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CS-MRI RECONSTRUCTION BASED ON THE CONSTRAINED

TGV-SHEARLET SCHEME

TINGTING WU1, ZHI-FENG PANG2,∗, YOUGUO WANG1, 3, AND YU-FEI YANG4

Abstract. This paper proposes a new constrained total generalized variation (TGV)-shearlet

model to the compressive sensing magnetic resonance imaging (MRI) reconstruction via the simple
parameter estimation scheme. Due to the non-smooth term included in the proposed model, we
employ the alternating direction method of multipliers (ADMM) scheme to split the original
problem into some easily solvable subproblems in order to use the convenient soft thresholding
operator and the fast Fourier transformation (FFT). Since the proposed numerical algorithm
belongs to the framework of the classic ADMM, the convergence can be kept. Experimental
results demonstrate that the proposed method outperforms the state-of-the-art unconstrained
reconstruction methods in removing artifacts and achieves lower reconstruction errors on the
tested dataset.

Key words. Magnetic resonance imaging, total generalized variation, shearlet transformation,
alternating direction method of multipliers (ADMM), compressive sensing.

1. Introduction

Magnetic resonance imaging (MRI) is commonly used in radiology to visualize
the internal structure and function of the body by noninvasive and nonionizing
means. However, the widespread use of MRI is hindered by its intrinsic slow data
acquisition process. So how to speed up the scanning time has been the key in
the MRI research community. Recently, compressive sensing (CS) [3] has shown
great potential in speeding up MRI by under-sampling k-space data. In the mean-
time, reducing the acquired data which compromises with its diagnostic value may
result in degrading the image quality. Considering the above reasons, finding an
inversion algorithm with good practical performance in terms of image quality and
reconstruction speed is crucial in clinical applications.

Let u be an ideal image scaled in [0, 1] and set A = PF , where P is a selection
matrix and F is the Fourier transformation matrix. Accordingly, the undersampling
k-space data f involved in the sampling matrix A and the additive noise η can be
boiled down to

f = Au+ η.(1)

From the view of the numerical computation, reconstructing u from f is an ill-
posed problem since the operator A depends on imaging devices or data acquisi-
tion patterns, which usually leads to a large and ill-conditioned matrix. So some
variational-PDE based models have been proposed to overcome these drawbacks.

In order to improve the scanning time of the variational-PDE based models,
motivated by the compressed sensing (CS) theory, Lustig et al. [29] proposed an
unconstrained model to reconstruct CS-MRI images as follows:

(2) min
u

‖u‖TV + τ
∥∥Φ>u

∥∥
1
+

η

2
‖Au− f‖22,
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where ‖u‖TV = ‖∇u‖1 is the total variation [5, 7, 24, 35, 43, 48] (TV), Φ is the
wavelet transformation, the superscript > denotes (conjugate) transpose of matrix.
‖Φ>u‖1 is the `1-norm of the representation of u under the wavelet transformation
Φ, τ > 0 is a scalar which balances Φ sparsity and TV sparsity.

As we know, the TV-based regularization in the model (2) can handle few-views
problems in the MRI reconstruction, which has the advantage to preserve edges
when removing noises in homogeneous regions. However, it usually tends to cause
staircase-like artifacts [22, 26, 28, 32, 35] due to their nature of favoring piecewise
constant solutions. To alleviate the above drawbacks, the total generalized variation
(TGV) in [2] has attracted much interest in image science. On the other hand, the
continuous wavelet transformation of a distribution f decays rapidly near the points
where f is smooth, while it decays slowly near the irregular points. This property
allows the identification of the singular support of f . However, the continuous
wavelet transformation is unable to describe the geometry of the singularity set of
f and, in particular, to identify the wavefront set of a distribution [40]. Unlike
the traditional wavelets used in the second regularized term of (2) lacking the
ability to detect directionality, the shearlets provide a multidirectional as well as
a multiscale decomposition for multi-dimension signals [17, 18]. There are two
main advantages of using shearlets regularization in reconstruction: one is that
shearlets allow for a lower redundant sparse tight frame representation than other
related multiresolution representations, while still offering shift invariance and a
directional analysis; another is that the shearlet representation can be used to
decompose the space L2(Ω) of images into a sequence of spaces, while we apply
the soft thresholding operator conveniently to numerical algorithm. Obviously,
shearlets are better candidates than wavelets, as shearlets have essentially optimal
approximation errors for images that contain edges apart from discontinuities along
curves. So following these observations, Guo et al. [19] coupled the TGV with
the shearlet transformation to reconstruct high quality images from incomplete
compressive sensing measurements as

min
u

TGV2
α(u) + β

N∑

j=1

‖SHj(u)‖1 +
ν

2
‖Au− f‖22,(3)

where SHj(u) is the jth subband of the shearlet transformation of u; β > 0 bal-
ances the shearlet transformation sparsity and the TGV sparsity; ν > 0 is the
regularization parameter.

In the model (3), the key is how to balance two parameters β and ν. In form, an
improperly large weight for the data fidelity term results in serious residual artifacts,
whereas an improperly small weight results in damaged edges and fine structures
[8]. To overcome these drawbacks, it needs to turn to the following constrained
optimization model as

min
u

TGV2
α(u) + β

N∑
j=1

‖SHj(u)‖1
s.t. ‖Au− f‖2 ≤ σ,

(4)

where σ implies some prior information of noise. Compared with unconstrained
model (3), the model (4) can estimate the noise level σ more easily than finding
a suitable parameter ν. These two models are equivalent in nature when choos-
ing suitable penalty parameter ν. In fact, this equivalency transformation has
been successfully applied to imaging and sparsity tasks [37, 41, 42, 45] for the
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TV-based models. For example, Ng et al. [31] considered the constrained TV im-
age restoration and reconstruction problem. Furthermore, researchers reformulated
many restoration and reconstruction problems into linearly constrained convex pro-
gramming models while utilizing inexact versions of the ADMM [46]. By imposing
box constraints on TV-based models and solving the resulting constrained models,
more accurate solutions can be guaranteed in [4].

From the viewpoint of numerical implementations, some difference operators in-
cluded in the `1-norm lead the model (4) to be the non-smooth constrained problem.
So it is difficult to find a direct method to solve it. One of popular approaches is to
use the alternating direction method of multipliers (ADMM). It can be traced back
to the alternating direction implicit techniques for solving elliptic and parabolic par-
tial differential equations developed in [11, 14]. Due to its dual decomposability and
strong convergence properties, the ADMM has recently been used in various areas
of scientific computing including optimization, image processing and machine learn-
ing [6]. This method is also related to other methods such as the splitting-Bregman
(SB) [15] method and the Douglas-Rachford method [9]. As a summarization, the
contributions of this paper are as follows:

• Firstly, we propose a new constrained formulation of the TGV-shearlet
based on the CS-MRI reconstruction via allowing easy parameter setting,
good quantity and visual evaluation;

• Secondly, an effective ADMM scheme is proposed to directly optimize the
constrained objective function with a fast and stable convergence result.
Overall, the proposed method exhibits reasonable performance and out-
performs the recent unconstrained counterparts when being applied to the
MRI reconstruction.

The organization of the paper is as follows. We introduce the constrained TGV-
Shearlet based MRI reconstruction model, propose the ADMM scheme for our
constrained model, and give its convergence results in Section 2. Section 3 is devoted
to implementation details of numerical experiments, followed by some conclusions
in Section 4.

2. ADMM scheme for constrained TGV-shearlet based CS-MRI recon-

struction

Here we need to give some overviews of the TGV regularization in order to
conveniently explain the numerical method for the proposed model. As aforemen-
tioned, the TGV regularization can automatically balance first-order and high-order
derivatives instead of using any fixed combination [44]. Hence, this process can yield
visually pleasant results in images with piecewise polynomial intensities and sharp
edges without staircase effects.

Definition 2.1. For k = 2 and α > 0, we see that

TGV2
α(u) = sup

{∫

Ω

udiv2wdx |w ∈ C2
c (Ω, S

d×d), ‖w‖∞ ≤ α0, ‖divw‖∞ ≤ α1

}
.

(5)

In order to efficiently solve the second order TGV2
α based models in terms of

`1 minimization, we need to derive another form of TGV2
α(u). For the notational

convenience, we define spaces U, V,W as

U = C2
c (Ω,R), V = C2

c (Ω,R
2) and W = C2

c (Ω, S
2×2)

and set v := (v1, v2)
> ∈ V and w := (w11, w12;w21, w22) ∈ W .



CS-MRI RECONSTRUCTION 319

As one interposition, we replace the domain Ω by a discrete rectangular unit-
length grid

Ω = {(i, j) : i, j ∈ N, 1 ≤ i ≤ N1, 1 ≤ j ≤ N2},

where N1, N2 ≥ 2 are the image size. The scalar products can be defined in spaces
V and W as

v,p ∈ V : 〈v,p〉v = 〈v1, p1〉+ 〈v2, p2〉,
w,q ∈ W : 〈w,q〉w = 〈w11, q11〉+ 〈w22, q22〉+ 2〈w12, q12〉.

In order to discretize the TGV functional [10, 36], the forward and backward
partial differentiation operators are introduced as:

(∇+
x u)i,j =

{
ui+1,j − ui,j , if 1 ≤ i < N1,
0, if i = N1,

(∇+
y u)i,j =

{
ui,j+1 − ui,j, if 1 ≤ j < N2,
0, if j = N2,

as well as

(∇−
x u)i,j =





u1,j, if i = 1,
ui,j − ui−1,j, if 1 < i < N1,
−uN1−1,j, if i = N1,

(∇−
y u)i,j =





ui,1, if j = 1,
ui,j − ui,j−1, if 1 < j < N2,
−ui,N2−1, if j = N2.

Then, the gradient as well as symmetrised gradient can be expressed as

∇ : U → V, ∇u =

[
∇+

x u
∇+

y u

]
,

ε : V → W, ε(v) =

[
∇−

x v1
1
2
(∇−

y v1 +∇−
x v2)

1
2
(∇−

y v1 +∇−
x v2) ∇−

y v2

]
,

div : V → U, divv = (∇−
x )

>v1 + (∇−
y )

>v2,

d̃iv : W → V, d̃ivw =

[
(∇+

x )
>w11 + (∇+

y )
>w12

(∇+
x )

>w12 + (∇+
y )

>w22

]
.

Let the variable r = divw in (5), then the discretization TGV2
α can be rewritten

as:

TGV2
α(u) = max

u,r,w

{
〈u, divr〉 | d̃ivw = r, ‖w‖∞ ≤ α0, ‖r‖∞ ≤ α1

}
.

Through some computations, the TGV2
α(u) can be further reformulated as [19]:

TGV2
α(u) = min

p

α1‖∇u− p‖1 + α0‖ε(p)‖1,

here ‖ · ‖1 denotes the `1-norm [25]. Based on the above preparations, we now con-
sider the discretization form of the model (4). This form is still a non-smooth opti-
mization problem [47]. Furthermore, the gradient operator included in the `1-norm
and the constrained terms lead to more numerical difficulties. So we need to intro-
duce some auxiliary variables to split the original problem into some easily solvable
subproblems. Formally, we introduce some new variables v, hj , w = (w1, w2) ∈ V
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and z =

[
z1 z3
z3 z2

]
∈ W and define the convex set K = {v ∈ R

N , ‖v‖2 ≤ σ}, this
discretization form can be written to another equivalent form as

min
u,p,w,z,hj ,v

α1‖w‖1 + α0‖z‖1 + β
N∑
j=1

‖hj‖1
s.t. w = ∇u− p,

z = ε(p),
hj = SHj(u),
v = f −Au,
v ∈ K,

(6)

where ∇u = (∇xu,∇yu)
>. Let χK denote the following indicator function of K:

χK(x) =

{
0, if x ∈ K,
∞, if otherwise.

The augmented Lagrangian function of the problem (6) is given by

L (w, z, hj , v, u,p,λ) = α1‖w‖1 + α0‖z‖1 + β

N∑

j=1

‖hj‖1 + χK(v) + 〈λ1,∇u− p−w〉

+〈λ2, ε(p)− z〉 +
N∑

j=1

〈λ3,SHj(u) − hj〉+ 〈λ4, Au+ v − f〉

+
µ1

2
‖∇u− p−w‖22 +

µ2

2
‖ε(p)− z‖22 +

µ3

2

N∑

j=1

‖SHj(u)− hj‖
2
2

+
µ4

2
‖Au+ v − f‖22,(7)

where λ = (λ1,λ2, λ3, λ4) are the Lagrangian multipliers [1, 16, 34], µi (i =
1, 2, 3, 4) are the penalty parameters.

The augmented Lagrangian method (ALM) for (6) is an iterative algorithm
based on the iteration























































(

w
k+1

, z
k+1

, h
k+1
j , v

k+1
, u

k+1
,p

k+1
)

∈ argmin
w,z,hj ,v,u,p

L

(

w, z, xj , v, u,p;λ
k
1 ,λ

k
2 , λ

k
3 , λ

k
4

)

,

λ
k+1
1 = λ

k
1 + θµ1

(

∇u
k+1

− p
k+1

−w
k+1

)

,

λ
k+1
2 = λ

k
2 + θµ2

(

ε(pk+1)− z
k+1

)

,

λ
k+1
3 = λ

k
3 + θµ3

(

SHj

(

u
k+1

)

− h
k+1
j

)

,

λ
k+1
4 = λ

k
4 + θµ4

(

Au
k+1 + v

k+1
− f

)

.

(8)

To guarantee the convergence of the ALM, the minimization of each subproblem
needs to be solved to certain high accuracy before the iterative updates of multi-
pliers. In contrast, it is easier to minimize with respect to w, z, hj , v, u and p each,
which can be grouped into two blocks m = {w, z, hj, v} and n = {u,p}. For a fixed
n, the minimization with respect to w, z, hj and v can be carried out in parallel
because all w, z, hj and v can be separated from one another in (7). The basic idea
of the ADMM dates back to the work by Glowinski and Marocco [14], Gabay and
Mercier [11], where they proposed the method by utilizing the separable structure
of variables [13]. In the following, we consider how to solve these two blocks.
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2.1. m-subproblem. Here we focus on minimizing L ((w, z, hj , v), (u,p),λ) w.r.t.
(w, z, hj , v). This writes

wk+1 ∈ argmin
w

α1‖w‖1 −
〈
λk
1 ,w

〉
+

µ1

2

∥∥∇uk − pk −w
∥∥2
2
,(9)

zk+1 ∈ argmin
z

α0‖z‖1 − 〈λk
2 , z〉+

µ2

2
‖ε(pk)− z‖22,(10)

hk+1
j ∈ argmin

hj

β‖hj‖1 − 〈λk
3 , hj〉+

µ3

2
‖SHj(u

k)− hj‖22,(11)

vk+1 ∈ argmin
v

χK(v) + 〈λk
4 , v〉+

µ4

2
‖Auk + v − f‖22.(12)

The subproblems about w, z, hj in (9)-(11) are similar to the `1-regularized least
squares problems and the solutions can be explicitly obtained by using the Shrinkage
operator.

For fixed u and λ1, the minimizer w is given by

(13) wk+1 = Shrink2(∇uk − pk + λk
1/µ1, α1/µ1),

where Shrink2(·, α1/µ1) is the generalized shrinkage and defined as

Shrink2(ξ, α1/µ1) , max{‖ξ‖2 − α1/µ1, 0} ·
ξ

‖ξ‖2
.

Considering the Frobenius norm ‖·‖F of a matrix, we find that the z subproblem
(10) has the following closed form solution:

(14) zk+1 = ShrinkF (ε(p
k) + λk

2/µ2, α0/µ2),

where zk+1 ∈ W and

ShrinkF (ζ, α0/µ2) , max{‖ζ‖F − α0/µ2, 0} ·
ζ

‖ζ‖F
.

For the hj subproblem, we can directly solve (11) using shrinkage operator

(15) hk+1
j = Shrink(SHj(u

k) + λk
3/µ3, β/µ3),

where the shrinkage operator Shrink(·, β/µ3) is defined by

Shrink($, β/µ3) , max{|$| − β/µ3, 0} ·
$

|$| .

We note that the computational costs for these three kinds of Shrinkage operators
are linear in N , which are effective for the `1-norm based problem without includ-
ing any operators. Numerically, the jth subband of the shearlet transformation
of u can be implemented efficiently in frequency domain by the component-wise
multiplication [20]

SHj(u) = F−1(Ĥj . ∗ û) = F−1diag(Ĥj)Fu = Mju,

where û denotes the 2D Fourier transformation of u and Ĥj is the frequency domain
shearlet based on the jth subband. .∗ denotes the component-wise multiplication
operator. Besides, let F and F−1 be the 2D Fourier transform operator and its
inverse operator, respectively. In the numerical aspect, we present the SHj(u) as
vectorized version. Mj is a block circulant matrix which can be diagonalized by 2D
Fourier transform under the periodic boundary condition, with “diag” being the
diagonal operator [21].



322 T.T. WU, Z.F. PANG, Y.G. WANG, AND Y.F. YANG

Considering the inequality constraint ‖v‖2 ≤ σ in (12), the subproblem v is
equivalently transformed to

min
v

〈λ4, v〉+ µ4

2
‖Au+ v − f‖22

s.t. ‖v‖2 ≤ σ.
(16)

This is a constrained least square problem. Due to the structure of the above
problem, this operation is a projection onto a `2-ball [42]. The subproblem v can
be solved explicitly or very accurately via the projection operator

vk+1 = min

{
1,

σ

‖f −Auk − λk
4/µ4‖2

}
· (f −Auk − λk

4/µ4).(17)

2.2. n-subproblem. Secondly, we try to minimize L ((w, z, hj, v), (u,p), λ) w.r.t.
(u,p). The solutions (uk+1,pk+1) satisfy the following minimization problem

(uk+1,pk+1) ∈ argmin
u,p

〈λk
1 ,∇u − p〉+ 〈λk

2 , ε(p)〉+
N∑

j=1

〈λk
3 ,SHj(u)〉+ 〈λk

4 , Au〉

+
µ1

2
‖∇u− p−wk+1‖22 +

µ2

2
‖ε(p)− zk+1‖22

+
µ3

2

N∑

j=1

‖SHj(u)− hk+1
j ‖22 +

µ4

2
‖Au+ vk+1 − f‖22.(18)

The minimizations with respect to (u,p) should be simultaneously performed

since updating u and p are coupled to each other. Then, nk+1 = (uk+1, pk+1
1 , pk+1

2 )>

is the solution of a linear system:

Bnk+1 = b,(19)

where

B =




B1 −µ1(∇−
x )

> −µ1(∇−
y )

>

−µ1∇+
x B2

1
2
(∇+

y )
>∇−

x

−µ1∇+
y

1
2
(∇+

x )
>∇−

y B3




and

b =




∑N

j=1 M
∗
j

(
µ3h

k+1
j − λk

3

)
+∇>(µ1w

k+1 − λk
1)−A>λk

4 − µ4A
>(vk+1 − f)

(λk
1)1 − µ1w

k+1
1 + (∇+

x )
>
(
µ2z

k+1
1 − (λk

2)1
)
+ (∇+

y )
>
(
µ2z

k+1
3 − (λk

2)3
)

(λk
1)2 − µ1w

k+1
2 + (∇+

y )
>
(
µ2z

k+1
2 − (λk

2)2
)
+ (∇+

x )
>
(
µ2z

k+1
3 − (λk

2)3
)


 ,

where B1 = µ3

∑N

j=1 M
∗
j Mj + µ1∇>∇ + µ4A

>A, B2 = µ1I + µ2(∇+
x )

>∇−
x +

1
2
(∇+

y )
>∇−

y and B3 = µ1I + µ2(∇+
y )

>(∇−
y ) +

1
2
(∇+

x )
>∇−

x .
As we know, the coefficient matrix in (19) is block circular under the periodic

boundary conditions for u, so it can be diagonalized by 2-D Fourier transforms F .
Considering F>F = I and multiplying by F on both sides of (19), we obtain

B̂Fnk+1 = Fb,(20)

where B̂ = FBF> is the blockwise diagonal. Then the equation (19) can be solved
efficiently using Cramer’s rule. Accordingly, the closed-form solutions are given by

nk+1 = F>B̂−1Fb.(21)

Remark 1. In Algorithm 1, we choose the step length of θ ∈ (0, (
√
5 + 1)/2).

The convergence of the ADMM with the step length θ ∈ (0, (
√
5 + 1)/2) was first

established in [12] in the context of variational inequality, which covers the proof of
the following theorem.
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Algorithm 1: ADMM for constrained TGV-shearlet based CS-MRI
reconstruction

Input selection matrix P , data f . Choose model parameters α1, α0,

µi(i = 1, · · · , 4) > 0, and θ ∈ (0, (
√
5 + 1)/2). Initialization: u0,

(λi)
0(i = 1, · · · , 4), p0i (i = 1, 2). Set k = 0.

1. wk+1 is given by (13),
2. zk+1 is given by (14),

3. hk+1
j is given by (15),

4. v is given by (17),

5. uk+1, pk+1
1 , pk+1

2 are given by (21),
6. update Lagrangian multipliers by

λk+1
1 = λk

1 + θµ1(∇uk+1 − pk+1 −wk+1),

λk+1
2 = λk

2 + θµ2(ε(p
k+1)− zk+1),

λk+1
3 = λk

3 + θµ3(SHj(u
k+1)− hk+1

j ), (j = 1, · · · , N)

λk+1
4 = λk

4 + θµ4(Au
k+1 + vk+1 − f).

7. Stop if it is convergent; otherwise, set k := k + 1 and go to step 1.

Theorem 2.1. For any µi (i = 1, 2, 3, 4) > 0 and θ ∈ (0, (
√
5+ 1)/2), the sequence(

w
k, zk, hk, vk, uk

)
generated by Algorithm 1 from any starting point

(
w

0, z0, h0
j , v

0, u0
)

converges to a solution of the problem (6).

3. Experimental results

In this section, to show the improvement on our ADMM scheme for constrained
TGV and shearlet transformation based on the CS-MRI reconstruction, we employ
Algorithm 1 to some real clinical MRI reconstruction and compare it with the
state-of-the-art TV wavelet transform (“UTVW” for short) [29], the unconstrained
TGV shearlet model based results (“UTGVS” for short) proposed in [19]. Two in
vivo MR images and one MR angiography image used in our experiment are shown
in Fig. 1: brain MR image of size 256× 256, foot MR image of size 512× 512, and
brain magnetic resonance angiography ( BMRA) of size 512× 512.

(a) Original brain MR
image

(b) Original foot MR
image

(c) Original BMRA
image

Figure 1. Original images.

We perform the experiment under Matlab R2014a and Windows 10(x64) on a
PC with an Intel Core (TM) i7-4712MQ CPU at 2.3GHz and 6.0GB of memory.
Image reconstruction results will be analyzed and evaluated by quantitative and
visual evaluation methods. The quantitative evaluation of the reconstructed image
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is evaluated via the relative error (RE) and signal-to-noise ratio (SNR), which are
defined as:

RE =
‖u− utrue‖22
‖utrue‖22

and

SNR = 10 log10
‖utrue‖22

‖u− utrue‖22
,

where u is the reconstructed image and utrue is the original image. Theoretically,
the smaller RE and the larger SNR values normally indicate better performance in
image reconstruction.

In our algorithm, A = PF consists of p rows of the n× n matrix corresponding
to the full 2D discrete Fourier transform, where p � n. The p selected rows specify
the selected frequencies at which the measurements in f are collected. The smaller
the p, the lesser the amount of time required for an MR scanner to acquire f . The
sampling ratio is defined to be p/n. The scanning duration is shorter if the sam-
pling ratio is smaller. In MRI, we have certain freedom to select the rows, which
correspond to certain frequencies. In our experiments, for simplicity, we use pseudo
radial mask which can simulate randomness in acquisition for demonstration. Be-
sides, we use the three-scale shearlet transformation which possesses 29 subbands:
one for low frequency and 28 for high frequency, in the proposed algorithm. The
stopping criterion used in the experiment consists of checking that the RE is less
than 10−5.

For the optimized selection of parameters, µi (i = 1, 2, 3, 4) are used to balance
the data fidelity and two regularization terms, the values of them should be set in
accordance with both the noise level in the observation and the sparsity level of
the underlying image. Usually, the higher the noise level is, the smaller µi should
be, where µ1, µ2 are often smaller than µ3, µ4, respectively. Actually, they are
often empirically selected by visual inspection. Based on our experience, a simple
way to choose them is to try different values and compare the recovered images,
while µ1, µ2 ∈ (10−3, 10−5) and µ3, µ4 ∈ (10, 104). The positive weights α0, α1

and β are used to balance the first, second derivatives and shearlet transformation.
Proper values of them should be chosen based on sparsity feature of the underlying
image. Generally, α0, α1, β are chosen nearby 10−3 and 10−2 respectively in our
experiments.

3.1. Noise level estimation. For a given discrete image, this parameter σ can
be estimated as follows: Under the assumption that the noise is additive Gaussian
white noise, we can estimate σ according to the image noise level η. In case of not
having prior knowledge on noise level η, we need to estimate the noise level from
image signals based on specific image characteristics. Generally, the estimation
methods are classifiable into filter-based approaches, patch-based approaches, or
some combination of them. In filter-based approaches [38, 39], the noisy image is
firstly filtered using a high-pass filter to suppress the image structures. Then the
noise variance is computed from the difference between the noisy image and the
filtered image. The main difficulty of filter-based approaches is that the difference
between the two images is assumed to be the noise, but this assumption is not
always true, especially for images with complex structures or fine details. On the
other hand, in patch-based approaches [27, 30, 33], images are decomposed into a
number of patches. We can consider an image patch as a rectangular window in the
image with a size of N×N . The patch with the smallest standard deviation among
decomposed patches has the least change of intensity. The intensity variation of
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a homogenous patch is mainly caused by noise. In this paper, we try to capture
the noise level by using patches-based principal component analysis (PCA) [23, 33]
(e.g. the noise variance can be estimated as the smallest eigenvalue of the image
block covariance matrix). In the following experiments, we estimated σ from the
observed image, as discussed here.

3.2. Results of brain image reconstruction. In this example, we firstly test
the brain MR image and select 18.72% (45 radial sampling lines) samples uniformly
at random (as shown in Fig. 2 (b)). According to quantitative and visual qual-
ity evaluations, we manually select the optimal parameters σ = 0.01, β = 10−2,
(µ1, µ2, µ3, µ4) = (10−3, 10−5, 103, 104), (α0, α1) = (8 × 10−4, 10−3).

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 2. Reconstruction results for MR brain image from
18.72% spectral data. (a) Original brain; (b) Sampling mask;
(c) UTVW result (RE=6.44%, SNR=19.93); (d) UTGVS result
(RE=5.97%, SNR=20.77); (e) Algorithm 1 result (RE=5.45%,
SNR=21.60); (f) Close-up view of (a); (g) Close-up view of (c);
(h) Close-up view of (d); (i) Close-up view of (e).

Fig. 2 (c)-(e) show the visual comparisons of the reconstructed results by differ-
ent methods in the brain image. Meantime, the local magnification views shown in
Fig. 2 (g)-(i) illustrate that our proposed method produces a more natural-looking
reconstruction with more regular structures compared with the UTVW and UT-
GVS. We plot the changes of RE and SNR with respect to iterations in Fig. 3.
It shows that our constrained scheme in Algorithm 1 can reach a relatively lower
relative error and higher SNR within fewer iterations, and the UTVW and UTGVS
are slightly less efficient than our results. Especially, we tested different levels of
sample ratios. The comparison results are presented, where the RE and the SNR
of the recovered images to the true images are given in Table 1. These results and
observations clearly demonstrate the efficiency and stability of our algorithm.

3.3. Results of foot image Reconstruction. In the second experiment, we
test the foot MR image. The variable density sampling pattern, shown in Fig.
4 (b), is utilized to the k-space data of undersampling ratio 10.83% (51 radial
sampling lines). Admissible reconstruction needs more projections than noiseless
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Figure 3. Convergence curves of MR brain image (18.72% spec-
tral data): the y-axis is the relative error and SNR, the x-axis is
the number of iteration.

Table 1. The values of MR brain image reconstructed from dif-
ferent sample ratios.

Sample ratio Algorithm RE SNR

12.65%
UTVW 8.55% 17.31
UTGVS 8.26% 17.89

Algorithm 1 7.77% 18.49

14.65%
UTVW 8.14% 18.06
UTGVS 7.62% 18.61

Algorithm 1 7.07% 19.33

17.12%
UTVW 6.88% 19.38
UTGVS 6.34% 20.25

Algorithm 1 5.91% 20.90

18.76%
UTVW 6.11% 20.69
UTGVS 5.75% 21.11

Algorithm 1 5.03% 21.83

20.60%
UTVW 5.59% 21.25
UTGVS 5.33% 21.79

Algorithm 1 4.94% 22.49

21.76%
UTVW 5.42% 21.57
UTGVS 5.13% 22.11

Algorithm 1 4.64% 23.02

22.54%
UTVW 5.21% 22.09
UTGVS 4.91% 22.51

Algorithm 1 4.43% 23.42

cases because of inconsistencies in the data. To demonstrate the performance with
additive noise using the proposed method, white Gaussian noise with the variance
δ = 0.25 is added into real and imaginary parts of original k-space data, respectively.
We fix µ1 = 10−3, µ2 = 10−4, µ3 = 103, µ4 = 10, set α0 = 7× 10−3, α1 = 2× 10−3,
and choose optimal β = 1.5 × 10−2. Generally, the higher the noise level is, the
smaller µ4 should be.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 4. Reconstruction results for MR foot image from 10.83%
spectral data with σ = 0.25. (a) Original foot; (b) Sampling
mask; (c) UTVW result (RE=7.92%, SNR=20.06); (d) UTGVS re-
sult (RE=7.44%, SNR=20.98); (e) Algorithm 1 result (RE=6.13%,
SNR=22.79); (f) Close-up view of (a); (g) Close-up view of (c); (h)
Close-up view of (d); (i) Close-up view of (e).

The reconstructed images are shown in Fig. 4 (c)-(e), respectively. In Fig.
4 (g)-(i), we list the zoomed-in results of the red boxes in Fig. 4 (c)-(e). It is
seen that Algorithm 1 can adequately reconstruct the image in the sense that most
details and fine structures are accurately recovered from a small set of data samples
compared with other strategies. In order to show the robustness of the proposed
model, we test various noise levels in Table 2. For the noise-added image, better
noise suppressing and sharper textures or edges are achieved using our proposed
method than using others.

Table 2. The values of foot image reconstructed from different
noise levels (Sample ratios=10.83%).

Noise level (σ) Algorithm RE SNR

0.1
UTVW 7.09% 21.02
UTGVS 6.64% 21.79

Algorithm 1 5.77% 23.20

0.3
UTVW 8.39% 19.65
UTGVS 7.45% 20.97

Algorithm 1 6.14% 22.77

0.5
UTVW 9.51% 18.13
UTGVS 8.29% 19.98

Algorithm 1 6.43% 22.38

3.4. Results of BMRA Reconstruction. BMRA is a group of techniques based
on the MRI to image blood vessels, which contains complex geometric structures,
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limited spatial resolution and low image contrast. Furthermore, in comparison,
we demonstrate the effectiveness of our proposed algorithm by testing one slice of
BMRA image with multilevel structures. The sample ratio is set to be approxi-
mately 10.64% (50 radial sampling lines). Based on the selection by the authors
and several tries, we choose moderate values, σ = 0.01, β = 10−2, (µ1, µ2, µ3, µ4) =
(2 × 10−3, 10−5, 103, 103), (α0, α1) = (4 × 10−4, 10−3), which appear to give a
best compromise between convergence speed and image quality of our constrained
scheme.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 5. Reconstruction results for BMRA from 10.64% spec-
tral data. (a) Original BMRA; (b) Sampling mask; (c) UTVW
result (RE=8.37%, SNR=19.89); (d) UTGVS result (RE=7.99%,
SNR=20.31); (e) Algorithm 1 result (RE=7.68%, SNR=20.79); (f)
Close-up view of (a); (g) Close-up view of (c); (h) Close-up view
of (d); (i) Close-up view of (e).

Here we compare the constrained and unconstrained models simultaneously for
the BMRA image, as shown in Fig. 5 (c)-(e), and depict the corresponding zoomed-
in regions in Fig. 5 (g)-(i). We observe that the unconstrained UTVW and UTGVS
reconstruction results in patchy artifacts with some loss in fine details, while the
results obtained by the constrained model are visibly better. For more details, the
thin structures and junction parts are preserved due to the directional sensitivity of
shearlets. In the meanwhile, the ringing artifacts along the geometric features are
suppressed in our result from the contribution of the TGV. The comparison of RE
and SNR are plotted in Fig. 6. The horizontal label is chosen as iteration number
to show the convergence rate. These results indicate that Algorithm 1 performs
better than the UTVW and UTGVS in the sense that it obtains better recovery
results (smaller RE and higher SNR) within fewer iterations.

4. Conclusion

This paper proposed a constrained CS-MRI reconstruction model by combining
the TGV and the shearlet transformation regularization. The constraint as the es-
timation of the prior noise level can efficiently penalize the data fitting term so we
can obtain more robust reconstruction images than other state-of-the-art methods.
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Figure 6. Convergence curves of BMRA reconstruction (10.64%
spectral data): the y-axis is the relative error and SNR, the x-axis
is the number of iteration.

Since the proposed model is non-smooth, we use the ADMM and the projection
scheme to transform it into several easy solvable subproblems and thereby fast
convergence can be guaranteed. Our results in vivo results demonstrated that the
proposed model can preserve more details and fine structures than the existing
regularization methods while suppressing noise in applications of the MRI recon-
struction.
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