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ANALYSIS OF ARTIFICIAL DISSIPATION OF EXPLICIT AND

IMPLICIT TIME-INTEGRATION METHODS

PHILIPP ÖFFNER, JAN GLAUBITZ, AND HENDRIK RANOCHA

Abstract. Stability is an important aspect of numerical methods for hyperbolic conservation laws

and has received much interest. However, continuity in time is often assumed and only semidiscrete
stability is studied. Thus, it is interesting to investigate the influence of explicit and implicit time

integration methods on the stability of numerical schemes. If an explicit time integration method is

applied, spacially stable numerical schemes for hyperbolic conservation laws can result in unstable fully
discrete schemes. Focusing on the explicit Euler method (and convex combinations thereof), undesired

terms in the energy balance trigger this phenomenon and introduce an erroneous growth of the energy

over time. In this work, we study the influence of artificial dissipation and modal filtering in the
context of discontinuous spectral element methods to remedy these issues. In particular, lower bounds

on the strength of both artificial dissipation and modal filtering operators are given and an adaptive

procedure to conserve the (discrete) L2 norm of the numerical solution in time is derived. This might
be beneficial in regions where the solution is smooth and for long time simulations. Moreover, this

approach is used to study the connections between explicit and implicit time integration methods and

the associated energy production. By adjusting the adaptive procedure, we demonstrate that filtering
in explicit time integration methods is able to mimic the dissipative behavior inherent in implicit time

integration methods. This contribution leads to a better understanding of existing algorithms and
numerical techniques, in particular the application of artificial dissipation as well as modal filtering in

the context of numerical methods for hyperbolic conservation laws together with the selection of explicit

or implicit time integration methods.

Key words. Hyperbolic conservation laws, flux reconstruction, summation-by-parts, artificial viscosity,

full discrete stability, time integration methods.

1. Introduction

Stability is one of the main desirable properties for a numerical scheme to solve hyper-
bolic conservation laws. This is due to the fact that at least for linear symmetric systems,
an energy estimate (and the correct number of boundary conditions for initial boundary
value problems) comes along with uniqueness and existence of a solution [21]. In the last
years, several approaches have been proposed to construct entropy stable/conservative
schemes like in [2,3,8,9,11,13,36,40,46,52,54,56] and references therein. Recently, Ab-
grall [2] presented a way to build entropy stable/conservative schemes using the Residual
Distribution (RD) framework. In [4], this idea is extended to Flux Reconstruction (FR)
methods. This idea is fairly general and has been extended and re-interpreted in the
discontinuous Galerkin (DG) context in [5]. However, besides the spacial discretization,
the selection of the time integration method is essential for stability of these methods.

First of all, one has to choose between explicit or implicit methods to march forward
in time. Implicit methods have favorable stability properties and, in particular, allow
larger time steps. For instance, by using implicit time integration methods build on
Summation-By-Parts (SBP) operators in time1 [34], the semidiscrete stability results
transfer directly to the fully discrete case [12,32,33]. It should be stressed, however, that
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1These schemes can be interpreted as implicit Runge-Kutta (RK) methods [6, 43].
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implicit methods yield to (typically non-)linear systems to be solved. Since the time step
is also constrained by accuracy requirements, implicit methods may not be as efficient
as explicit ones.

Explicit time integration methods, on the other hand, can be faster and easier to
implement, but suffer from stability issues triggered by additional error terms. One
way to improve the stability properties of numerical schemes is the usage of artificial
dissipation. This idea dates back to early works of von Neumann and Richtymer [55].
Since then, many researchers have contributed to the development and extension of
artificial dissipation methods, including the works [29,31,44,52,53].

In this work, we investigate the connections between artificial dissipation in explicit
time integration methods and implicit time integration methods without additional limit-
ing from point of stability. We further extend this investigation to modal filtering. Modal
filtering is strongly connected to artificial dissipation methods in spectral and spectral
element methods [7, 17, 18, 25, 30, 38] and provides an alternative which, in some cases2,
might be more efficient and easier to implement. In particular, we demonstrate that it is
possible to mimic the dissipation (and thus stability) inherent in implicit time integra-
tion methods for explicit time integration methods when modal filtering with a suitable
filter strength is incorporated. This result directly carries over to explicit time integra-
tion methods with suitable artificial dissipation terms. Thus, we are able to present an
approach to obtain stable fully discrete schemes using explicit time integration. Such
discretizations combine the favorable stability properties of implicit time integration
methods with the efficiency gain of explicit time integration methods. Finally, we would
like to mention that recently a relaxation Runge-Kutta approach has been proposed to
construct fully discrete explicit energy (entropy) conservative/stable schemes in [23,48].
Their approach has some similarities to our consideration but instead of working with
modal filters or artificial viscosity to destroy the energy production in time, they change
the final update step in the RK method to guarantee that the discrete energy equality
is fulfilled.

For sake of simplicity, the explicit Euler method is considered. Yet, at least for non-
linear problems, the same stability issues arise for strong stability preserving (SSP) RK
schemes, since they can be written as convex combination of explicit Euler steps [19].
In the appendix, we show how our investigation carries over to general Runge-Kutta
methods. Recent relevant articles concerned with the strong stability of explicit Runge-
Kutta methods are, e.g., [27, 28,42,45,50,51].

The rest of this work is organized as follows: In section 2, we start by briefly revisiting
the FR method in its formulation using SBP operators. This method yields a stable
semidiscretisation and thus serves as a representative of a stable scheme. Yet, the exam-
inations are rather general and valid for other spacial discretizations as well. In section
3, we investigate the mechanism which triggers stability issues when semidiscretisation
(even stable ones) are evolved in time by explicit time marching. Further, we investi-
gate the stabilizing effect of artificial dissipation terms and modal filtering. In principle,
similar investigations are well-known. Performing this analysis in a vector matrix-vector
representation including suitable discrete inner products, however, we are able derive new
(strict) bounds on the artificial viscosity strength and filter strength for stability to carry
over in time. Building up on this strategy, adaptive filtering strategies can be derived
which yield methods with neither not enough nor too much dissipation. This might be
beneficial in smooth regions for long time simulations. Section 4 explores the connection
between implicit time integration and modal filtering in explicit time integration. We

2For instance, when the method is already formulated in a suitable modal basis.
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end this work by a summary in section 5. In the appendix, we demonstrate how the
investigation for the filter strength of section 3 can be extended to general Runge-Kutta
methods.

2. Flux Reconstruction using Summation-By-Parts Operators

In this section, we provide a brief description of FR methods using SBP operators,
which will serve as a representative for spacially stable methods in the later investigations.
Yet, it should be stressed that our analysis is also valid for other space discretisation,
such as like DG or finite volume (FV) schemes. Further, let us consider a one-dimensional
scalar conservation law

(1) ∂tu+ ∂xf(u) = 0

on Ω = [a, b], equipped with adequate boundary and initial conditions. For sake of
simplicity, in this work, periodic boundary conditions will be assumed.

The domain is partitioned into smaller subdomains, also called elements, which are
mapped diffeomorphically onto a reference element, typically Ωref = [−1, 1]. All cal-
culations are conducted within this reference element then. There, the solution u is
approximated by a polynomial U of degree ≤ N . Let {ζi}Ni=0 be a set of interpolation
points in [−1, 1]. Then, U ∈ PN can be represented w.r.t. to a nodal Lagrange basis,
resulting in a vector of coefficients u given by ui = U(ζi) for i = 0, . . . , N .

Note that the representation of U w.r.t. other bases is possible as well. In the setting
described in [47], the solution is represented as an element of a finite dimensional Hilbert
space of functions on the volume. W.r.t. a chosen basis, the scalar product approximating
the L2 scalar product is represented by a matrix M and the derivative (divergence) by D .

Additionally, functions on the boundary (consisting of two points in this one dimensional
case) are elements of another finite dimensional Hilbert space with appropriate basis. The
restriction of functions on the volume to the boundary is represented by a (rectangular)
matrix R and integration w.r.t. the outer normal by B = diag (−1, 1). Finally, the
operators have to fulfil the SBP property

(2) M D +DTM = RTBR

as a compatibility condition in order to mimic integration by parts

(3) uTM Dv + uTDTM v ≈
∫

Ω

u ∂xv +

∫
Ω

∂xu v = u v
∣∣
∂Ω
≈ uTRTBRv.

Additional ingredients of FR methods are numerical fluxes (Riemann solvers) fnum, com-
puting a single valued flux on the boundary using values from both neighbouring ele-
ments, and a correction step which can be formulated as a Simultaneous-Approximation-
Term (SAT) from finite difference (FD) methods [46]. An overview and translation rules
linking the notation used in this article and in DG or FD methods can be found in [41].

In the following, either nodal Gauß-Legendre and Lobatto-Legendre or modal Legendre
bases will be used. Multiplication of functions on the volume will be conducted pointwise
for nodal bases or exactly, followed by an L2 projection, for modal bases. The resulting
multiplication operators are written with two underlines, e.g. u represents multiplication
with the polynomial given by u.

Example 2.1. We give two examples for the discretisation. The linear advection with
constant velocity is given by

(4) ∂tu+ ∂xu = 0.
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The semidiscretisation using the canonical choice for the correction procedure can be
written as

(5) ∂tu = −Du−M−1RTB
(
fnum −Ru

)
in the reference domain. The second example, which we also consider later is the non-
linear Burgers’ equation

(6) ∂tu+ ∂x
u2

2
= 0.

This is more difficult, since discontinuities may develop in finite time. A discretisation
is given by a skew symmetric form

(7) ∂tu = −1

3
Duu− 1

3
u ∗Du+M−1RTB

(
fnum − 1

3
Ruu− 1

6

(
Ru
)2
)
.

Using (5) or (7) results in spacially stable schemes if an appropriate numerical flux is
applied, see [46].

3. Artificial Dissipation and Modal Filtering

In this section, we investigate the stabilising effect of artificial dissipation operators
and modal filtering. We note that both techniques share a strong connection. Using a
first order operator splitting in time, artificial dissipation operators can be interpreted
as exponential modal filter, see [16,17,38,44].

In artificial dissipation methods, a small (super) diffusive term of even order is added
to the conservation law (1). This yields

(8) ∂tu(t, x) + ∂xf
(
u(t, x)

)
= (−1)s+1ε

(
∂xa(x)∂x

)s
u(t, x),

where s ∈ N is the order, ε ≥ 0 the strength, and a : R → R is a suitable function.
The term

(
∂xa(x)∂x

)s
describes the s-fold application of the linear operator f(x) 7→

∂x
(
a(x)∂xf(x)

)
. Henceforth, the dependence on t and x will be implied but not written

explicitly in all cases.

3.1. Discrete Formulation. In order to get a working numerical scheme, a time dis-
cretisation has to be introduced. For simplicity, we start by considering an explicit Euler
method. Yet, once stability is ensured for the simple explicit Euler method, this result
carries over to the whole class of explicit SSP-RK methods under appropriate time step
restriction. This is, for instance, described in the monograph [19] and references cited
therein.

In the standard element, one time step ∆t by the explicit Euler method is given by

(9) u 7→ u+ := u+ ∆t ∂tu.

Using an SBP-FR semidiscretisation to compute the time derivative ∂tu in (9) without
artificial viscosity, the norm after one Euler step is given by

(10)

∥∥u+

∥∥2

M
= uT+M u+

= uTM u+ 2∆t uTM ∂tu+ (∆t)2∂tu
TM ∂tu

=‖u‖2M + 2∆t 〈u, ∂tu〉M + (∆t)2‖∂tu‖2M .

Here, the second term on the right hand side, 2∆t 〈u, ∂tu〉M , yields only boundary terms

that can be controlled by the numerical flux. However, the last term, (∆t)2‖∂tu‖2M ≥ 0,
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is non-negative and might therefore increase the norm. It is this term, which is respon-
sible for (spacially stable) methods to still become unstable in time. In the following
subsections, we investigate two approaches to remedy this source of instability.

3.2. Application of Artificial Viscosity. We now derive a lower bound on the strength
ε for artificial dissipation to carry spacial stability of a method over to time. Assuming
a fixed function a and order s, the strength ε can be estimated in the following way. De-
noting the time derivative obtained by the underlying SBP-FR method without artificial
dissipation by ∂tu and the matrix representation of the discretised artificial dissipation
by

(11) As :=
(
M−1DTM aD

)s
,

yields

(12) ∂tu
ε = ∂tu− ε

(
M−1DTM aD

)s
u.

Note that other discretisations of the artificial viscosity term in (8) are possible but not
recommended. Yet, it has been proved in [44] that the discretisation (11) is compatible
with SBP operators and results in dissipation of the L2-entropy. Thus, after one time
step by the explicit Euler method with artificial dissipation, the norm is given by

(13)

∥∥uε+∥∥2

M
=‖u‖2M + 2∆t 〈u, ∂tuε〉M + (∆t)2‖∂tuε‖2M
=‖u‖2M + 2∆t 〈u, ∂tu〉M − 2ε∆t

〈
u, Asu

〉
M

+ (∆t)2‖∂tuε‖2M .

Again, 〈u, ∂tu〉M can be estimated in terms of boundary values and numerical fluxes
and is negative (non-positive) for a spacially stable discretisation of (1). Hence, for the
method to be stable in time, the two last terms need to cancel out. In this case,

(14)
∥∥uε+∥∥2

M
=‖u‖2M + 2∆t 〈u, ∂tu〉M

would follow and the fully discrete scheme will be conservative as well as stable in space
and time. Using (13), the condition of the last to terms to cancel out can be rewritten
as

(15)

0 =− 2ε
〈
u, Asu

〉
M

+ ∆t‖∂tuε‖2M

=− 2ε
〈
u, Asu

〉
M

+ ∆t

(
‖∂tu‖2M − 2ε

〈
∂tu, A

su
〉
M

+ ε2
∥∥∥Asu

∥∥∥2

M

)
,

which again is equivalent to

(16) ε2

(
∆t
∥∥∥Asu

∥∥∥2

M

)
︸ ︷︷ ︸

=:X

+ε

(
−2
〈
u, Asu

〉
M
− 2∆t

〈
∂tu, A

su
〉
M

)
︸ ︷︷ ︸

=:Y

+
(

∆t‖∂tu‖2M
)

︸ ︷︷ ︸
=:Z

= 0.

The (possibly complex) roots of the equation (16) for X 6= 0 are given by

(17) ε1/2 =
1

2X

(
−Y ±

√
Y 2 − 4XZ

)
.

Hence, for a sufficiently small time step ∆t and if the solution is not constant, the dis-
criminant Y 2−4XZ is non-negative and there is at least one real solution ε. Additionally,
both −Y and XZ are positive for sufficiently small ∆t, since the artificial dissipation
operator A is positive semi-definite, i.e.

(18) Y 2 − 4XZ > 0, −Y > 0, if ∆t is small enough and Asu 6= 0.
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Thus,

(19) ε1 ≥ ε2 =
1

2X

(
−Y −

√
Y 2 − 4XZ

)
≥ 1

2X

(
−Y +

√
Y 2
)

= 0,

and the roots of the quadratic equation (16) are non-negative. These results are summed
up in the following

Lemma 3.1. If a conservative and stable SBP-FR method for a scalar conservation law

∂tu + ∂xf(u) = 0 is augmented with the artificial dissipation −ε
(
M−1DTM aD

)s
u

on the right hand side, the fully discrete scheme using an explicit Euler method as time
discretisation is both conservative and stable if

• a nodal Gauß-Legendre / Lobatto-Legendre or a modal Legendre basis is used,

•
〈
u, Asu

〉
> 0, which will be fulfilled for the choice of a described below if the

solution u is not constant,
• the time step ∆t is small enough such that (18) is fulfilled,
• and the strength ε > 0 is big enough.

If the other conditions are fulfilled, ε has to satisfy

(20) ε ≥ ε2 =
1

2X

(
−Y −

√
Y 2 − 4XZ

)
,

where X,Y, and Z from equation (16) are used.

In our implementation, the strength of dissipation is chosen as the second (smaller)
root ε2 and results in methods with highly desired stability properties, as we presented
in numerical tests at the end of this section.

Remark 3.2. It remains an interesting, yet unanswered, question how to interpret the
existence of an additional solution ε1. Since this solution yields a larger strength, the
resulting methods show higher dissipation, which might be undesired in elements without
discontinuities or for long time simulations [35,37].

Note that the CFL condition and therefore the time step in an explicit time inte-
gration method depends on the parameters of the viscosity term. If no care is taken,
artificial dissipation operators will decreases the allowable time step size; see [16, 20, 24]
and references therein. Additionally, equation (18) limits the maximal time step and can
be used as an adaptive strategy to control this quantity. This could be also used for an
adaptive control strategy and will be considered in future investigations. Here, a simple
limiting strategy is used for the numerical experiments. If the time step is not small
enough and equation (18) is not fulfilled, the strength ε computed from (20) might be
negative. In this case, to avoid instabilities, ε is set to zero, i.e. no artificial viscosity is
used in the corresponding elements. This phenomenon is strongly connected with stabil-
ity requirements of the artificial dissipation operator, which have been discussed above.
Considering a time step by the explicit Euler method for the equation ∂tu = −εAsu, the
norm after one time step satisfies

(21)

∥∥u+

∥∥2

M
=‖u‖2M − 2 ε∆t

〈
u, Asu

〉
M

+ ε2(∆t)2
∥∥∥Asu

∥∥∥2

M

≤‖u‖2M − 2 ε∆t
〈
u, Asu

〉
M

+ ε2(∆t)2
∥∥∥A∥∥∥s‖u‖M .
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Thus, in order to guarantee
∥∥u+

∥∥2

M
≤‖u‖2M , for Asu 6= 0, ∆t has to be limited by

(22) ∆t ≤
2
〈
u, Asu

〉
M

ε
∥∥∥Asu

∥∥∥
M

∥∥∥A∥∥∥s‖u‖M ≤
2‖u‖M

∥∥∥Asu
∥∥∥
M

ε
∥∥∥Asu

∥∥∥
M

∥∥∥A∥∥∥s‖u‖M =
2

ε
∥∥∥A∥∥∥s .

Since A is a second-order derivative operator, this yields a restriction on the time step

of order O
(
∆x2s/ε

)
. However, it should be noted that ε is computed using the given

value of ∆t and is typically small.
Since Theorem 1 in [44] requires a

∣∣
[−1,1]

≥ 0 to be a polynomial fulfilling a(±1) = 0,

a simple choice is a(x) = 1 − x2. By this choice, the continuous artificial dissipation
operators is related to the eigenvalue equation of Legendre polynomials and resulting
implications and connections with modal filtering are presented in [44].

3.3. Usage of Modal Filters. In this subsection, we investigate stability of the ex-
plicit Euler method combined with modal filtering, which is strongly related to artificial
dissipation [7,16–18,25,30,44]. In certain cases, for instance when the method is already
formulated w.r.t. a suitable modal basis, modal filtering can be more efficient and easier
to implement than artificial dissipation. Further, no additional time step restrictions are
introduced. For modal filtering, an operator splitting approach is applied together with
an explicit Euler method. The update reads

(23) u 7→ ũ+ := u+ ∆t ∂tu 7→ u+ := F ũ+,

where (9) holds for ũ+ instead of u+ and F is the modal filter. If the filter F reduces the

norm of ũ+ by the amount of the additional term (∆t)2 (∂tu)
T
M ∂tu, the fully discrete

scheme allows the same estimate as the semidiscrete one. Therefore, similar to artificial
dissipation, the modal filter has to eliminate the additional positive term. This idea is
summarised in

Lemma 3.3. Rendering a conservative and stable semidiscretisation of the scalar con-
servation law (1) fully discrete by using an explicit Euler step with modal filtering (23)
yields a conservative and stable scheme if

(24)

∥∥∥F ũ+

∥∥∥2

M
=‖u‖2M + 2∆t 〈u, ∂tu〉M
≤
∥∥ũ+

∥∥2

M
=‖u‖2M + 2∆t 〈u, ∂tu〉M + (∆t)2‖∂tu‖2M .

This condition can be fulfilled (per element) if

• the rate of change ∂tu is zero or
• the intermediate value ũ+ is not constant and the time step ∆t is small enough.

In order to fulfil condition (24) of Lemma 3.3, the filter strength ε (with time step ∆t
included) has to be adapted. Using a modal Legendre basis, the (exact) modal filter F
can be written as

(25) F = diag
(
exp [−ε λsn ∆t]

p
n=0

)
,

where λn = n(n + 1) ≥ 0 as it is derived in [44]. For stability, the selection of the free
parameter ε is essential. Similar to subsection 3.2, we now derive a lower bound on the
filter strength that ensures stability. Representing the polynomial given by ũ in a modal
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Legendre basis, i.e. as a linear combination of Legendre polynomials ϕn, condition (24)
translates to

(26)

p∑
n=0

exp[−2ε λsn ∆t] ũ2
+,n ‖ϕn‖2 = RHS,

where the right-hand side ‖u‖2M + 2∆t 〈u, ∂tu〉 is abbreviated as RHS. Using the well-
known inequality

(27) exp[x] ≥ 1 + x, x ∈ R,

as a first order approximation, ε can be estimated by

(28)

p∑
n=0

(1− 2ε λsn ∆t) ũ2
+,n ‖ϕn‖2 ≤ RHS

⇐⇒

 p∑
n=0

ũ2
+,n ‖ϕn‖2 −RHS

 p∑
n=0

2λsn ũ
2
+,n ‖ϕn‖2

−1

≤ ε∆t

for
∑p

n=0 2λsn ũ
2
+,n ‖ϕn‖2 > 0. Note that we have

∑p
n=0 2λsn ũ

2
+,n ‖ϕn‖2 > 0 if and only

if ũ+ is not identically zero. Inserting

(29)

p∑
n=0

ũ2
+,n ‖ϕn‖2 =‖u‖2M + 2∆t 〈u, ∂tu〉M + (∆t)2‖∂tu‖2M

= RHS + (∆t)2‖∂tu‖2M ,

this yields

Lemma 3.4. A necessary condition for the filter strength according to Lemma 3.3 is

(30) ε ≥ ∆t‖∂tu‖2M

 p∑
n=0

2λsn ũ
2
+,n ‖ϕn‖2

−1

.

Remark 3.5. By applying estimation (30) in our numerical scheme, an adaptive strategy
can be applied. Note that other approximations than (27) could be used. The same is
true if, instead of the explicit Euler method, an (explicit) SSP time integration method
is applied, since such methods can be written as a convex combinations of steps by the
explicit Euler method [19], and the filter is applied after each Euler step. An extension to
some Deferred Correction (DEC) methods can also be done, since one can write some of
theses methods likewise as convex combinations of Euler steps [1,26]. However, since the
triangle inequality is invoked for the resulting estimates, an undesired additional decrease
of the norm may result. Therefore, the adaptive modal filtering should be applied only
after a full time step and not for every stage. This was for instance demonstrated
in [44]. Further, this renders the computation more efficient. Nevertheless, an extension
of this approach to classical Runge-Kutta methods can be done, yielding to some further
conditions which we present in the appendix 5.

Finally, it should be stressed that adaptive modal filtering can be interpreted as a
special case of projection, enforcing the constraint on the squared norm (a quadratic
form) and not violating conservation, i.e. a constraint on the integral of the solution
(a linear form). This is visualised in Figure 1. However, there are various possibilities
to conduct this projection. As noted in section IV.4 of [22], projection methods can be
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u = const u2 = const

u2 = const

u = const

Figure 1. Visualisation of the requirements for projections such as filtering.

useful, but can also destroy good properties. Therefore, they have to be investigated
thoroughly.

Remark 3.6 (Connection to Relaxation RK approach). In our analysis, we describe
the production of energy in equation (10). Here, artificial viscosity or modal filters are
applied to remove the additional energy. In [23,48], the idea is instead to manipulate the
time step such that the energy remains constant. This can be interpreted as a projection
in the direction of the step update which conserves the energy and all linear invariants.
In this article, we use different kinds of projections, e.g. ones given by modal filters,
which also preserve important linear invariants such as the total mass.

3.4. Numerical Simulations. We close this section with a numerical demonstration
of the above results and derived adaptive filtering strategies.

Comparing Modal Filtering and Projection. As an example, the linear advection
equation with constant coefficients

(31) ∂tu+ ∂xu = 0

in [−1, 1] with periodic boundary conditions is considered. For the spacial discretisation,
we choose a grid of N = 8 elements using polynomials of degree ≤ p = 9 and an upwind
numerical flux.

At first, we consider a smooth initial condition

(32) u0(x) = exp(−20x2)

and simulate in the time interval [0, 4] using 20 000 time steps of the explicit Euler
method, the explicit Euler method with adaptive modal filtering, and the explicit Euler
method with a simple projection. The simple projection is given by a scaling of all the
non-constant Legendre modes by the same factor, resulting in the desired norm inequality
and conservation. In Figure 2a, we realise that the projection is not really necessary, the
results are very similar to the ones of the filtered method and all solutions are visually
nearly indistinguishable. Using high order Runge-Kutta schemes does not lead to other
observations for this test case.

However, for the non-smooth initial data

(33) u0(x) =

{
1, − 1

4 ≤ x ≤ 1
4 ,

0, otherwise,

the same simulation results in Gibbs oscillations and the projection as well as the modal
filter have to be applied a lot more. The simple projection has also to delete ∆t2||∂tu||2
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1.0 0.5 0.0 0.5 1.0
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0
u

explicit
semidisc. exact

filtered
projected

(a) Smooth initial condition (32).

1.0 0.5 0.0 0.5 1.0
x

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

u

explicit
semidisc. exact

filtered
projected
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Figure 2. Solutions at t = 4 computed using 20 000 time steps of the un-
modified, filtered, and projected explicit Euler method.

in every element. In order to do so, we scale u+ =
p∑

n=0
u+,nϕn to u+ = u+,0ϕ0 +

α
p∑

n=1
u+,nϕn, where

(34) α :=

√√√√∥∥u+ − u+,0ϕ0

∥∥2 −∆t2‖∂tu‖2∥∥u+ − u+,0ϕ0

∥∥2

if ‖u+ − û0ϕ0‖2 −∆t2‖∂tu‖2 ≥ 0. It is not allowed to scale û0, since conservation would
get lost. The results of the Euler method using this simple projection fulfilling the
constraints are fairly useless, as can be seen in Figure 2b. It may be conjectured that the
boundary values between cells are influenced in such a way that the numerical upwind
flux adds further dissipation.

Simulation using Artificial Viscosity and Modal Filtering. To validate our inves-
tigation from before and especially the adaptive technique and estimation, we consider
the nonlinear Burgers’ equation (6) with smooth initial condition,

(35) ∂tu+ ∂x
u2

2
= 0, u(0, x) = u0(x) = sinπx+ 0.01,

in the periodic domain x ∈ [0, 2]. This problem serves as a prototypical example of a
nonlinear conservation law, yielding a discontinuous solution in finite time t ∈ [0, 3]. The
stable semidiscretisation (7) with N = 16 elements and polynomials of degree ≤ p = 15
represented w.r.t. a nodal Gauß-Legendre basis is used with the local Lax-Friedrichs flux

fnum(u−, u+) =
u2
−+u2

+

4 − max
{
|u−|,|u+|

}
2 (u+ − u−). The explicit Euler method as time

integrator uses 15 · 103 steps for the interval [0, 3].
First of all, we note that the energy profiles for artificial dissipation (left, i.e. Figure

3a and Figure 3c) and for modal filtering (right, i.e. Figure 3b and Figure 3d) seem
indistinguishable the same. This demonstrates again that modal filtering can be seen as
the usage of artificial viscosity and vice versa, especially if a similar adaptive strategy is
used.

At time t = 0.31, the solution is still smooth. However, the energy in Figure 3a
and Figure 3b increases if no artificial dissipation or modal filter is applied. Contrary,



342 P. ÖFFNER, J. GLAUBITZ, AND H. RANOCHA

0.00 0.05 0.10 0.15 0.20 0.25 0.30
t

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008
||u
||2

+1

||u||2M [ε = 0]

||u||2M [ε adapt.]

(a) Energy for t ∈ [0, 0.31]. Artificial
dissipation.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
t

1.0002

1.0004

1.0006

1.0008

1.0010

1.0012

1.0014

1.0016

||u
||2

||u||2M [ε = 0]

||u||2M [ε adapt.]

(b) Energy for t ∈ [0, 0.31]. Modal
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(c) Energy for t ∈ [0, 3]. Artificial dis-
sipation.
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Figure 3. Numerical results for Burgers’ equation using N = 16 elements
with polynomials of degree ≤ p = 15. The energy are plotted on the left hand
side using artificial dissipation and on the right hand side with modal filters.

applying adaptive artificial dissipation or modal filtering results in a constant energy.
At time t = 3, the solution has developed a discontinuity. All three choices of artificial
dissipation or modal filtering (we compare no filtering, adaptive filtering, and constant
filtering with a fixed strength) yield nearly visually indistinguishable results for the energy
profiles in Figures 3c and 3d due to the dissipative numerical flux.

Finally, we would like to mention that around the discontinuities we still obtain oscil-
lations if the adaptive strategy is applied since the strategy is less dissipative and does
not smooth out the oscillations from the semidiscrete setting. As known in the litera-
ture, we can cancel out the oscillations for instance by the usage of limiters which are
in accordance with the energy (entropy) inequality [9] or just at the final time by some
post-processing method. It should also be noted that the adaptive use of artificial viscos-
ity and modal filtering presented here could be used to render shock capturing methods
(e.g. [14, 15, 39, 49]) energy dissipative, which themselves are not but might have some
other advantages.

4. Comparison Between an Explicit Method with Modal Filtering and the
Application of an Implicit Method

Here, we present the main part of this work. It was describe, for instance, in [27]
and [28] that explicit time integration methods may produce entropy whereas in implicit



SAMPLE FOR HOW TO USE IJNAM.CLS 343

methods entropy may be destroyed. This entropy production of explicit methods is
always a problem when going over from semidiscrete stability to fully discrete stability.
A classical approach is the usage of implicit methods, for example SBP methods in time,
which can be written as implicit Runge-Kutta methods [6,33,34]. Then, the semidiscrete
analysis translates directly to the fully discrete scheme. Unfortunately, this is not the case
for explicit methods and in the literature a lot of works can be found which investigate
this issue. Here, we demonstrate that with our adaptive technique from section 3, we
can mimic implicit schemes by using explicit ones with additional dissipation. As time
integration methods we will focus on Euler methods (explicit and implicit). Further,
we will only consider modal filtering, since we have the close connection between modal
filtering and artificial dissipation.

The explicit Euler method

(36) u+ := u0 + ∆t ∂tu0

introduces an erroneous growth of energy of size (∆t)2‖∂tu0‖2, whereas the implicit Euler
method

(37) u+ := u0 + ∆t ∂tu+

yields artificial dissipation of size (∆t)2
∥∥∂tu+

∥∥2
per time step. Analogously to 3.3, the

estimate of the semidiscretisation can be mimicked by filtering with strength

(38) ε =
(

(∆t)2‖∂tu0‖2M
) p∑

n=0

2λsn ũ
2
+,n ‖ϕn‖2

−1

after each time step. Similarly, application of this filter and an additional filter with
strength

(39) ε =
(

(∆t)2
∥∥∂tu+

∥∥2

M

) p∑
n=0

2λsn ũ
2
+,n ‖ϕn‖2

−1

afterwards yields a filtered explicit Euler method which mimics the dissipation introduced
by an implicit Euler method. These estimates are applied to the linear advection equation
(31) in [−1, 1] with periodic boundary conditions. The initial condition (33) is evolved
during the time interval [0, 4] on a grid of N = 8 elements using polynomials of degree
≤ p = 9 and an upwind numerical flux.

The corresponding energy profiles using 20 000 time steps are plotted in Figure 4(A)
at t = 4. The initial condition (33) is also the exact solution of the PDE at t = 4,
i.e. after two periods. The explicit Euler method (dotted, blue) yields as expected an
unconditional energy growths whereas applying adaptive modal filtering once after each
time step yields a nearly constant energy. The implicit Euler method (solid red) reduces
the energy (introduces artificial dissipation) as can be seen in the figure. However, the
estimate of the dissipation introduced by implicit Euler yields an energy result of the
explicit Euler method with modal filtering applied twice (dash-dotted, cyan) that is
nearly indistinguishable from the implicit one.

Although the estimate of the filter strength is conservative (i.e. only necessary), the
energy of the twice filtered explicit solution is slightly less than the energy of the implicitly
computed solution. The reason is probably the appearance of some changes of boundary
values due to the filtering that triggers additional dissipation by the upwind flux.

Finally, we note that the same behaviour can be observed if one uses considerably less
time steps. In Figure 4(B) the results of the implicit and filtered explicit Euler method
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Figure 4. Energies computed using 1000 and 20 000 time steps of the implicit
and explicit Euler methods and modal filtering.

using only 1000 time steps are plotted. Similarly to the case before, the filtered solutions
approximate their targets very well.

5. Summary

The application of SBP operators in time together with a semidiscrete method yields
to a fully discrete stable scheme to solve hyperbolic conservation laws as it is done in
[12,32,33] whereas in [23,48] a relaxation RK method is applied. Here, we follow another
approach and consider also a semidiscretely stable scheme and explicit time integration
methods but to reach a fully discrete stable scheme, we apply modal filtering or artificial
dissipation, where the strength of dissipation is steered automatically by an adaptive
strategy. We consider only the explicit Euler method in this context. However, since
strong stability preserving Runge-Kutta schemes can be written as convex combination
of explicit Euler steps, our approach can be extended to these methods. Then, we
demonstrated by a concrete example that with the usage of modal filters together with
our adaptive strategy, we are able to mimic the behavior of an implicit method and
can imitate the stability properties of this scheme. This contribution leads to a better
understanding of existing algorithms and numerical techniques, especially the application
of artificial dissipation as well as modal filtering in the context of numerical methods
for hyperbolic conservation laws together with the selection of explicit or implicit time
integration methods. A future research topic will be further extension of the study
presented here together with implicit SBP operators in time. Also the usage of other
adaptive strategies, such as the annihilation of the entropy production in time [27, 28]
will be considered.

Appendix

In this section, we show how our analysis from subsection 3.3 can be applied to RK
methods and transfer the results to DEC methods, which can be formulated in the RK
framework as well. A RK method with s stages is given by its Butcher tableau

(40)
c A

b
.
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Here, A ∈ Rs×s and b, c ∈ Rs. Since there is no explicit dependence on the time in the
semidiscretisation, one step from u0 to u+ is given by

(41) ui := u0 + ∆t

s∑
j=1

aij ∂tuj , u+ := u0 + ∆t

s∑
i=1

bi ∂tui.

Here, the ui are the stage values of the RK method. It is also possible to express the
method via the slopes ki = ∂tui, as done by [22, Definition II.1.1]. Using the stage values
ui as in (41), we have∥∥u+

∥∥2

M
−‖u0‖2M(42)

=2∆t

〈
u0,

s∑
i=1

bi ∂tui

〉
M

+ (∆t)2

∥∥∥∥∥∥
s∑

i=1

bi ∂tui

∥∥∥∥∥∥
2

M

(41)
= 2∆t

s∑
i=1

bi

〈
ui −∆t

s∑
j=1

aij ∂tuj , ∂tui

〉
M

+ (∆t)2

∥∥∥∥∥∥
s∑

i=1

bi ∂tui

∥∥∥∥∥∥
2

M

=2∆t

s∑
i=1

bi 〈ui, ∂tui〉M + (∆t)2


∥∥∥∥∥∥

s∑
i=1

bi ∂tui

∥∥∥∥∥∥
2

M

− 2

s∑
i,j=1

bi aij

〈
∂tui, ∂tuj

〉
M


=2∆t

s∑
i=1

bi 〈ui, ∂tui〉M + (∆t)2

 s∑
i,j=1

(
bibj − bi aij − bjaji

) 〈
∂tui, ∂tuj

〉
M

 ,
where the symmetry of the scalar product has been used in the last step. Here, the first

term on the right hand side is consistent with
∫ t0+∆t

t0
2 〈u, ∂tu〉, if the RK method is

consistent, i.e.
∑s

i=1 bi = 1.
The second term of order (∆t)2 is undesired. Depending on the method (and the

stages, of course), it may be positive or negative. However, if it is positive, then a stability
error may be introduced. As a special case, if the method fulfils bibj = biaij +bjaji, i, j ∈
{1, . . . , s}, this term vanishes. Such methods can conserve quadratic invariants of ordi-
nary differential equations, a topic of geometric numerical integration, see Theorem IV.2.2
of [22], originally proven by [10]. A special kind of these methods are the implicit Gauss
methods, see section II.1.3 of [22].

For an explicit method (aij = 0 for j ≥ i), the undesired term of order (∆t)2 in (42)
can be rewritten as

(43)

∥∥∥∥∥∥
s∑

i=1

bi ∂tui

∥∥∥∥∥∥
2

M

− 2

s∑
i=1

i−1∑
j=1

bi aij

〈
∂tui, ∂tuj

〉
M

=

s∑
i=1

b2i ‖∂tui‖2M + 2

s∑
i=1

i−1∑
j=1

bi (bj − aij)
〈
∂tui, ∂tuj

〉
M
.

This undesired increase of the norm may be remedied by the application of an adaptive
modal filter F . Analogously to subsection (3.3), the adaptive filter strength ε may be
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estimated via

(44)

∥∥∥F u+

∥∥∥2

M

!
≤ RHS :=‖u0‖2M + 2∆t

s∑
i=1

bi 〈ui, ∂tui〉M

≤ RHS + (∆t)2

 s∑
i,j=1

(
bibj − bi aij − bjaji

) 〈
∂tui, ∂tuj

〉
M

 ,
if the term of order (∆t)2 is non-negative. In a modal Legendre basis {ϕi}, the (exact)
modal filter F is given by (25). Thus,

(45)

p∑
n=0

exp[−2ε λsn]u2
+,n ‖ϕn‖2

!
≤ RHS

is required. Here, u+,n are the coefficients of the polynomial u+, expressed in the Le-
gendre basis of polynomials of degree ≤ p. Following (27), the filter strength ε can be
estimated by

(46)

p∑
n=0

(1− 2ε λsn)u2
+,n ‖ϕn‖2 ≤ RHS

⇐⇒

 p∑
n=0

u2
+,n ‖ϕn‖2 −RHS

 p∑
n=0

2λsn u
2
+,n ‖ϕn‖2

−1

≤ ε,

for
∑p

n=0 2λsn u
2
+,n ‖ϕn‖2 > 0. Using

∑p
n=0 u

2
+,n ‖ϕn‖2 ≈

∥∥u+

∥∥2

M
(since ‖·‖M approxi-

mates the exact L2 norm on the left hand side), this results in

(47) ε ≥

∥∥u+

∥∥2

M
−‖u0‖2M − 2∆t

s∑
i=1

bi 〈ui, ∂tui〉M

 p∑
n=0

2λsn ũ
2
+,n ‖ϕn‖2

−1

.

(47) is the general estimation. We can derive estimation (30) from (47) using the coeffi-
cients for the explicit Euler method.
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