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A FINITE DIFFERENCE METHOD FOR STOCHASTIC

NONLINEAR SECOND-ORDER BOUNDARY-VALUE PROBLEMS

DRIVEN BY ADDITIVE NOISES

MAHBOUB BACCOUCH

Abstract. In this paper, we present a finite difference method for stochastic nonlinear second-

order boundary-value problems (BVPs) driven by additive noises. We first approximate the white
noise process with its piecewise constant approximation to obtain an approximate stochastic BVP.
The solution to the new BVP is shown to converge to the solution of the original BVP at O(h)
in the mean-square sense. The approximate BVP is shown to have certain regularity properties

which are not true in general for the solution to the original stochastic BVP. The standard finite
difference method for deterministic BVPs is then applied to approximate the solution of the
new stochastic BVP. Convergence analysis is presented for the numerical solution based on the

standard finite difference method. We prove that the finite difference solution converges to the
solution to the original stochastic BVP at O(h) in the mean-square sense. Finally, we perform
several numerical examples to validate the theoretical results.

Key words. Stochastic nonlinear boundary-value problems, finite difference method, additive

white noise, mean-square convergence, order of convergence.

1. Introduction

In this paper, we investigate the convergence properties of a finite difference
method applied to scalar stochastic nonlinear second-order boundary-value prob-
lems (BVPs) driven by additive white noises. More specifically, we are interested
in the stochastic BVP (SBVP)

(1) u′′ = f(x, u) + g(x)Ẇ (x), x ∈ (a, b), u(a) = α, u(b) = β,

where f : [a, b] × R → R and g : [a, b] → R are given functions. Here, α and

β are deterministic real constants and Ẇ is the white noise. The white noise is a
generalized function or a distribution and it can be written informally as Ẇ (x) =
dW (x)

dx in the sense of distribution. Here, W (x) is the one-dimensional standard
Brownian motion (or Wiener process) which is defined on a complete probability
space (Ω,F , P ) equipped with a filtration {Fx}a≤x≤b satisfying the usual conditions
(i.e., the filtration is right-continuous and contains all P -null sets in F) and carrying
a standard one-dimensional Brownian motion W . We note that the stochastic
process W = W (x), x ∈ [a, b] has the following important properties:

(1) W (a) = 0 with probability one.
(2) The trajectories (or sample paths) x → W (x) are continuous for x ∈ [a, b].
(3) For every a ≤ x < y ≤ b, the incrementW (y)−W (x) is normally distributed

with mean 0 and variance y − x. Symbolically, we write W (y) −W (x) ∼
N (0, y − x).

(4) W (x) has independent increments i.e., for every partition a = x0 ≤ x1 <
· · · < xN = b, the increments ∆Wi = W (xi) − W (xi−1), i = 1, 2, . . . , N ,
are independent.
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Although Brownian paths are not differentiable pointwise, we may interpret their
derivative in a distributional sense to get a generalized stochastic process called
white noise Ẇ = dW

dx . The term ”white noise” arises from the spectral theory of
stationary random processes, according to which white noise has a ”flat” power
spectrum that is uniformly distributed over all frequencies (like white light). This
can be observed from the Fourier representation of Brownian motion.

In our analysis, we assume that the SBVP (1) has a unique solution. The existence
and uniqueness of the solution to SBVPs were established by Nualart and Pardoux
in [29, 30]. We further assume that the function g is continuous on [a, b] and satisfies
the uniform Lipschitz condition with Lipschitz constant Lg:

(2) |g(x)− g(y)| ≤ Lg |x− y| .
Finally, we assume that the nonlinear function f(x, u) satisfies the following condi-
tions

(1) f(x, u) and fu(x, u) are continuous functions on the set D = {(x, u) | x ∈
[a, b], u ∈ R},

(2) there exist constants K1 and K2 such that

0 < K1 ≤ fu(x, u) ≤ K2, for all (x, u) ∈ D.(3)

Using the Mean-Value Theorem, it follows that f satisfies the following uniform
Lipschitz condition on D in the variable u with uniform Lipschitz constant Lf = K2

(4) |f(x, u)− f(x, v)| ≤ Lf |u− v| , for all (x, u), (x, v) ∈ D = [a, b]× R.
We remark that (1) is a formal notation due to poor regularity of the white noise.
A solution to the SBVP (1) is defined in terms of integral equations. To define the
solution u, we first introduce a new variable v = u′. Then we convert (1) into the
system

u′ = v, v′ = f(x, u) + g(x)Ẇ (x), x ∈ (a, b), u(a) = α, u(b) = β.(5)

The stochastic process (u, v) ∈ R2 is a solution to (5) if (u, v) satisfies the integral
equations

u(x) = u(a) +

∫ x

a

v(y)dy, x ∈ (a, b),(6a)

v(x) = v(a) +

∫ x

a

f (y, u(y)) dy +

∫ x

a

g(y)dW (y), x ∈ (a, b),(6b)

with the boundary conditions u(a) = α and u(b) = β. The integral in (6a) and
the first integral in (6b) are pathwise Riemann integrals. However, the last in-
tegral in (6b) is an Itô stochastic integral. Since the Brownian paths are of un-
bounded variation on [a, x] for every x > a, the latter integral cannot be defined as
a Riemann-Stieltjes integral.

Stochastic differential equations (SDEs) are used to describe more realistic mod-
els. They provide suitable mathematical tools to model real-world problems with
uncertainties that may be originated from various sources such as side (initial and
boundary) conditions, geometry representation of the domain, and input param-
eters. Many areas of applications use SDEs including physics, biology, finance,
economics, insurance, signal processing and filtering, population dynamics, and
genetics; see for examples [17, 25, 31, 32, 33, 34, 38].

Unlike deterministic BVPs, there are very few SDEs with exact analytical solutions.
Therefore, numerical methods are usually necessary to approximate their solutions.
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Numerical methods for stochastic initial-value problems (SIVPs) were investigated
by several authors; see for instance [1, 2, 7, 8, 9, 22, 23, 25, 26, 27, 28, 35, 36, 37, 39]
just to mention a few. However, numerical approximations of SBVPs have received
much less attention [2, 3, 4, 5, 6, 11, 13, 12, 14, 15, 16, 19, 41, 42, 40]. In particular,
Arciniega and Allen [3, 4, 5] proposed a stochastic shooting method procedure to
approximate solutions to linear and nonlinear SBVPs. The stochastic shooting
method is similar to the standard shooting method for deterministic boundary-
value problems. It consists of transforming SBVPs to a family of SIVPs, which can
be solved using standard numerical methods for SIVPs such as the Euler-Maruyama
method or Milstein’s method. The shooting method requires solutions to a family
of SIVPs and nonlinear equations. Allen et al. [2] presented finite difference and
finite element methods to approximate solutions to linear parabolic and elliptic
stochastic partial differential equations (SPDEs) driven by additive white noise.

They approximated the white noise process Ẇ with a piecewise constant random
process and obtained an approximate solution that converges to the solution of the
original problem. They further showed certain regularity conditions are met by
the solution to the new approximate problem. The regularity conditions allowed
them to use the standard analysis techniques in the finite difference and finite
element methods. Some homotopy continuation methods for stochastic two-point
BVPs driven by additive noises were proposed in [12]. However, to the best of
our knowledge, there has been no work in the literature which studies the finite
difference method for the stochastic nonlinear BVPs.

In [13], Cao et al. studied the well-posedness and optimal error estimates of spectral
finite element approximations for the boundary-value problems of stochastic semi-
linear elliptic SPDEs driven by white or colored Gaussian noises. They established
a covariance operator dependent condition for the well-posedness of SPDE through
the convergence analysis for a sequence of solutions of SPDEs with the noise term
in the SPDE replaced by its spectral projections. To obtain numerical solutions,
they applied the finite element method to the SPDEs whose noises are the spectral
projections of the original noise. More recently, Cao et al. [14] investigated the well
posedness and the finite element approximations for the stochastic boundary-value
problem (1) driven by a fractional Brownian motion with Hurst index H ≤ 1/2.
They obtained the existence of a unique solution for the SBVP by analyzing the
convergence of a sequence of approximate solutions of the stochastic equation with
the fractional noise replaced by its piecewise constant approximations. They also
derived an error estimate between the exact solution of the original problem and
its approximations that are used in the well-posedness analysis. Moreover, they
applied the Galerkin finite element method to the approximate noise-driven equa-
tion, and obtained the overall error estimate of the finite element solution through
an finite element error estimate for the approximate stochastic problem. More pre-
cisely, they showed that, with continuous piecewise linear finite elements, the mean
square convergence rate of the finite element approximations is O(hH+1/2), which
is consistent with the existing result for white noise H = 1/2; see, e.g. [2].

In this paper, we propose a new first-order finite difference method for nonlinear
stochastic two-point boundary-value problems of the form (1). As in [2], we first

construct a new approximate stochastic BVP by replacing the white noise Ẇ with
a piecewise constant function. We prove that the solution to the new approxi-
mate SBVP converges to the solution of (1) at O(h) in the mean-square sense. We
then use the standard finite difference method for deterministic BVPs to discritize
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the new SBVP. We prove that the proposed finite difference scheme is convergent
in mean-square with order O(h), when the second-order accurate three-point dif-
ference formulas are used to approximate the second derivative. Our theoretical
results are supported by several numerical results.

The rest of paper is organized as follows: In section 2, we present the stochastic
finite difference method for solving (1). We also introduce some preliminary results
which will be needed in our error analysis. In section 3, we provide the convergence
properties of the proposed scheme. In section 4, we present several numerical
examples to validate our theoretical results. We conclude and discuss our results
in section 5.

2. The stochastic finite difference method

For simplicity, we assume homogeneous boundary conditions. We note that
this assumption can always be fulfilled by letting v = u − w, where w(x) =
α(b−x)+β(x−a)

b−a , which satisfies the boundary conditions w(a) = α and w(b) = β.
It can be shown that v satisfies the homogeneous SBVP

v′′ = f̄(x, v) + g(x)Ẇ (x), x ∈ (a, b), v(a) = v(b) = 0,

where f̄(x, v) = f(x, v+w). Once we obtain a numerical approximation, say vh, to
the above homogeneous SBVP, then an approximate solution to the original SBVP
(1) with inhomogeneous Dirichlet boundary conditions can be found by adding the
function linear function w(x) to vh.

Remark 2.1. Here, we only consider the case of Dirichlet boundary conditions.
We note that the proposed approach can be easily extended to solve SBVPs sub-
ject to other boundary conditions such as the mixed Neumann-Dirichlet boundary
conditions of the form u′(a) = α, u(b) = β and the periodic boundary conditions
u(a) = u(b), u′(a) = u′(b). Details are omitted to save space.

The finite difference method applied to the deterministic BVP, u′′ = f(x, u, u′), x ∈
(a, b), u(a) = α, u(b) = β, provides high-order accuracy when using higher-order
approximations of the derivatives u′ and u′′ at the mesh points. However, the order
of accuracy depends on the regularity of the exact solution u. Thus, high-order
accuracy cannot be achieved if the exact solution has poor regularity. For instance,
when the finite difference method for deterministic BVP u′′ = f(x, u, u′) is based
on the three-point formulas to approximate u′(xi) and u′′(xi), the exact solution u
is required to belong to C4(a, b). Similarly for the stochastic BVP (1), convergence
proofs of the finite difference method require certain regularity conditions on the
stochastic process u. Unfortunately, the required conditions are not satisfied for
the SBVP (1) as the Wiener process W is nowhere differentiable almost surely.
Consequently, the stochastic process u′′(x) in (1) is nowhere differentiable as well.
It is well-known that if the exact solution to a given differential equation has poor
regularity, then the order of error estimates does not improve when applying high
order numerical methods. We refer the reader to [2, 18, 20, 19] for some discussions.

To overcome the above difficulty, we regularize the SBVP (1) by replacing the noise

Ẇ with its piecewise constant approximation. It turns out that the solution to
the new SBVP has better regularity which allows us to apply the standard error
estimates for the finite difference method.
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2.1. Approximation of the process W and its regularity. We follow the
approach presented in [6]. We divide the computational domain [a, b] into N subin-
tervals Ii = [xi−1, xi], i = 1, 2, . . . , N , where a = x0 < x1 < · · · < xN = b. Let
hi = xi − xi−1 be the length of Ii. Let h = max

1≤i≤N
hi and hmin = min

1≤i≤N
hi to be

the lengths of the largest and smallest subintervals, respectively. In our analysis,
we assume that the mesh is quasi-uniform in the sense that there exists a constant
K ≥ 1 (independent of the mesh size h) such that

(7) h ≤ Khmin.

Next, we approximate the Wiener process W (x), x ∈ Ii by the linear polynomial
Wi(x) that interpolates W (x) at the endpoints of Ii i.e.,

Wi(x) =W (xi−1) +
W (xi)−W (xi−1)

xi − xi−1
(x− xi−1)

=W (xi−1) +
∆Wi

hi
(x− xi−1), x ∈ Ii, i = 1, 2, . . . , N,

where ∆Wi = W (xi) − W (xi−1) and hi = xi − xi−1. Thus, an approximation of

W (x), x ∈ [a, b] is given by the linear spline interpolating function Ŵ

(8) Ŵ (x) =
N∑
i=1

Wi(x)χi(x), x ∈ [a, b],

where χi(x) is the indicator function i.e., χi(x) = 1 if x ∈ Ii and χi(x) = 0
otherwise.

We remark that the new approximate process Ŵ (x) is continuous over [a, b] and of
bounded variation. Furthermore, unlike the original processW (x), the approximate

process Ŵ (x) has piecewise constant derivatives given by

(9)
dŴ (x)

dx
=

N∑
i=1

∆Wi

hi
χi(x) =

N∑
i=1

ηi√
hi

χi(x), x ∈ [a, b],

where ηi =
∆Wi√

hi
∼ N (0, 1) is the standard Gaussian random variable with mean

zero and variance one.

Before we discuss the main properties of the approximate process Ŵ , we introduce
some notation. Let E [v] be the expected value of the random variable v defined on a
probability space (Ω,F , P ). It is defined by as the Lebesgue integral E [v] =

∫
Ω
vdP ,

provided that the integral exists.

Next, we introduce some norms. The L2-norm of a function u(x) over the intervals

Ii and I = [a, b] are, respectively, defined by ∥u∥0,Ii =
(∫

Ii
u2(x)dx

)1/2
and ∥u∥ =(

N∑
i=1

∥u∥20,Ii

)1/2

. The standard L∞-norm of u(x) on Ii and on I are, respectively,

defined by

∥u∥∞,Ii
= sup

x∈Ii

|u(x)|, ∥u∥∞ = max
1≤i≤N

∥u∥∞,Ii
.

LetHs(Ii), s = 1, 2, . . . be the standard Sobolev spaceHs(Ii) =
{
u :
∫
Ii
|u(k)(x)|2dx

< ∞, 0 ≤ k ≤ s} . The Hs(Ii)-norm is defined as ∥u∥s,Ii =
(∑s

k=0

∥∥u(k)
∥∥2
0,Ii

)1/2
.
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The norm on the whole computational domain I is defined as ∥u∥s = (
∑N

i=1 ∥u∥
2
s,Ii

)
1
2 .

We remark that if u ∈ Hs(I), then ∥u∥s is the standard Sobolev norm (
s∑

k=0

∥∥u(k)
∥∥2) 1

2 .

Throughout this paper, the notation C (with or without a subscript) will be used
to denote a generic deterministic positive constant which might not be the same
in each appearance. It might depend on the functions f and g, but it is always
independent of the mesh size h.

Next, we recall the regularity of the approximate process Ŵ (x). The following

lemma, from [6], provides some important properties of Ŵ (x). These results will
be used to derive an estimate of E [∥û∥s], where û is the exact solution of the new

approximate SBVP obtained by replacing W (x) with Ŵ (x).

Lemma 2.1. The approximate process Ŵ (x) satisfies the following properties: The

paths of dŴ
dx belong to L2[a, b] and

E

∥∥∥∥∥dŴdx
∥∥∥∥∥
2
 = N ≤ Ch−1.(10)

Furthermore, if the non-random function ϕ(x) satisfies a Lipschitz condition on
[a, b] with Lipschitz constant L > 0, i.e., |ϕ(x) − ϕ(y)| ≤ L|x − y|, ∀ x, y ∈ [a, b],
then

(11) E

(∫ b

a

ϕ(y)dW (y)−
∫ b

a

ϕ(y)dŴ (y)

)2
 ≤ (b− a)L2h2.

Proof. The proof of this lemma is given in [6], more precisely in its Lemma 2.1. �

2.2. New approximate SBVP. Replacing Ẇ (x) with dŴ (x)
dx , we obtain the fol-

lowing approximate SBVP

û′′ = f(x, û) + g(x)
dŴ (x)

dx
, û(a) = û(b) = 0,(12a)

where

(12b)
dŴ (x)

dx
=

N∑
i=1

ηi√
hi

χi(x), x ∈ [a, b].

We will show that the sequence of random variables û(x) converges in the mean-
square sense to the solution u(x) of the SBVP (1). In the following theorem we
state this convergence result along with its order of convergence.

Theorem 1. Let u and û be the exact solutions to (1) and (12), respectively.

Suppose that f and g satisfy the conditions (2)-(4). If Lf < 2
√
2

(b−a)2 , then there

exists a constant C independent of h such that

max
x∈[a,b]

E
[
|u(x)− û(x)|2

]
≤Ch2.(13)

max
x∈[a,b]

∣∣∣∣E [u(x)]− E [û(x)]

∣∣∣∣2 ≤Ch2.(14)
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In particular, we have the following convergence results at the mesh points

max
i=0,1,...,N

E
[
|u(xi)− û(xi)|2

]
≤ Ch2.(15)

max
i=0,1,...,N

∣∣∣∣E [u(xi)]− E [û(xi)]

∣∣∣∣2 ≤ Ch2.(16)

Proof. Let G(x, y) be the Green’s function associated with the BVP v′′ = ϕ(x)

subject to v(a) = v(b) = 0 so that v(x) =
∫ b

a
G(x, y)ϕ(y)dy. The function G(x, y)

is explicitly given by

G(x, y) =

{
G1(x, y) =

(x−b)(y−a)
b−a , a ≤ y ≤ x ≤ b,

G2(x, y) =
(x−a)(y−b)

b−a , a ≤ x ≤ y ≤ b.
(17)

Then the integral forms of (1) with α = β = 0 and (12) are given by

u(x) =

∫ b

a

G(x, y)f(y, u(y))dy +

∫ b

a

G(x, y)g(y)dW (y),(18)

û(x) =

∫ b

a

G(x, y)f(y, û(y))dy +

∫ b

a

G(x, y)g(y)dŴ (y).(19)

Subtracting (19) from (18) gives

u(x)− û(x) =

∫ b

a

G(x, y) (f(y, u(y))− f(y, û(y))) dy

+

∫ b

a

G(x, y)g(y)dW (y)−
∫ b

a

G(x, y)g(y)dŴ (y).(20)

We observe that

max
a≤x, y≤b

|G(x, y)| = b− a

4
.(21)

Consequently, we have

|u(x)− û(x)| ≤ b− a

4

∫ b

a

|f(y, u(y))− f(y, û(y))| dy + T (x),

where

T (x) =

∣∣∣∣∣
∫ b

a

G(x, y)g(y)dW (y)−
∫ b

a

G(x, y)g(y)dŴ (y)

∣∣∣∣∣ .
Squaring both sides, using the inequality (x + y)2 ≤ 2x2 + 2y2, and applying the
Cauchy-Schwarz inequality, we get

|u(x)− û(x)|2 ≤ (b− a)2

8

(∫ b

a

|f(y, u(y))− f(y, û(y))| dy

)2

+ 2T 2(x)

≤ (b− a)3

8

∫ b

a

|f(y, u(y))− f(y, û(y))|2 dy + 2T 2(x).

Now, using the Lipschitz condition (4), we get

|u(x)− û(x)|2 ≤
(b− a)3L2

f

8

∫ b

a

|u(y)− û(y)|2 dy + 2T 2(x).
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Taking the expectation of both sides, we obtain

E
[
|u(x)− û(x)|2

]
≤
(b− a)3L2

f

8

∫ b

a

E
[
|u(y)− û(y)|2

]
dy + E

[
T 2(x)

]
≤
(b− a)4L2

f

8
max
x∈[a,b]

E
[
|u(x)− û(x)|2

]
+ 2 max

x∈[a,b]
E
[
T 2(x)

]
.

Taking the maximum of both sides yields

max
x∈[a,b]

E
[
|u(x)− û(x)|2

]
≤

(b− a)4L2
f

8
max
x∈[a,b]

E
[
|u(x)− û(x)|2

]
+ 2 max

x∈[a,b]
E
[
T 2(x)

]
.

Therefore, for
(b−a)4L2

f

8 < 1, we have

max
x∈[a,b]

E
[
|u(x)− û(x)|2

]
≤ 2

1− (b−a)4L2
f

8

max
x∈[a,b]

E
[
T 2(x)

]
.(22)

Next, we will estimate max
x∈[a,b]

E
[
T 2(x)

]
. We note that

E
[
T 2(x)

]
= E

(∫ b

a

G(x, y)g(y)dW (y)−
∫ b

a

G(x, y)g(y)dŴ (y)

)2
 .(23)

We remark that both components of the Green’s function G1(x, y) and G2(x, y)
are Lipschitz continuous with respect to the variable y with Lipschitz constants

max
y∈[a,x]

∣∣∣∣∂G1(x,y)
∂y

∣∣∣∣ = max
y∈[a,x]

∣∣∣∣x−b
b−a

∣∣∣∣ = 1 and max
y∈[x,b]

∣∣∣∣∂G2(x,y)
∂y

∣∣∣∣ = max
y∈[x,b]

∣∣∣∣x−a
b−a

∣∣∣∣ = 1, respec-

tively. Hence, for all y, z ∈ [a, b], we have∣∣G(x, y)−G(x, z)
∣∣ ≤ 2

∣∣y − z
∣∣.

Furthermore, since the functions g(y) and G(x, y) are bounded and Lipschitz func-
tions, then for all y, z ∈ [a, b], we have

|G(x, y)g(y)−G(x, z)g(z)|
= |G(x, y)g(y)−G(x, z)g(y) +G(x, z)g(y)−G(x, z)g(z)|
≤ |g(y)| |G(x, y)g(y)−G(x, z)|+ |G(x, z)| |g(y)− g(z)|
≤ max

y∈[a,b]
|g(y)| |G(x, y)−G(x, z)|+ max

y,z∈[a,b]
|G(x, z)| |g(y)− g(z)|

≤2Mg |y − z|+ b− a

4
Lg |y − z| = L̂ |y − z| ,

where Mg = max
y∈[a,b]

|g(y)|, Lg is a Lipschitz constant for g on [a, b], and L̂ =

2Mg + b−a
4 Lg. Thus, G(x, y)g(y) is also a Lipschitz function with respect to y

with Lipschitz constant L̂. Applying (11) with ϕ(y) = G(x, y)g(y), (23) yields, for
all x ∈ [a, b],

E
[
T 2(x)

]
≤ (b− a)L̂2h2.

Taking the maximum on both sides, we get

max
x∈[a,b]

E
[
T 2(x)

]
≤ (b− a)L̂2h2.(24)

Now, combining (22) and (24), we obtain, for all ϵ > 0,

max
x∈[a,b]

E
[
|u(x)− û(x)|2

]
≤ 2

1− (b−a)4L2
f

8

(b− a)L̂2h2 = Ch2,(25)
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which establishes (13) with C = 2

1−
(b−a)4L2

f
8

(b − a)L̂2. We note that (14) follows

from (15) and Jensen’s Inequality ϕ(E[X]) ≤ E[ϕ(X)] with ϕ(X) = X2 and X =
u(x)− û(x). Since maxx∈[a,b] |v(x)| ≤ maxi=0,1,...,N |v(xi)|, we deduce the estimates
(15) (16). �

2.3. Regularity of the solution û. We show that the solution û(x) to the ap-
proximate SBVP (12) has better regularity than the solution u of the original prob-
lem. In the next theorem, we state and prove the following important regularity
results of the approximate solution û.

Theorem 2. Suppose that û is the solution to (12). Assume that f and g satisfy
the conditions (2)-(4). We further assume that g ∈ C2[a, b] and f ∈ C2([a, b]×R).
Then û ∈ H4[a, b]. Furthermore, there exists a deterministic constant C indepen-
dent of mesh size such that

E
[∥∥∥û(s)

∥∥∥2] ≤ Ch−1, s = 0, 1, 2.(26)

Finally, we have the following pointwise estimates

E
[∣∣û(s)(x)

∣∣2] ≤ Ch−1, s = 0, 1, 2, 3, 4, x ∈ Ii, i = 1, 2, . . . , N.(27a)

E
[∣∣û′(x)

∣∣4] ≤ Ch−1, x ∈ Ii, i = 1, 2, . . . , N.(27b)

Proof. If f ∈ C2([a, b] × R) and g ∈ C2[a, b] then the right-hand side, f(x, û) +

g(x)dŴ (x)
dx , of (12a) is in H2[a, b] since dŴ (x)

dx is piecewise constant on [a, b]. Thus,

û ∈ H4[a, b].

Next, we will prove (26). Multiplying (12a) by û and integrating over [a, b], we get∫ b

a

û′′ûdx =

∫ b

a

ûf(x, û)dx+

∫ b

a

g(x)û
dŴ (x)

dx
dx.

Integrating by parts and using û(a) = û(b) = 0 yields

∥û′∥2 = −
∫ b

a

ûf(x, û)dx−
∫ b

a

g(x)û
dŴ (x)

dx
dx.

If f ∈ C2([a, b] × R) then the function ϕ(x) = f(x, û(x)) is continuous on [a, b].
Consequently, it is bounded over [a, b]. Hence, we have

∥û′∥2 ≤
∫ b

a

|û| |f(x, û)| dx+

∫ b

a

|g(x)| |û|

∣∣∣∣∣dŴ (x)

dx

∣∣∣∣∣ dx
≤Mf

∫ b

a

|û| dx+Mg

∫ b

a

|û|

∣∣∣∣∣dŴ (x)

dx

∣∣∣∣∣ dx,
where Mf = max

x∈[a,b]
|f(x, u(x))| and Mg = max

x∈[a,b]
|g(x)|.

Applying the Cauchy-Schwartz inequality, we get

∥û′∥2 ≤ Mf

√
b− a ∥û∥+Mg ∥û∥

∥∥∥∥∥dŴ (x)

dx

∥∥∥∥∥ .(28)
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On the other hand, since û(a) = 0, the Fundamental Theorem of Calculus gives∣∣û(x)∣∣ =∣∣∣∣û(a) + ∫ x

a

û′(s)ds

∣∣∣∣ = ∣∣∣∣ ∫ x

a

û′(s)ds

∣∣∣∣
≤
∫ x

a

∣∣û′(s)
∣∣ds ≤ ∫ b

a

∣∣û′(s)
∣∣ds, ∀ x ∈ [a, b].

Squaring both sides and using the Cauchy-Schwartz inequality, we get∣∣û(x)∣∣2 ≤ (b− a)

∫ b

a

∣∣û′(s)
∣∣2ds = (b− a) ∥û′∥2 .

Integrating over the interval [a, b], we obtain

∥û∥ ≤ (b− a) ∥û′∥ .(29)

Combining (28) and (29), we arrive at

∥û′∥2 ≤ Mf (b− a)3/2 ∥û′∥+Mg(b− a) ∥û′∥

∥∥∥∥∥dŴdx
∥∥∥∥∥ ,

which gives

∥û′∥ ≤ Mf (b− a)3/2 +Mg(b− a)

∥∥∥∥∥dŴdx
∥∥∥∥∥ .

Applying the inequality (A+B)2 ≤ 2A2 + 2B2, we get

∥û′∥2 ≤ 2M2
f (b− a)3 + 2M2

g (b− a)2

∥∥∥∥∥dŴdx
∥∥∥∥∥
2

.(30)

Taking the expectation of both sides and using (10), we obtain

E
[
∥û′∥2

]
≤ C1 + C2h

−1 ≤ Ch−1.(31)

Next, we estimate E
[
∥û∥2

]
. From (29), we have

∥û∥2 ≤ (b− a)2 ∥û′∥2 .(32)

Taking the expectation and applying (31), we obtain

E
[
∥û∥2

]
≤ (b− a)2E

[
∥û′∥2

]
≤ (b− a)2C1h

−1 ≤ Ch−1.(33)

Now we are ready to prove (26) for s = 2. Multiplying (12a) by û′′ and integrating
over [a, b] yields

∥û′′∥2 =

∫ b

a

û′′f(x, û)dx+

∫ b

a

g(x)û′′ dŴ (x)

dx
dx

≤Mf

∫ b

a

|û′′| dx+Mg

∫ b

a

|û′′|

∣∣∣∣∣dŴ (x)

dx

∣∣∣∣∣ dx.
A simple application of the Cauchy-Schwarz inequality gives

∥û′′∥2 ≤ Mf

√
b− a ∥û′′∥+Mg ∥û′′∥

∥∥∥∥∥dŴdx
∥∥∥∥∥ .

Consequently, we have

∥û′′∥ ≤ Mf

√
b− a+Mg

∥∥∥∥∥dŴdx
∥∥∥∥∥ ≤ C1 + C2

∥∥∥∥∥dŴdx
∥∥∥∥∥ .(34)
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Squaring both sides, applying the inequality (A + B)2 ≤ 2A2 + 2B2, taking the
expectation of both sides, and invoking the estimates (10), we obtain

E
[
∥û′′∥2

]
≤ C3 + C4h

−1 ≤ Ch−1,

which completes the proof of (26).

Finally, we will prove the estimate (27). Since û(a) = 0, we have by the Funda-
mental Theorem of Calculus, ∀ x ∈ [a, b],

∣∣û(x)∣∣ = ∣∣∣∣û(a) + ∫ x

a

û′(s)ds

∣∣∣∣ = ∣∣∣∣ ∫ x

a

û′(s)ds

∣∣∣∣ ≤ ∫ x

a

∣∣û′(s)
∣∣ds ≤∫ b

a

∣∣û′(s)
∣∣ds

≤(b− a)1/2 ∥û′∥ .(35)

Squaring both sides, taking the expectation, and applying the estimate (26) with
s = 1, we get

E
[
|û(x)|2

]
≤ (b− a)E

[
∥û′∥2

]
≤ (b− a)C1h

−1 = Ch−1,

which completes the proof of (27a) for s = 0.

Next, we prove (27a) for s = 1. Since û(a) = û(b) = 0, Rolle’s Theorem states that
there exists ξ ∈ (a, b) such that û′(ξ) = 0. Applying the Fundamental Theorem of
Calculus, we write

∣∣û′(x)
∣∣ =∣∣∣∣û′(ξ) +

∫ x

ξ

û′′(s)ds

∣∣∣∣ = ∣∣∣∣ ∫ x

ξ

û′′(s)ds

∣∣∣∣
≤
∫ b

a

∣∣û′′(s)
∣∣ds ≤ (b− a)1/2 ∥û′′∥ , ∀ x ∈ [a, b].

Taking the expectation and applying the estimate (26) with s = 2, we obtain

E
[
|û′(x)|2

]
≤ (b− a)E

[
∥û′′∥2

]
≤ (b− a)C2h

−1 = Ch−1,

which completes the proof of (27a) for s = 1.

The proof of the estimate (27b) is similar to the proof of (27a) with s = 1. Indeed,
from (35), we have

E
[
|û′(x)|4

]
≤ (b− a)2E

[
∥û′′∥4

]
.(36)

Next, we will estimate E
[
∥û′′∥4

]
. From (34), we have

E
[
∥û′′∥4

]
≤ C3 + C4E

∥∥∥∥∥dŴdx
∥∥∥∥∥
4
 .(37)
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Using E[|∆Wi|4] = 3h2
i , we have

E

∥∥∥∥∥dŴdx
∥∥∥∥∥
4
 =E

 N∑
i=1

(∫
Ii

(∆Wi)
2

h2
i

dx

)2


=E

[
N∑
i=1

(∆Wi)
4

h2
i

]
=

N∑
i=1

E
[
(∆Wi)

4
]

h2
i

=

N∑
i=1

3h2
i

h2
i

= 3N ≤ Ch−1,

since, from (7), N ≤ b−a
hmin

≤ (b−a)K
h = Ch−1, where C = (b − a)K is a constant

independent of h.

Combining this estimate and (37) we establish (27b).

Next, we prove (27a) for s = 2. Equation (12a) gives û′′(x) = f(x, û(x)) +

g(x)dŴ (x)
dx . Consequently, we have

|û′′(x)| ≤ Mf +Mg
|∆Wi|
hi

≤ C1

(
1 +

|∆Wi|
hi

)
, x ∈ Ii, i = 1, 2, . . . , N.

Squaring both sides and using the inequality (A+B)2 ≤ 2A2 + 2B2 yields

|û′′(x)|2 ≤ C2

(
1 +

(∆Wi)
2

h2
i

)
, x ∈ Ii, i = 1, 2, . . . , N.

Taking the expectation of both sides and using E[(∆Wi)
2] = hi, we get

E
[
|û′′(x)|2

]
≤ C

(
1 +

hi

h2
i

)
≤ Ch−1, x ∈ Ii, i = 1, 2, . . . , N.

Next, we will prove (27a) for s = 3. Differentiating (12a) with respect to x, we get

û′′′ = fx(x, û) + û′fu(x, û) + g′(x)
∆Wi

hi
, x ∈ Ii, i = 1, 2, . . . , N,(38)

since ∆Wi

hi
is piecewise constant. Since g ∈ C2[a, b] and f ∈ C2([a, b]×R), we have

|û′′′| ≤ C1 + C2 |û′|+ C3
|∆Wi|
hi

.

Squaring both sides and using the inequality
(∑n

j=1 ci

)2
≤ n

∑n
j=1 c

2
i with n = 3,

we get

|û′′′|2 ≤ 3C2
1 + 3C2

2 |û′|2 + 3C2
3

|∆Wi|2

h2
i

, x ∈ Ii, i = 1, 2, . . . , N.

Taking the expectation of both sides, using (27a) with s = 1, and applyingE[(∆Wi)
2] =

hi, we obtain

E
[
|û′′′|2

]
≤ 3C2

1 + 3C2
2E
[
|û′|2

]
+ 3C2

3

E
[
|∆Wi|2

]
h2
i

≤ Ch−1, x ∈ Ii, i = 1, 2, . . . , N.
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Finally, we will prove (27a) for s = 4. Differentiating (38) with respect to x, we get

û(4) =fxx(x, û) + 2û′fxu(x, û) + û′′fu(x, û)

+ (û′)2fuu(x, û) + g′′(x)
∆Wi

hi
, x ∈ Ii, i = 1, 2, . . . , N.

Since g ∈ C2[a, b] and f ∈ C2([a, b]× R), we have∣∣∣û(4)
∣∣∣ ≤ C4 + C5 |û′|+ C6 |û′′|+ C7|û′|2 + C8

|∆Wi|
hi

.

Squaring both sides and using the inequality
(∑n

j=1 ci

)2
≤ n

∑n
j=1 c

2
i with n = 5

gives ∣∣∣û(4)
∣∣∣2 ≤5C2

4 + 5C2
5 |û′|2 + 5C2

6 |û′′|2

+ 5C2
7 |û′|4 + 5C2

8

|∆Wi|2

h2
i

, x ∈ Ii, i = 1, 2, . . . , N.

Taking the expectation of both sides, using (27a) with s = 1, 2, (27b), and applying
E[(∆Wi)

2] = hi, we obtain, for all x ∈ Ii, i = 1, 2, . . . , N ,

E
[∣∣∣û(4)

∣∣∣2] ≤5C2
4 + 5C2

5E
[
|û′|2

]
+ 5C2

6E
[
|û′′|2

]
+ 5C2

7E
[
|û′|4

]
+ 5C2

8

E
[
|∆Wi|2

]
h2
i

≤ Ch−1,

which completes the proof of the theorem. �

Remark 2.2. We remark that the exact solution u of the original SBVP (1) has
poor regularity since W is nowhere differentiable. However, the solution û(x) of
the approximate SBVP (12) has better regularity (û ∈ H4(a, b)). Thus, standard
numerical methods such as the finite difference method can be applied to approximate
its approximate solution. Furthermore, the standard analysis techniques in the finite
difference method can be applied.

2.4. The proposed stochastic finite difference (SFD) scheme. We remark
that (12) becomes a two-point BVP with random inhomogeneous term. Hence, we
can apply the standard finite difference method for deterministic two-point BVPs
[10, 21]. The stochastic finite difference method described below is analogous to
the standard finite difference method for numerical solution of deterministic BVPs.

As before, we divide the interval [a, b] into N intervals [xi−1, xi], i = 1, 2, . . . , N .
The points need not to be equally spaced. For simplicity, we assume the points are
uniformly distributed

xi = a+ hi, i = 0, 1, . . . , N, h =
b− a

N
.

We use the central difference formula to approximate û′′(xi)

û′′(xi) =
û(xi + h)− 2û(xi) + û(xi − h)

h2
− h2

12
û(4)(ξi), ξi ∈ (xi − h, xi + h).

(39)
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Substituting the centered-difference formulas (39) into (12), we get, for i = 1, 2, . . . ,
N − 1,

û(xi + h)− 2û(xi) + û(xi − h)

h2
− h2

12
û(4)(ξi) = f (xi, û(xi)) + g(xi)

ηi√
h
.(40)

Neglecting the term involving ξi and using ui to denote the approximate value of
û(xi), we obtain the following discrete finite-difference method

u0 = 0,
ui+1 − 2ui + ui−1

h2
= f (xi, ui) + g(xi)

ηi√
h
, i = 1, 2, . . . , N − 1,(41)

uN = 0.

Multiplying throughout by h2 and letting gi = g(xi), the nonlinear system (41)
becomes

u0 = 0,

ui+1 − 2ui − h2f (xi, ui) + ui−1 − h3/2giηi = 0, i = 1, 2, . . . , N − 1.(42)

uN = 0.

The nonlinear system (42) can be written as

F(u) = 0,(43a)

where u = [u1, u2, . . . , uN−1]
t, F = [f1, f2, . . . , fN−1]

t with

f1 = u2 − 2u1 − h2f (x1, u1)− h3/2g1η1,

f2 = u3 − 2u2 − h2f (x2, u2) + u1 − h3/2g2η2,

...(43b)

fN−2 = uN−1 − 2uN−2 − h2f (xN−2, uN−2) + uN−3 − h3/2gN−2ηN−2,

fN−1 = −2uN−1 − h2f (xN−1, uN−1) + uN−2 − h3/2gN−1ηN−1.

Theorem 3. Suppose that the assumption (3) is satisfied. Then the system (43)
has a unique solution.

Proof. The proof is elementary and can be found in [24]. �

2.5. Implementation. The nonlinear system (43) can be solved using Newton’s
method for nonlinear systems to approximate the solution to this system

u(k+1) = u(k) − J−1(u(k))F(u(k)), k = 0, 1, ...

A sequence of iterates
{
u(k) = [u

(k)
1 , u

(k)
2 , . . . , u

(k)
N−1]

t
}

is generated that converges

to the solution of system (43), provided that the initial approximation u(0) is suf-
ficiently close to the solution u and that the Jacobian matrix for the system is
nonsingular. For system (43), the Jacobian matrix J(u) is tridiagonal with ij-th
entry

Ji,j(u) =

 1, i = j − 1, j = 2, 3, · · · , N − 1,
−2− h2fu (xi, ui) , i = j, j = 1, 2, · · · , N − 1,
1, i = j + 1, j = 2, 3, · · · , N − 2.

(44)

Newton’s method for nonlinear systems requires that at each iteration, the (N −
1)× (N − 1) linear system

J(u(k))y(k) = F(u(k)),
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be solved for y(k) since

u(k+1) = u(k) − y(k), k = 0, 1, · · ·
Because J(u) is tridiagonal, the tridiagonal linear system can be solved efficiently
using Crout factorization for tridiagonal linear systems. Note that ∆Wi can be
simulated using

√
hiηi, where ηi ∼ N (0, 1) is normally distributed with mean zero

and variance one.

Remark 2.3. Other boundary conditions can also be handled. For instance, if the
mixed Dirichlet-Neumann boundary conditions of the form û(a) = α, û′(b) = β are
used then the resulting system is

u0 = α,

ui+1 − 2ui − h2f (xi, ui) + ui−1 − h3/2giηi = 0, i = 1, 2, . . . , N,(45)
uN+1 − uN−1

2h
= β.

3. Convergence analysis

In this section, we prove that the finite difference solution ui, i = 1, 2, . . . , N
converges to the exact solution u(xi) of the original problem (1). First, we prove
that the SFD solution provide accurate approximations to the solution û of (12).
Then we deduce that the SFD solution converges to the exact solution u of (1).

Remark 3.1. The proofs in this paper require that the function f is smooth and
fu is bounded and positive on the set D. These assumptions are usually the hy-
potheses of the existence and uniqueness theorem for the deterministic BVP u′′ =
f(x, u), x ∈ (a, b), u(a) = α, u(b) = β.

Unlike the deterministic case, the required regularity conditions are not satisfied
for (1) to carry out the standard error estimates of the proposed finite difference
scheme. However, the Wiener process W is approximated by piecewise linear ran-
dom processes Ŵ to facilitate the convergence proof for the SFD method. In other
words, the approximation of the Wiener process is used to improve the regularity of
the solution to the approximated SBVP (12), so that standard analysis techniques
in the finite difference method can be applied. More precisely, Theorem 2 indicates
that the solution û(x) of the approximated SBVP (12) has certain regularity which
allows us to obtain an error estimate.

It follows from Theorem 2 that the SBVP (12) possesses a unique solution û(x) ∈
H4(a, b). Consequently, we can apply the estimate (27). In the next theorem, we

prove that E
[∣∣û(xi)− ui

∣∣2] = O(h3). Thus, the SFD solution ui converges to û as

h → 0 in the mean-square sense with order of convergence 3/2.

Theorem 4. Let û be the exact solution of (12). Suppose that the assumptions
of Theorem 2 are satisfied. Let ui be the SFD solution defined in (42), then there
exists a positive constant C independent of h such that

max
i=0,1,...,N

E
[∣∣û(xi)− ui

∣∣2] ≤ Ch3.(46)

max
i=0,1,...,N

∣∣∣∣E [û(xi)]− E [ui]

∣∣∣∣2 ≤ Ch3.(47)

Proof. Subtracting (41) from (40) and letting ei = û(xi)− ui, we obtain

ei+1 − 2ei + ei−1

h2
= f (xi, û(xi))− f (xi, ui) + h2γi, where γi =

1

12
û(4)(ξi).
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Using the the Mean Value Theorem, we get

(48)
ei+1 − 2ei + ei−1

h2
= eifu (xi, v̂i) + h2γi,

where v̂i lies between û(xi) and ui.

Collecting terms, (48) can be written as

(49)
(
2 + h2fu (xi, v̂i)

)
ei = ei−1 + ei+1 − h4γi.

Let e = max(|e1|, . . . , |eN−1|) and pick the index i such that |ei| = e. Then from
(49), we get ∣∣2 + h2fu (xi, v̂i)

∣∣ |ei| ≤ |ei−1|+ |ei+1|+ h4|γi|.

Since 0 < K1 ≤ fu(x, u), we have(
2 +K1h

2)
∣∣ |ei| ≤ |ei−1|+ |ei+1|+ h4|γi|.

Since |ei| = e, we immediately have
(
2 +K1h

2
)
e ≤ e + e + h4|γi|, which gives

K1h
2e ≤ h4|γi|. Consequently, we get

(50) e ≤ |γi|
K1

h2.

Squaring both sides, taking the expectation, and applying the estimate (27a), we
obtain

E
[
e2
]
≤

E
[
|γi|2

]
K2

1

h4 =
E
[∣∣û(4)(ξi)

∣∣2]
144K2

1

h4 ≤ C1

144K2
1

h3.

Thus, for all i = 0, 1, . . . , N , we have

E
[∣∣û(xi)− ui

∣∣2] ≤ Ch3.

Taking the maximum yields (46). Applying Jensen’s Inequality ϕ(E[X]) ≤ E[ϕ(X)]
with ϕ(X) = X2 and X = û(xi)− ui and invoking (46) yields (47). �

Since ui converges to û(xi) and û(xi) converges to u(xi) in the mean-square
sense, the SFD solution ui converges to the exact solution u(xi) of the original
BVP (1) in the mean-square sense. We state this result in the following corollary.

Corollary 3.1. Suppose that the assumptions of Theorem 4 are satisfied. Let u
be the exact solution of (1). Let ui be the SFD solution defined in (42), then there
exists a positive constant C independent of h such that

max
i=0,1,...,N

E
[
|u(xi)− ui|2

]
≤ Ch2.(51)

max
i=0,1,...,N

∣∣∣∣E [u(xi)]− E [ui]

∣∣∣∣2 ≤ Ch2.(52)

Proof. Using the inequality (a+ b)2 ≤ 2(a2 + b2), we have∣∣u(xi)− ui

∣∣2 =
∣∣(u(xi)− û(xi)) + (û(xi)− ui)

∣∣2
≤2
∣∣u(xi)− û(xi)

∣∣2 + 2
∣∣û(xi)− ui

∣∣2.



384 M. BACCOUCH

Taking the expectation of both sides and using the estimates (15) and (46), we get,
for all i = 0, 1, . . . , N ,

max
i=0,1,...,N

E
[
|u(xi)− ui|2

]
≤2 max

i=0,1,...,N
E
[
|u(xi)− û(xi)|2

]
+ 2 max

i=0,1,...,N
E
[
|û(xi)− ui|2

]
≤2C1h

2 + 2C2h
3 ≤ Ch2,

which completes the proof of (51). Similarly, we have∣∣∣∣E [u(xi)]− E [ui]

∣∣∣∣2 =

∣∣∣∣E [u(xi)]− E [û(xi)] + E [û(xi)]− E [ui]

∣∣∣∣2
≤2

∣∣∣∣E [u(xi)]− E [û(xi)]

∣∣∣∣2 + 2

∣∣∣∣E [û(xi)]− E [ui]

∣∣∣∣2.
Taking the maximum of both sides and using the estimates (16) and (47) we estab-
lish (52). �

4. Numerical experiments

In this section, we present several numerical examples to validate the conver-
gence of the proposed SFD method for solving stochastic two-point boundary-value
problems. For simplicity, we consider uniform meshes obtained by subdividing the
computational domain [a, b] into N subintervals, where N = 2n, n = 2, 3, . . . , 10.
For each step size h = b−a

N , we perform M runs with different sample paths of the
Brownian motion W . In our experiments, we observed similar convergence results
when using M = 1, 000, M = 10, 000, M = 100, 000 and M = 1, 000, 000. To save
space, we only include results using M = 10, 000. In our numerical experiments, we
used a random number generator to produce independent pseudo-random numbers
from the distribution N (0, 1). We performed several runs of code with different ran-
dom seeds so that we have results from many sample paths of the W from which
to collect the desired results. All expected values are approximated by computing
averages over M = 10, 000 trials.
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Figure 1: The mean solution E[u(xi)] and 100 sample paths obtained using the
SFD method for Example 4.1 using N = 8 (left) and N = 16 (right).

Example 4.1. Consider the second-order nonlinear Bratu problem

u′′ = 2eu + Ẇ (x), x ∈ (0, 1), u(0) = 0, u(1) = −2 ln(cos(1)).(53)
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The exact expected solution is E [u(x)] = −2 ln(cos(x)). We apply the proposed
SFD method (42) to solve (53) on a uniform mesh having N = 2n, n = 2, 3, . . . , 10
elements. In Figure 1 we present the exact mean solution E [u(x)] and 100 sample
paths using N = 8, 16. The exact mean value E [u(x)] and the mean of 10,000
sample paths using N = 8 and N = 16 are shown in Figure 2. In Figure 3, we
present the errors E [u(xi)]−E [ui], where E [ui] is the average of 10,000 simulations.

In Table 1, we present the maximum errors max
i=0,1,...,N

∣∣E [u(xi)]− E [ui]
∣∣2 and their

orders of convergence. These results suggest O(h2) convergence rate in the mean-
square sense. This is in full agreement with the theoretical result.
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Figure 2: Mean solution and the mean of 10,000 sample paths for Example 4.1
using N = 8 (left) and N = 16 (right).
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Figure 3: The error E[u(xi)]−E[ui] for Example 4.1 using N = 8 (left) and N = 16
(right). E[ui] is obtaining by averaging the solution of 10,000 simulations.

Example 4.2. Consider the stochastic two-point BVP
u′′ = − sin(u′)−

√
1 + u2 − 4 sin(2x) + sin(2 cos(2x))

+
√
1 + sin2(2x) + Ẇ (x),

u(0) = u(π) = 0.

(54)

It is easy to verify that the exact mean solution is given by

E [u(x)] = sin(2x), x ∈ [0, π].
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Table 1. The errors max
i=0,...,N

∣∣E [u(xi)]− E [ui]
∣∣2 and their orders

of convergence for Example 4.1 on uniform meshes having N =
2n, n = 2, . . . , 10 elements using M = 10, 000 simulations.

N max
i=0,...,N

∣∣E [u(xi)]− E [ui]
∣∣2 order

4 1.0988e-03 NA
8 2.6744e-04 2.0386
16 6.5413e-05 2.0316
32 1.6277e-05 2.0067
64 4.0663e-06 2.0011
128 1.0178e-06 1.9983
256 2.5452e-07 1.9996
512 6.3639e-08 1.9998
1024 1.5911e-08 1.9999

We solve (54) using the proposed SFD method (42) on a uniform mesh having
N = 2n, n = 2, 3, . . . , 10 elements. In Figure 4 we present the exact mean solution
E [u(x)] and 100 sample paths using N = 8 and N = 16. The exact mean value
E [u(x)] and the mean of 10,000 sample paths using N = 8 and N = 16 are shown
in Figure 5. In Figure 6, we use 10,000 simulations to show the errors E [u(xi)] −
E [ui] using N = 8 and N = 16. In Table 2, we present the maximum errors

max
i=0,1,...,N

∣∣E [u(xi)] − E [ui]
∣∣2 as well as their orders of convergence. Again, these

results suggest O(h2) convergence rate in the mean-square sense as the theory
predicts. This is in full agreement with the theoretical result. We conclude that
our proposed SFD scheme is convergent with order one in the mean-square sense.
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Figure 4: The mean solution E[x] and 100 sample paths obtained using the SFD
method for Example 4.2 using N = 8 (left) and N = 16 (right).

5. Concluding remarks

In this paper, we presented a stochastic finite difference (SFD) method for nu-
merically solving nonlinear stochastic boundary-value problems (SBVPs) driven by
additive white noises. We first constructed an approximate SBVP by replacing the
white noise process with its piecewise constant approximation. The solution to the
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Figure 5: Mean solution and the mean of 10,000 sample paths for Example 4.2
using N = 8 (left) and N = 16 (right).
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Figure 6: The error E[u] − E[ui] for Example 4.2 using N = 8 (left) and N = 16
(right). E[ui] is obtaining by averaging the solution of 10,000 simulations.

Table 2. The errors max
i=0,...,N

∣∣E [u(xi)]− E [ui]
∣∣2 and their orders

of convergence for Example 4.2 on uniform meshes having N =
2n, n = 2, . . . , 10 elements using M = 10, 000 simulations.

N max
i=0,...,N

∣∣E [u(xi)]− E [ui]
∣∣2 order

4 5.3574e+00 NA
8 3.1915e-01 4.0692
16 6.8026e-02 2.2301
32 1.5299e-02 2.1527
64 3.7495e-03 2.0286
128 9.1528e-04 2.0344
256 2.2722e-04 2.0101
512 5.6379e-05 2.0109
1024 1.4062e-05 2.0034

new approximate SBVP is shown to converge to the solution of the original problem
at O(h) in the mean-square sense. Furthermore, we proved that the solution to the
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approximate SBVP has better regularity conditions. The regularity conditions al-
lowed us to apply the standard analysis techniques in the finite difference method.
We proved pointwise convergence at all nodes. The order of convergence is proved
to be O(h) in the mean-square sense, when the second-order accurate three-point
formula to approximate the second derivative is used. Our numerical examples
suggested that the proposed SFD scheme has optimal convergence order. We are
currently investigating SFD methods for stochastic partial differential equations.

Acknowledgments

This research was partially supported by the NASA Nebraska Space Grant Pro-
gram and UCRCA at the University of Nebraska at Omaha.

References

[1] A. Alabert, I. Gyongy, On Numerical Approximation of Stochastic Burgers’ Equation,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[2] E. J. Allen, S. J. Novosel, Z. Zhang, Finite element and difference approximation of some

linear stochastic partial differential equations, Stochastics: An International Journal of Prob-
ability and Stochastic Processes 64 (1-2) (1998) 117–142.

[3] E. J. Allen, C. J. Nunn, Difference methods for numerical solution of stochastic two-point
boundary-value problems, in: S. N. Elaydi, J. R. Graef, G. Ladas, A. C. Peterson (eds.),

Proceedings of the First International Conference on Difference Equations, Trinity University,
San Antonio, Texas, May 25-28, 1994, Gordon and Breach Publishers, Amsterdam, 1995.

[4] A. Arciniega, Shooting methods for numerical solution of nonlinear stochastic boundary-value
problems, Stochastic Analysis and Applications 25 (1) (2007) 187–200.

[5] A. Arciniega, E. Allen, Shooting methods for numerical solution of stochastic boundary-value
problems, Stochastic Analysis and Applications 22 (5) (2004) 1295–1314.

[6] M. Baccouch, A stochastic local discontinuous Galerkin method for stochastic two-point
boundary-value problems driven by additive noises, Applied Numerical Mathematics 128

(2018) 43–64.
[7] M. Baccouch, B. Johnson, A high-order discontinuous Galerkin method for Itô stochastic or-
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