark. For n0th row of the linear element stiff matrix, we have

6∑
j=0

an0njuh(xnj ) = bn0 with an0n0 = 6an0nj (j = 1, 2, .., 6).
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Figure 4. Chevron Pattern.

Figure 5. Element patch for the Chevron pattern mesh.

Corollary 8.1. Let Ω be a symmetric domain in R2 with respect to a straight
line l that can be discretized by equilateral triangle mesh. The Possion equation
−∆u = f + p2 satisfies the Dirichlet boundary condition where f is antisymmetric,
p2 is a polynomial of degree less than or equal to 2, and u is a constant on this line
l. Then the finite element solution values at the nodes on the antisymmetric axis l
are equal to their exact solution values on l.

The Corollary 8.1 follows from Corollary 6.1 and Theorem 8.

4. Quadratic element PPR on the Chevron pattern

Zhang and Naga especially demonstrated the superiority of the PPR over the
ZZ patch recovery in [6] by comparing the two under 1) the linear element on
the uniform grid of the Chevron pattern ; and 2) the quadratic element on the
uniform grid of the regular pattern. Guo and Yang tested the linear element PPR
for the wave equation on the Chevron pattern uniform mesh in [8]. This section
supplements the quadratic element on the uniform grid of the Chevron pattern,
which further verifies the superconvergence stated in Proposition 2. Performing
the discrete least squares fitting, we obtain the coefficients of the cubic polynomial
at 7 vertices (Pj , j=0....6) and 12 edge middle points (Pj , j=7,...18 ) of the scaled
patch ωz in Figure 5 with vertex 0 being the patch center z. Therefore the recovered
gradient on the patch Ghuh(x, y) = ∇p3(x, y). By Taylor expansion analysis in the
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Figure 6. Quadratic element PPR convergence rate on the
Chevron pattern for Possion equation: L2 and Linf errors of ∇u−
Ghu.

local reference coordinate,
(24)

|(GhxuI −
∂u

∂x
)(0, 0)| = h3

912

∂4u

∂3x∂y
+

11h3

450

∂4u

∂x∂3y
+O(h4),

|(GhyuI −
∂u

∂y
)(0, 0)| = 191h3

210192

∂4u

∂3x∂y
+

31043h3

420384

∂4u

∂x∂3y
+

1081h3

420384

∂4u

∂4y
+O(h4).

4.1. Numerical results for the Possion equation. In this section, we numer-
ically illustrate our result for the quadratic element on the Chevron pattern. In
the first numerical example, we consider the Possion equation with a polynomial
on the right hand side.

(25)
−∆u = 2(x+ y − x2 − y2) in Ω,

u = 0 on ∂Ω.

where Ω = [0, 1]2. l2(Ω) error is defined the same as (23), and we fixed the inner
point z = (0.5, 0.5) for testing local absolute value error linf (z) = |(∇u−Ghuh)(z)|.

Table 2 and Figure 6 shows the superconvergence of 3rd order.

Table 2. Quadratic element on Chevron pattern for Possion equation.

Dof h |(∇u−Ghuh)(z)| order ∥∇u−Ghuh∥l2(Ω) order
18 1/4 4.6× 10−3 - 3.4× 10−3 -
98 1/8 6.0× 10−4 2.9972 4.0× 10−4 2.9936
450 1/16 7.3× 10−5 2.9987 5.4× 10−5 2.9561
1922 1/32 9.1× 10−6 2.9997 7.7× 10−6 2.8257

4.2. Numerical results for the wave equation. Guo and Yang generalized the
study of PPR to the wave equation ([8]). They presented a numerical example of
the linear element PPR for the wave equation on the Chevron pattern. We now
consider the following linear wave equation (5.1 of [8]) and add a numerical example
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of quadratic element PPR.

(26)

∂2u

∂t2
−∆u = f in (x, t) ∈ Ω× (0, 1],

u = 0 on (x, t) ∈ ∂Ω× (0, 1],

u(x, 0) = sin(πx) sin(πy) x ∈ Ω,

∂u

∂t
((x, 0) = − sin(πx) sin(πy) x ∈ Ω,

where Ω = [0, 1]2, and f is chosen to fit the exact solution u(x, t) = e−t sin(πx) sin(πy).
By [19], the error is bounded by C(hk + δt2) in each discrete time case, where δt is
the time step. We take the time step as the square of the space size, i.e., δt = h2.
To get superconvergence of the quadratic element, one needs higher order time
discretization, and thus we choose the fourth order time discretization used in [8]
which can be reformulated into a predictor-correct form. The predictor step is

(vh, wh) + (∇un
h,∇wh) = (fn, wh) wh ∈ S0

h(Ω),

and the correct step is

(27)
vh =

u∗
h − 2un

h + un−1
h

δt2
,

(un+1
h , wh) = (u∗

h, wh)−
δt4

12
(∇vh,∇wh) wh ∈ S0

h(Ω).

Note the above scheme needs initial conditions of two time steps. As in [8], we
consider the Taylor expansion of u at t = 0,

u(., δt) = u(., 0) + δt
∂u

∂t
(., 0) +

δt2

2

∂2u

∂t2
(., 0) +O(δt3).

We compute the numerical error at time T = 1. l2(Ω) error is defined the same
as (23), and we again fix the inner point z = (0.5, 0.5) for test local absolute value
error linf (z) = |(∇u−Ghuh)(z)|. Table 3 lists errors and convergence rates of the
numerical solution for the quadratic element on the Chevron pattern uniform mesh.

Table 3. Quadratic element on the Chevron pattern for wave equation.

Dof h |(∇u−Ghuh)(z)| order ∥∇u−Ghuh∥l2(Ω) order
18 1/4 0.033 - 0.017 -
98 1/8 0.0056 2.5556 0.0026 2.6727
450 1/16 0.0007 3.0541 0.0003 3.1463

5. Conclusions

In this work, we further investigate the Polynomial Preserving Recovery (PPR)
post-processing technique for finite element methods. Our main results are listed
as following:

(1) A hexagon patch is designed for the equilateral triangular mesh on which

PPR is applied on the linear element to achieve h4| lnh| 12 superconvergence
for the recovered gradient. An exact equal superconvergence phenomenon
is also investigated on this mesh.

(2) An interior maximum norm estimates for the discrete Green’s function is
given to relax the global regularity assumption on the solution.
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Figure 7. Quadratic element PPR convergence rates on the
Chevron pattern for the wave equation: L2 and Linf errors of
∇u−Ghu.

(3) A quadratic element PPR on the Chervron pattern mesh with an applica-
tion to a wave equation is implemented to verify the previous superconver-
gence theory.
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