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ANALYSIS OF A GALERKIN FINITE ELEMENT METHOD

APPLIED TO A SINGULARLY PERTURBED

REACTION-DIFFUSION PROBLEM IN THREE DIMENSIONS

STEPHEN RUSSELL AND NIALL MADDEN

Abstract. We consider a linear singularly perturbed reaction-diffusion problem in three dimen-
sions and its numerical solution by a Galerkin finite element method with trilinear elements. The
problem is discretised on a Shishkin mesh with N intervals in each coordinate direction. Deriva-
tion of an error estimate for such a method is usually based on the (Shishkin) decomposition of
the solution into distinct layer components. Our contribution is to provide a careful and detailed
analysis of the trilinear interpolants of these components. From this analysis it is shown that, in
the usual energy norm the errors converge at a rate of O(N−2 + ε1/2N−1 lnN). This is validated
by numerical results.
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1. Introduction

Consider the following three-dimensional singularly perturbed reaction-diffusion
problem posed on the unit cube

Lu := −ε2∆u+ bu = f in Ω := (0, 1)3,

u = 0 on ∂Ω,
(1)

where the reaction coefficient b(x, y, z) ≥ 2β2, and β is a positive constant. In the
case of interest, the diffusion parameter, ε, can be arbitrarily small, i.e. 0 < ε� 1,
and so the problem (1) is singularly perturbed. As such, its solution typically
exhibits layers of width O(ε) along the boundary of the domain, ∂Ω.

It is well known that computing numerical solutions to singularly perturbed prob-
lems presents many difficulties. Solutions to these problems tend to be anisotropic
in nature on regions along the boundary or interior of the domain. Over the course
of the past five decades there have been many advances in devising specialised nu-
merical schemes to deal with this phenomenon. Many of these schemes fall into the
category of “fitted mesh” methods, where a standard discretisation is applied on a
specially designed non-uniform mesh.

The idea of using non-uniform meshes to solve singularly perturbed problems
was first introduced in 1969 by Bakhvalov [4]. However, it wasn’t until the early
1990s, with the introduction of the piecewise uniform mesh of Shishkin [19, 20], that
fitted mesh methods gained major prominence in the literature. In particular, the
application of finite difference methods to the one- and two-dimensional analogues
of (1) is well understood, see, e.g., [7, 17].

Finite element methods (FEMs) for one- and two-dimensional singularly per-
turbed reaction-diffusion problems, discretised on Shishkin meshes, are also well
documented in the literature. In the one-dimensional setting, Sun and Stynes [22]
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prove almost optimal convergence using piecewise polynomial elements, see also [10,
Thm. 6.6]. In two dimensions, Li and Navon [8] provide the first numerical
analysis for a Galerkin FEM applied to a singularly perturbed reaction-diffusion
problem. They prove almost second-order convergence in the L2-norm. Using
piecewise polynomial elements of order k, and quantifying the error in the energy
norm, Apel [3] proves convergence of O(N−k−1 + ε1/2N−k(lnN)k+1). Using piece-
wise bilinear elements, Liu et al. [11] prove convergence in the energy norm of
O(N−2 + ε1/2N−1 lnN). In that same paper, the authors provide the first full
numerical analysis of a sparse grid FEM applied to a singularly perturbed problem.
For a two-scale sparse grid method applied to a reaction-diffusion problem they
prove that the method converges at the same rate as the standard Galerkin FEM.
Madden and Russell [15]. extend the results of [11] and prove convergence of a
multiscale sparse grid FEM applied to the same problem.

The analysis of three-dimensional singularly perturbed reaction-diffusion prob-
lems has received, comparatively, little attention. The work of most relevance to
this paper is that of Shishkin and Shishkina [21], which provides a valuable solution
decomposition in three dimensions. Crucial bounds on the derivatives of each of
the solution decomposition components are also given. Chadha and Kopteva [5]
provide maximum norm a posteriori error estimates for a finite difference method
applied to a semi-linear reaction-diffusion problem in three dimensions. We also
make note of the work of Lopez and co-authors [12, 13, 14].

The numerical solution of three dimensional problems is computationally de-
manding, which motivates the use of sparse grid techniques, such as those referred
to above. In particular, the authors have devised and analysed a two-scale sparse
grid method for (1) [18]. However, that analysis establishes the difference between
the sparse grid and standard Galerkin solutions, so, for completeness, a full analysis
of the latter method is required; this paper provides that. It does so by employing a
Shishkin decomposition of the solution into distinct layer components, established
by Shishkin and Shishkina [21]. We then provide a careful and detailed analysis of
the trilinear interpolants of these components. From this, the numerical analysis
of the method follows. It should be noted that the interpolation results given here
also form the basis for the analysis of other techniques, such as the balanced norm
method of Lin and Stynes [9] and the FOSLS-type method of Adler et al. [1].

This paper is organised as follows. In Section 2.1 we present a canonical example
of a solution to (1), which motivates a three-dimensional piecewise uniform mesh.
The Shishkin decomposition is presented in Section 2.2, and standard bounds on
the components are reported. The heart of this paper is in Section 3, where we give
a detailed analysis of the decomposition components in the energy norm. The FEM
is given in Section 4, and the error estimate is readily deduced from the preceding
interpolation analysis. Numerical results, presented in Section 5 verify that the
theoretical results are sharp.

Notation. We use the following standard notation for function spaces and norms
(see, e.g., [6]):

• let Cp(Ω) be the space of all real-valued functions, v, defined on Ω, such
that v, and all its partial derivatives up to order p, are continuous on Ω;

• Cm,α(Ω) =
{

v ∈ Cm(Ω̄); ∀β, |β| = m, ∃Cβ , ∀x, y ∈ Ω, |∂βv(x)− ∂βv(y)|
≤ Cβ‖x− y‖α};
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• the space Lp(Ω) := {v :
∫

Ω |v|p <∞};
• the Sobolev space Wm,p(Ω) := {v ∈ Lp(Ω); ∀α, |α| ≤ m, ∂αv ∈ Lp(Ω)};
• let T be a bounded linear operator T :W 1,p(Ω) → Lp(∂Ω) such that

– Tu = u|∂Ω, u ∈W 1,p(Ω) ∩ C(Ω̄),
– ‖Tu‖Lp(∂Ω) ≤ C(p,Ω)‖u‖W 1,p(Ω), u ∈ W 1,p(Ω),

where Tu is the trace of u.
• the spaces H1(Ω) := {v ∈ L2(Ω); ∂v ∈ L2(Ω)}, and H1

0 (Ω) := {v ∈
H1(Ω);Tu = 0};

• the norms ‖v‖0,Ω :=
(∫

Ω
|v|2dx

)1/2
, ‖v‖4,Ω :=

(
∑

|α|≤4

∫

Ω
|∂αv|2dx

)1/2
,

‖v‖0,∞,Ω := ess. sup
x∈Ω

|v(x)|, and ‖v‖1,∞,Ω := max
|α|≤1

{ess. sup
x∈Ω

|∂αv(x)|}.

We use B(·, ·) to denote the bilinear form associated with the reaction-diffusion
problem (1), that is

B(u, v) := ε2(∇u,∇v) + (bu, v).

The corresponding energy norm is

(2) ‖u‖ε := {ε2‖∇u‖20,Ω + ‖u‖20,Ω}
1/2.

Throughout this paper we shall use the letter C, with or without subscript, to
denote a generic positive constant that is independent of the diffusion parameter ε
and the discretisation parameter N . It may stand for different values in different
places.

2. Shishkin mesh and decomposition

2.1. A three-dimensional piecewise uniform mesh. Solutions to three-dimen
-sional problems are, by their nature, more difficult to visualise than their one-
and two-dimensional counterparts. Furthermore, since the problem is singularly
perturbed its solution possesses layers along the boundary of the domain. In an
attempt to provide some insight into the nature of the layers, we consider the
following sample problem, taken from Chadha and Kopteva [5].

Example 1. In (1), set b ≡ 1 and f such that

u =

(

cos
(πx

2

)

−
e−x/ε − e−1/ε

1− e−1/ε

)(

1− y −
e−y/ε − e−1/ε

1− e−1/ε

)

·

(

1− z2 −
e−z/ε − e−1/ε

1− e−1/ε

)

.(3)

This problem exhibits 1D exponential layers near the faces of the domain,
(0, y, z), (x, 0, z) and (x, y, 0), as well as 2D layers near the edges, (0, 0, z), (0, y, 0)
and (x, 0, 0), and a 3D layer at the origin (0, 0, 0). We visualise u in Figure 1 by
taking cross-sections at z = 1/2, y = 1/2 and x = 1/2 in sub-plots (a), (b) and (c),
respectively.

Remark 2. The problem that has (3) as its solution is artificially simplified. In
general, solutions to (1) feature six 1D, twelve 2D and eight 3D layers. Therefore,
when the interior of the domain is included, there are 27 distinct regions to be
analysed. However, Example 1 captures the essence of the problem: it features 1D,
2D and 3D layers, and so possesses all the mathematical complexity of the most
general version of (1), but the amount of notation and repetitive analysis is greatly
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(a) Solution to Test Problem (3), with the z-axis fixed at z = 1/2.
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(b) Solution to Test Problem (3), with the y-axis fixed at y = 1/2.
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(c) Solution to Test Problem (3), with the x-axis fixed at x = 1/2.

Figure 1. Solution to Test Problem (3).

reduced. Extending the mesh to resolve all 26 possible layers in the solution to
(1) is trivial computationally, but would greatly increase the amount of technical
mathematical arguments, without providing any new insights.

Motivated by Example 1 we now define and label the sub-regions of the domain,
Ω. To start, faces of the boundary, ∂Ω, are denoted by

Γ1 := {(x, 0, z)|0 ≤ x ≤ 1, 0 ≤ z ≤ 1}, Γ2 := {(0, y, z)|0 ≤ y ≤ 1, 0 ≤ z ≤ 1},

Γ3 := {(x, y, 0)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1}, Γ4 := {(x, 1, z)|0 ≤ x ≤ 1, 0 ≤ z ≤ 1},

Γ5 := {(1, y, z)|0 ≤ y ≤ 1, 0 ≤ z ≤ 1}, Γ6 := {(x, y, 1)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.

(4)
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Let E1 := Γ1∩Γ3, E2 := Γ2∩Γ3, E3 := Γ1∩Γ2 be the three edges that intersect at
the point (0, 0, 0), and let c := Γ1 ∩ Γ2 ∩ Γ3 denote the corner at the point (0, 0, 0).
See Figure 2.

(0, 1, 0)

(0, 1, 1)

(0, 0, 1)

(1, 0, 0)

(1, 0, 1)

(1, 1, 0)

(0, 0, 0) E1E2

E3

y

z

x

Γ2 Γ1

Γ3

c

Figure 2. Labelling of faces, edges and corner of interest for Test
Problem (3).

Let N be a positive integer. Let τ be the transition parameter that specifies the
point where the mesh transitions between coarse and fine, defined as

τ = min

{

1

2
,
2ε lnN

β

}

.

Assumption 3. We make the assumption that ε ≤ CN−1, as otherwise the analy-
sis can be carried out on a uniform mesh using standard arguments. In particular,
the subsequent analysis assumes that

τ = 2εβ−1 lnN.

We also make the assumption that b, f ∈ C4,α(Ω̄), α ∈ (0, 1). Along with this we
assume that the corner compatibility conditions are such that u ∈ C6,α(Ω)∩C3,α(Ω̄),
(see [21, 23, 24] for more details).

Divide the one-dimensional x-interval [0, 1] into two subintervals: [0, τ ] and [τ, 1].
These subintervals are then both partitioned into N/2 mesh intervals. This gives
a one-dimensional piecewise uniform mesh on the x-interval that we denote as
TN [0, 1]. The corresponding meshes in the y- and z-directions are constructed in
the same way. The three-dimensional Shishkin mesh, TN,N,N(Ω̄), is constructed by
taking the tensor product of these three one-dimensional meshes, as visualised in
Figure 3.

We now present notation used to denote the various subdomains of Ω. We use the
subscripts B, I, and U to represent, respectively, the intervals [0, τ ] (which contains
the boundary layer), [τ, 1] (the interior region), and [0, 1] (the unit interval). These
can be combined so that, for example, ΩBBB is the corner layer region; see Figure 4.
Also, for example, ΩUBI is the region [0, 1]× [0, τ ]× [τ, 1] = ΩBBI ∪ ΩIBI .
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Figure 3. Two perspectives of a Shishkin mesh on the unit cube.
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Figure 4. Decomposition of the mesh into layer regions.

2.2. Solution decomposition. In order to present a thorough analysis of a nu-
merical method on a Shishkin mesh, a solution decomposition is required. We use
a variant of the solution decomposition proposed by Shishkin and Shishkina [21,
Section 3.2]. This decomposition represents u as the sum of
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• a regular component v,
• components r1, r2 and r3, corresponding to the 1D layers associated with
Γi, i = 1, 2, 3,

• components s1, s2 and s3, corresponding to the 2D layers associated with
Ei, i = 1, 2, 3, and

• a component t, corresponding to the 3D layer associated with the corner c.

Lemma 4 ([21, Theorem 3.2.2]). Let b, f ∈ C4,α(Ω̄), α ∈ (0, 1). Then the solution,
u, to (1) can be decomposed as

(5) u = v +

3
∑

i=1

ri +

3
∑

i=1

si + t,

where for l,m, n ≥ 0 there exists a constant C, such that

∣

∣

∣

∣

∂l+m+nv

∂xl∂ym∂zn
(x, y, z)

∣

∣

∣

∣

≤ C
(

1 + ε2−l−m−n
)

, for 0 ≤ l +m+ n ≤ 4,

(6a)

∣

∣

∣

∣

∂l+m+nr1
∂xl∂ym∂zn

(x, y, z)

∣

∣

∣

∣

≤ C(1 + ε2−l−n)ε−me−βy/ε, for 0 ≤ l +m+ n ≤ 3,

(6b)

∣

∣

∣

∣

∂l+m+nr2
∂xl∂ym∂zn

(x, y, z)

∣

∣

∣

∣

≤ C(1 + ε2−m−n)ε−le−βx/ε, for 0 ≤ l +m+ n ≤ 3,

(6c)

∣

∣

∣

∣

∂l+m+nr3
∂xl∂ym∂zn

(x, y, z)

∣

∣

∣

∣

≤ C(1 + ε2−l−m)ε−ne−βz/ε, for 0 ≤ l +m+ n ≤ 3,

(6d)

∣

∣

∣

∣

∂l+m+ns1
∂xl∂ym∂zn

(x, y, z)

∣

∣

∣

∣

≤ C(1 + ε2−l)ε−m−ne−β(y+z)/ε, for 0 ≤ l +m+ n ≤ 3,

(6e)

∣

∣

∣

∣

∂l+m+ns2
∂xl∂ym∂zn

(x, y, z)

∣

∣

∣

∣

≤ C(1 + ε2−m)ε−l−ne−β(x+z)/ε, for 0 ≤ l +m+ n ≤ 3,

(6f)

∣

∣

∣

∣

∂l+m+ns3
∂xl∂ym∂zn

(x, y, z)

∣

∣

∣

∣

≤ C(1 + ε2−n)ε−l−me−β(x+y)/ε, for 0 ≤ l +m+ n ≤ 3,

(6g)

∣

∣

∣

∣

∂l+m+nt

∂xl∂ym∂zn
(x, y, z)

∣

∣

∣

∣

≤ Cε−l−m−ne−β(x+y+z)/ε, for 0 ≤ l +m+ n ≤ 3.

(6h)

The following lemma provides bounds on derivatives in the L2-norm required for
the analysis of the interpolation error.
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Lemma 5. For 0 ≤ l + m + n ≤ 3, where the solution, u, to (1) is once again
decomposed as in (5), there exists a constant, C, such that

∥

∥

∥

∥

∂l+m+nr1
∂xl∂ym∂zn

∥

∥

∥

∥

0,ΩUBU

≤C(1 + ε2−l−n)ε1/2−m,

∥

∥

∥

∥

∂l+m+nr1
∂xl∂ym∂zn

∥

∥

∥

∥

0,Ω\ΩUBU

≤C(1 + ε2−l−n)ε1/2−mN−2,

∥

∥

∥

∥

∂l+m+nr2
∂xl∂ym∂zn

∥

∥

∥

∥

0,ΩBUU

≤C(1 + ε2−m−n)ε1/2−l,

∥

∥

∥

∥

∂l+m+nr2
∂xl∂ym∂zn

∥

∥

∥

∥

0,Ω\ΩBUU

≤C(1 + ε2−m−n)ε1/2−lN−2,

∥

∥

∥

∥

∂l+m+ns1
∂xl∂ym∂zn

∥

∥

∥

∥

0,ΩUBB

≤C(1 + ε2−l)ε1−m−n,

∥

∥

∥

∥

∂l+m+ns1
∂xl∂ym∂zn

∥

∥

∥

∥

0,Ω\ΩUBB

≤C(1 + ε2−l)ε1−m−nN−2,

∥

∥

∥

∥

∂l+m+ns2
∂xl∂ym∂zn

∥

∥

∥

∥

0,ΩBUB

≤C(1 + ε2−m)ε1−l−n,

∥

∥

∥

∥

∂l+m+ns2
∂xl∂ym∂zn

∥

∥

∥

∥

0,Ω\ΩBUB

≤C(1 + ε2−m)ε1−l−nN−2,

∥

∥

∥

∥

∂l+m+nt

∂xl∂ym∂zn

∥

∥

∥

∥

0,ΩBBB

≤Cε3/2−l−m−n,

∥

∥

∥

∥

∂l+m+nt

∂xl∂ym∂zn

∥

∥

∥

∥

0,Ω\ΩBBB

≤Cε3/2−l−m−nN−2.

Analogous bounds for r3 and s3, on the relevant subdomains, also hold.

Proof. The results follow directly from Lemma 4 and the definition of the L2-
norm. �

3. Trilinear interpolation

Recall the one-dimensional piecewise uniform mesh, TN [0, 1], and the associated
three-dimensional Shishkin mesh TN,N,N(Ω̄) defined in Section 2.1. Let VN [0, 1] ⊂

H1[0, 1] be the space of piecewise linear functions on TN [0, 1]. The space of piece-
wise trilinear functions is VN,N,N(Ω) = VN [0, 1] × VN [0, 1] × VN [0, 1]. We now

define IN,N,N : C(Ω̄) → VN,N,N(Ω) to be the nodal piecewise trilinear interpolation

operator on TN,N,N(Ω).
Since we are analysing a finite element method on a layer-adapted mesh, spe-

cialised anisotropic interpolation estimates are needed. However, as highlighted by
Roos [16, §3.1], the approach that is usually taken for two-dimensional problems is
not useful in three dimensions.

To obtain useful interpolation error estimates on the layer regions of the do-
main we use the following anisotropic interpolation analysis results of Apel and
Dobrowolski [2] and Apel [3].
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Lemma 6. [2, Theorem 3] Let Υ be any mesh brick of size hx × hy × hz. Let
φ ∈ H2(Υ) ∩ C(Ω̄). Then its piecewise trilinear nodal interpolant IN,N,Nφ satisfies
the bounds

‖φ− IN,N,Nφ‖0,Υ ≤C(h2x‖φxx‖0,Υ + h2y‖φyy‖0,Υ + h2z‖φzz‖0,Υ

+ hxhy‖φxy‖0,Υ + hxhz‖φxz‖0,Υ + hyhz‖φyz‖0,Υ).
(7)

The result (7) is the natural three-dimensional extension of its two-dimensional
counterpart for bilinear interpolants, see, e.g., [11, Lemma 2.2]. Providing that
φ ∈ H2(K), the derivative of the interpolation error may be bounded as

(8) ‖(φ− IN,Nφ)x‖0,K ≤ C(hx‖φxx‖0,K + ky‖φxy‖0,K),

where K is a mesh rectangle of size hx × hy and IN,Nφ is the standard bilinear

interpolant of φ; see [11, Lemma 2]. For φ ∈ H2 the estimate (8) does not have a
“natural” analogue in three dimensions for trilinear interpolants in the L2-norm.
However, by assuming additional regularity on φ, one has the following bounds.

Lemma 7. [2, Theorem 4] Let Υ be any mesh brick of size hx × hy × hz. Let
φ ∈ W 3,2(Υ)∩C(Ω̄). Then its piecewise trilinear nodal interpolant IN,N,Nφ satisfies
the bounds

(9a) ‖(φ− IN,N,Nφ)x‖0,Υ

≤ C(hx‖φxx‖0,Υ + hxhy‖φxxy‖0,Υ + hxhz‖φxxz‖0,Υ

+ hyhz‖φxyz‖0,Υ + h2x‖φxxx‖0,Υ + h2y‖φxyy‖0,Υ + h2z‖φxzz‖0,Υ),

(9b) ‖(φ− IN,N,Nφ)y‖0,Υ

≤ C(hy‖φyy‖0,Υ + hxhy‖φxyy‖0,Υ + hxhz‖φxyz‖0,Υ

+ hyhz‖φyyz‖0,Υ + h2x‖φxxy‖0,Υ + h2y‖φyyy‖0,Υ + h2z‖φyzz‖0,Υ),

(9c) ‖(φ− IN,N,Nφ)z‖0,Υ

≤ C(hz‖φzz‖0,Υ + hxhy‖φxyz‖0,Υ + hxhz‖φxzz‖0,Υ

+ hyhz‖φyzz‖0,Υ + h2x‖φxxz‖0,Υ + h2y‖φyyz‖0,Υ + h2z‖φzzz‖0,Υ).

Using these results, we now present an analysis for the interpolation error in the
L2-norm.

Remark 8. Generally, one only assumes that the solution to the variational form
of (1) is found in H1

0 (Ω). However, in addition, u solves (1), so, in light of
Assumption 3, which is required for the solution decomposition to exist, the premise
of Lemma 7 is entirely reasonable.

Lemma 9. Suppose Ω = (0, 1)3. Let u ∈ H1
0 (Ω) be the solution to (1), and

IN,N,Nu be its piecewise trilinear nodal interpolant. Then there exists a constant
C, independent of ε and N such that

‖u− IN,N,Nu‖0,Ω ≤ CN−2.

Proof. Recall the solution decomposition (5): u = v +
∑3
i=1 ri +

∑3
i=1 si + t. We

analyse each component of u separately, frequently making use of Assumption 3.
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Analysing the v component first, we have from (6a) and (7) that

‖v − IN,N,Nv‖0,Ω

≤CN−2

(

∥

∥

∥

∥

∂2v

∂x2

∥

∥

∥

∥

0,Ω

+

∥

∥

∥

∥

∂2v

∂y2

∥

∥

∥

∥

0,Ω

+

∥

∥

∥

∥

∂2v

∂z2

∥

∥

∥

∥

0,Ω

+

∥

∥

∥

∥

∂2v

∂x∂y

∥

∥

∥

∥

0,Ω

+

∥

∥

∥

∥

∂2v

∂x∂z

∥

∥

∥

∥

0,Ω

+

∥

∥

∥

∥

∂2v

∂y∂z

∥

∥

∥

∥

0,Ω

)

≤CN−2.

For the r1 term on the region ΩUBU := ΩBBB ∪ΩIBB ∪ΩIBI ∪ΩBBI , we have, by
Lemmas 5 and 6, that

‖r1 − IN,N,Nr1‖0,ΩUBU

≤C

(

N−2

∥

∥

∥

∥

∂2r1
∂x2

∥

∥

∥

∥

0,ΩUBU

+ (εN−1 lnN)2
∥

∥

∥

∥

∂2r1
∂y2

∥

∥

∥

∥

0,ΩUBU

+N−2

∥

∥

∥

∥

∂2r1
∂z2

∥

∥

∥

∥

0,ΩUBU

+N−1(εN−1 lnN)

∥

∥

∥

∥

∂2r1
∂x∂y

∥

∥

∥

∥

0,ΩUBU

+N−2

∥

∥

∥

∥

∂2r1
∂x∂z

∥

∥

∥

∥

0,ΩUBU

+ (εN−1 lnN)N−1

∥

∥

∥

∥

∂2r1
∂y∂z

∥

∥

∥

∥

0,ΩUBU

)

≤C
(

ε1/2N−2 + ε1/2N−2 ln2N + ε1/2N−2 + ε1/2N−2 lnN

+ε1/2N−2 + ε1/2N−2 lnN
)

≤Cε1/2N−2 ln2N.

On the region Ω\ΩUBU , applying a triangle inequality and (6b) yields

‖r1 − IN,N,Nr1‖0,Ω\ΩUBU

≤‖r1‖0,Ω\ΩUBU
+ ‖IN,N,Nr1‖0,Ω\ΩUBU

≤Cε1/2N−2 + C
√

meas(Ω\ΩUBU )‖r1‖0,∞,Ω\ΩUBU

≤CN−2.

Combining these last two inequalities we can see that ‖r1 − IN,N,Nr1‖0,Ω ≤

CN−2. Analogous arguments can be applied to show that the same bound holds
for the r2 and r3 components.
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Next we analyse the s1 component, which is associated with the 2D layer near
x = 0. By using Lemmas 5 and 6 on the region ΩUBB := ΩBBB ∪ ΩIBB one has

‖s1 − IN,N,Ns1‖0,ΩUBB

≤C

(

N−2

∥

∥

∥

∥

∂2s1
∂x2

∥

∥

∥

∥

0,ΩUBB

+ (εN−1 lnN)2
∥

∥

∥

∥

∂2s1
∂y2

∥

∥

∥

∥

0,ΩUBB

+ (εN−1 lnN)2
∥

∥

∥

∥

∂2s1
∂z2

∥

∥

∥

∥

0,ΩUBB

+N−1(εN−1 lnN)

∥

∥

∥

∥

∂2s1
∂x∂y

∥

∥

∥

∥

0,ΩUBB

+N−1(εN−1 lnN)

∥

∥

∥

∥

∂2s1
∂x∂z

∥

∥

∥

∥

0,ΩUBB

+ (εN−1 lnN)2
∥

∥

∥

∥

∂2s1
∂y∂z

∥

∥

∥

∥

0,ΩUBB

)

≤C
(

εN−2 + εN−2 ln2N + εN−2 ln2N + εN−2 lnN

+εN−2 lnN + εN−2 ln2N
)

≤CεN−2 ln2N.

Using (6e) on the region Ω\ΩUBB gives

‖s1 − IN,N,Ns1‖0,Ω\ΩUBB

≤‖s1‖0,Ω\ΩUBB
+ ‖IN,N,Ns1‖0,Ω\ΩUBB

≤CεN−2 + C
√

meas(Ω\ΩUBB)‖s1‖0,∞,Ω\ΩUBB
≤ CN−2.

Similar results are valid for s2 and s3.
Finally we look at the corner layer function, t, first over the region ΩBBB. By

applying Lemma 6 and bounds from Lemma 5 one has

‖t− IN,N,Nt‖0,ΩBBB

≤C(εN−1 lnN)2
(
∥

∥

∥

∥

∂2t

∂x2

∥

∥

∥

∥

0,ΩBBB

+

∥

∥

∥

∥

∂2t

∂y2

∥

∥

∥

∥

0,ΩBBB

+

∥

∥

∥

∥

∂2t

∂z2

∥

∥

∥

∥

0,ΩBBB

+

∥

∥

∥

∥

∂2t

∂x∂y

∥

∥

∥

∥

0,ΩBBB

+

∥

∥

∥

∥

∂2t

∂x∂z

∥

∥

∥

∥

0,ΩBBB

+

∥

∥

∥

∥

∂2t

∂y∂z

∥

∥

∥

∥

0,ΩBBB

)

≤Cε3/2N−2 ln2N.

Using the result (6h) on the region Ω\ΩBBB yields

‖t− IN,N,N t‖0,Ω\ΩBBB
≤ ‖t‖0,∞,Ω\ΩBBB

≤ CN−2.

Collecting these results and invoking Assumption 3 yields the desired result. �

Lemma 10. Let u and IN,N,Nu be as defined in Lemma 9. Then there exists a
constant C, independent of ε and N such that

ε‖∇(u− IN,N,Nu)‖0,Ω ≤ Cε1/2N−1 lnN.
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Proof. We decompose u as in the solution decomposition (5), and analyse each term
in turn. By Lemma 7 we have

ε

∥

∥

∥

∥

∂

∂x
(v − IN,N,Nv)

∥

∥

∥

∥

0,Ω

≤CεN−1

∥

∥

∥

∥

∂2v

∂x2

∥

∥

∥

∥

0,Ω

+ CεN−2

(∥

∥

∥

∥

∂3v

∂x2∂y

∥

∥

∥

∥

0,Ω

+

∥

∥

∥

∥

∂3v

∂x2∂z

∥

∥

∥

∥

0,Ω

+

∥

∥

∥

∥

∂3v

∂x∂y∂z

∥

∥

∥

∥

0,Ω

+

∥

∥

∥

∥

∂3v

∂x3

∥

∥

∥

∥

0,Ω

+

∥

∥

∥

∥

∂3v

∂x∂y2

∥

∥

∥

∥

0,Ω

+

∥

∥

∥

∥

∂3v

∂x∂z2

∥

∥

∥

∥

0,Ω

)

≤C(εN−1 +N−2) ≤ CN−2.

For the r1 term on the region ΩUBU := ΩBBB ∪ ΩIBB ∪ ΩIBI ∪ ΩBBI , Lemmas 5
and 7 give that

ε

∥

∥

∥

∥

∂

∂x
(r1 − IN,N,Nr1)

∥

∥

∥

∥

0,ΩUBU

≤Cε

(

N−1

∥

∥

∥

∥

∂2r1
∂x2

∥

∥

∥

∥

0,ΩUBU

+ εN−2 lnN

∥

∥

∥

∥

∂3r1
∂x2∂y

∥

∥

∥

∥

0,ΩUBU

+N−2

∥

∥

∥

∥

∂3r1
∂x2∂z

∥

∥

∥

∥

0,ΩUBU

+ εN−2 lnN

∥

∥

∥

∥

∂3r1
∂x∂y∂z

∥

∥

∥

∥

0,ΩUBU

+N−2

∥

∥

∥

∥

∂3r1
∂x3

∥

∥

∥

∥

0,ΩUBU

+ ε2N−2 ln2N

∥

∥

∥

∥

∂3r1
∂x∂y2

∥

∥

∥

∥

0,ΩUBU

+N−2

∥

∥

∥

∥

∂3r1
∂x∂z2

∥

∥

∥

∥

0,ΩUBU

)

≤Cε(ε3/2N−1 + ε3/2N−2 lnN +N−2 + ε3/2N−2 lnN

+N−2 + ε3/2N−2 ln2N +N−2)

≤C(N−2 + ε3/2N−1),

(10)

while on the region Ω\ΩUBU the results of Lemmas 4 and 5, together with an
inverse inequality, yield

ε

∥

∥

∥

∥

∂

∂x
(r1 − IN,N,Nr1)

∥

∥

∥

∥

0,Ω\ΩUBU

≤ε

(

∥

∥

∥

∥

∂r1
∂x

∥

∥

∥

∥

0,Ω\ΩUBU

+

∥

∥

∥

∥

∂

∂x
IN,N,Nr1

∥

∥

∥

∥

0,Ω\ΩUBU

)

≤Cε

(

max
(x,y,z)∈Ω\ΩUBU

e−βy/ε +N
∥

∥IN,N,Nr1
∥

∥

0,Ω\ΩUBU

)

≤Cε
(

N−2 +N ‖r1‖0,∞,Ω\ΩUBU

)

≤CN−2.

Notice that the pointwise bound on r1 does not depend on x. Similarly, the
pointwise bound on r3 does not depend on x, so analogous arguments can be used
to bound the r3 term. The pointwise bound on r2 does depend on x, so different
arguments are used. We proceed as follows. By applying Lemmas 5 and 7 on the
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region ΩBUU := ΩBBB ∪ ΩBIB ∪ΩBII ∪ ΩBBI , one has

ε

∥

∥

∥

∥

∂

∂x
(r2 − IN,N,Nr2)

∥

∥

∥

∥

0,ΩBUU

≤Cε

(

εN−1 lnN

∥

∥

∥

∥

∂2r2
∂x2

∥

∥

∥

∥

0,ΩBUU

+ εN−2 lnN

∥

∥

∥

∥

∂3r2
∂x2∂y

∥

∥

∥

∥

0,ΩBUU

+ εN−2 lnN

∥

∥

∥

∥

∂3r2
∂2x∂z

∥

∥

∥

∥

0,ΩBUU

+N−2

∥

∥

∥

∥

∂3r2
∂x∂y∂z

∥

∥

∥

∥

0,ΩBUU

+ ε2N−2 ln2N

∥

∥

∥

∥

∂3r2
∂3x

∥

∥

∥

∥

0,ΩBUU

+N−2

∥

∥

∥

∥

∂3r2
∂x∂2y

∥

∥

∥

∥

0,ΩBUU

+N−2

∥

∥

∥

∥

∂3r2
∂x∂2z

∥

∥

∥

∥

0,ΩBUU

)

≤C

(

ε1/2N−1 lnN + ε1/2N−2 lnN + ε1/2N−2 lnN

+ ε1/2N−2 + ε1/2N−2 ln2N + ε1/2N−2 + ε1/2N−2

)

≤Cε1/2N−1 lnN.

(11)

On the region Ω\ΩBUU , Lemmas 4 and 5, along with an inverse estimate, yield

ε

∥

∥

∥

∥

∂

∂x
(r2 − IN,N,Nr2)

∥

∥

∥

∥

0,Ω\ΩBUU

≤Cε

(

∥

∥

∥

∥

∂r2
∂x

∥

∥

∥

∥

0,Ω\ΩBUU

+

∥

∥

∥

∥

∂

∂x
IN,N,Nr2

∥

∥

∥

∥

0,Ω\ΩBUU

)

≤Cε
(

ε−1/2N−2 +N‖IN,N,Nr2‖0,Ω\ΩBUU

)

≤Cε
(

ε−1/2N−2 +N‖r2‖0,∞,Ω\ΩBUU

)

≤CN−2.

Moving on to the 2D layer, using Lemmas 5 and 7, firstly on the region ΩUBB :=
ΩBBB∪ΩIBB, and then Lemma 4 together with an inverse inequality on the region
Ω\ΩUBB one has

ε

∥

∥

∥

∥

∂

∂x
(s1 − IN,N,Ns1)

∥

∥

∥

∥

0,ΩUBB

≤Cε

(

N−1

∥

∥

∥

∥

∂2s1
∂x2

∥

∥

∥

∥

0,ΩUBB

+ εN−2 lnN

∥

∥

∥

∥

∂3s1
∂2x∂y

∥

∥

∥

∥

0,ΩUBB

+ εN−2 lnN

∥

∥

∥

∥

∂3s1
∂2x∂z

∥

∥

∥

∥

0,ΩUBB

+ ε2N−2 ln2N

∥

∥

∥

∥

∂3s1
∂x∂y∂z

∥

∥

∥

∥

0,ΩUBB

+N−2

∥

∥

∥

∥

∂3s1
∂3x

∥

∥

∥

∥

0,ΩUBB

+ ε2N−2 ln2N

∥

∥

∥

∥

∂3s1
∂x∂2y

∥

∥

∥

∥

0,ΩUBB

+ ε2N−2 ln2N

∥

∥

∥

∥

∂3s1
∂x∂2z

∥

∥

∥

∥

0,ΩUBB

)

≤C
(

ε2N−1 + ε2N−2 lnN + ε2N−2 lnN

+ ε2N−2 ln2N +N−2 + ε2N−2 ln2N + ε2N−2 ln2N
)

≤C
(

N−2 + ε2N−1 + ε2N−2 ln2N
)

,



310 S. RUSSELL AND N. MADDEN

and

ε

∥

∥

∥

∥

∂

∂x
(s1 − IN,N,Ns1)

∥

∥

∥

∥

0,Ω\ΩUBB

≤ ε

(

∥

∥

∥

∥

∂s1
∂x

∥

∥

∥

∥

0,Ω\ΩUBB

+

∥

∥

∥

∥

∂

∂x
IN,N,Ns1

∥

∥

∥

∥

0,Ω\ΩUBB

)

≤ Cε
(

N−2 +N
∥

∥IN,N,Ns1
∥

∥

0,Ω\ΩUBB

)

≤ Cε
(

N−2 +N ‖s1‖0,∞,Ω\ΩUBB

)

≤ CN−2.

For the s2 component, by applying Lemmas 5 and 7 on the region ΩBUB := ΩBBB∪
ΩBIB one obtains

ε

∥

∥

∥

∥

∂

∂x
(s2 − IN,N,Ns2)

∥

∥

∥

∥

0,ΩBUB

≤Cε

(

εN−1 lnN

∥

∥

∥

∥

∂2s2
∂x2

∥

∥

∥

∥

0,ΩBUB

+ εN−2 lnN

∥

∥

∥

∥

∂3s2
∂2x∂y

∥

∥

∥

∥

0,ΩBUB

+ ε2N−2 ln2N

∥

∥

∥

∥

∂3s2
∂2x∂z

∥

∥

∥

∥

0,ΩBUB

+ εN−2 lnN

∥

∥

∥

∥

∂3s2
∂x∂y∂z

∥

∥

∥

∥

0,ΩBUB

+ ε2N−2 ln2N

∥

∥

∥

∥

∂3s2
∂3x

∥

∥

∥

∥

0,ΩBUB

+N−2

∥

∥

∥

∥

∂3s2
∂x∂2y

∥

∥

∥

∥

0,ΩBUB

+ ε2N−2 ln2N

∥

∥

∥

∥

∂3s2
∂x∂2z

∥

∥

∥

∥

0,ΩBUB

)

≤C
(

εN−1 lnN + εN−2 lnN + εN−2 ln2N

+ εN−2 lnN + εN−2 lnN + εN−2 ln2N + εN−2 + εN−2 ln2N
)

≤CεN−1 lnN,

while on Ω\ΩBUB, Lemmas 4 and 5, along with an inverse inequality, yield

ε

∥

∥

∥

∥

∂

∂x
(s2 − IN,N,Ns2)

∥

∥

∥

∥

0,Ω\ΩBUB

≤ε

(

∥

∥

∥

∥

∂s2
∂x

∥

∥

∥

∥

0,Ω\ΩBUB

+

∥

∥

∥

∥

∂

∂x
IN,N,Ns2

∥

∥

∥

∥

0,Ω\ΩBUB

)

≤Cε
(

N−2 +N
∥

∥IN,N,Ns2
∥

∥

0,Ω\ΩBUB

)

≤Cε
(

N−2 +N ‖s2‖0,∞,Ω\ΩBUB

)

≤CN−2.

A bound for s3 is found using a similar argument to that of s2.
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Finally, we deal with the corner layer component t. On the region ΩBBB, Lem-
mas 5 and 7 give

ε

∥

∥

∥

∥

∂

∂x
(t− IN,N,N t)

∥

∥

∥

∥

0,ΩBBB

≤Cε2N−1 lnN

∥

∥

∥

∥

∂2t

∂x2

∥

∥

∥

∥

0,ΩBBB

+ Cε3N−2 ln2N

(∥

∥

∥

∥

∂3t

∂2x∂y

∥

∥

∥

∥

0,ΩBBB

+

∥

∥

∥

∥

∂3t

∂2x∂z

∥

∥

∥

∥

0,ΩBBB

+

∥

∥

∥

∥

∂3t

∂x∂y∂z

∥

∥

∥

∥

0,ΩBBB

+

∥

∥

∥

∥

∂3t

∂3x

∥

∥

∥

∥

0,ΩBBB

+

∥

∥

∥

∥

∂3t

∂x∂2y

∥

∥

∥

∥

0,ΩBBB

+

∥

∥

∥

∥

∂3t

∂x∂2z

∥

∥

∥

∥

0,ΩBBB

)

≤C
(

ε3/2N−1 lnN + ε3/2N−2 ln2N
)

≤Cε3/2N−1 lnN,

while on the region Ω\ΩBBB one has, by Lemmas 4 and 5 and an inverse inequality,
that

ε

∥

∥

∥

∥

∂

∂x
(t− IN,N,Nt)

∥

∥

∥

∥

0,Ω\ΩBBB

≤ ε

(

∥

∥

∥

∥

∂t

∂x

∥

∥

∥

∥

0,Ω\ΩBBB

+

∥

∥

∥

∥

∂

∂x
IN,N,N t

∥

∥

∥

∥

0,Ω\ΩBBB

)

≤ ε
(

ε1/2N−2 +N
∥

∥IN,N,Nt
∥

∥

0,Ω\ΩBBB

)

≤ ε
(

ε1/2N−2 +N ‖t‖0,∞,Ω\ΩBBB

)

≤ CN−2.

Using Assumption 3 it is clear that the bounds from (10) and (11) dominate all
the others. Combining them gives the desired result for ε‖∂/∂x(u− IN,N,Nu)‖0,Ω.

Using the same approach, corresponding bounds for ε‖∂/∂y(u− IN,N,Nu)‖0,Ω and

ε‖∂/∂z(u− IN,N,Nu)‖0,Ω can be obtained, completing the proof. �

We now present the main result of this section.

Theorem 11. Let u and IN,N,Nu be defined as in Lemma 9. Then there exists a
constant C, independent of ε and N , such that

‖u− IN,N,Nu‖ε ≤ C
(

N−2 + ε1/2N−1 lnN
)

.

Proof. The desired result is a direct consequence of the definition (2) of the energy
norm and Lemmas 9 and 10. �

4. A Galerkin finite element method

The weak form of (1) is : find u ∈ H1
0 (Ω) such that

(12) B(u, v) := ε2(∇u,∇v) + (bu, v) = (f, v) ∀v ∈ H1
0 (Ω).

Restricting u and v to a suitable finite dimensional subspace of H1
0 (Ω) gives a

Galerkin finite element method for the problem. A standard choice is the space of
piecewise trilinear functions defined on the tensor product Shishkin mesh described
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in Section 2. One first forms the one-dimensional piecewise linear basis functions
ψNi (x) on TNx

[0, 1]:

(13) ψNi (x) =























x− xi−1

xi − xi−1
if xi−1 ≤ x < xi,

xi+1 − x

xi+1 − xi
if xi ≤ x < xi+1,

0 otherwise.

Define the basis functions ψNj (y) on TNy
[0, 1], and ψNk (z) on TNz

[0, 1] in a similar

manner. Now define the space of piecewise trilinear functions of a given mesh
VN,N,N(Ω) ⊂ H1

0 (Ω) as

(14) VN,N,N(Ω) = span
{

ψNi (x)ψNj (y)ψNk (z)
}

,

for i = 1, 2, . . . , N − 1, j = 1, 2, . . . , N − 1, k = 1, 2, . . . , N − 1.

The Galerkin finite element method for (1) is then defined as: find uN,N,N ∈

VN,N,N(Ω) such that

(15) B(uN,N,N , vN,N,N) = (f, vN,N,N) for all vN,N,N ∈ VN,N,N(Ω).

Theorem 12. Let u be the solution to (1), and uN,N,N the solution to (15). Then
there exists a constant C, independent of ε and N , such that

‖u− uN,N,N‖ε ≤ C(N−2 + ε1/2N−1 lnN).

Proof. The trilinear form defined in (12) is continuous and coercive, so (15) pos-
sesses a unique solution. Thus, one has the following quasioptimal bound:

‖u− uN,N,N‖ε ≤ C inf
ψ∈VN,N,N(Ω)

‖u− ψ‖ε.

Since IN,N,Nu ∈ VN,N,N(Ω), the result follows as an immediate consequence of
Theorem 11. �

5. Numerical results

To verify the analytical results of the previous section we use the test problem (3),
taken from [5],

(16) − ε2∆u+ u = f on (0, 1)3,

where u = 0 on the boundary, and f is chosen such that

u =

(

cos
(πx

2

)

−
e−x/ε − e−1/ε

1− e−1/ε

)(

1− y −
e−y/ε − e−1/ε

1− e−1/ε

)

·

(

1− z2 −
e−z/ε − e−1/ε

1− e−1/ε

)

.

This problem exhibits exponential boundary layers near x = 0, y = 0 and z = 0, as
well as at the point (0, 0, 0). See Figure 1.

In Table 1 we present, in the energy norm, the errors for the standard Galerkin
FEM for the test problem (16), for a range of values of N and ε.

The results in Table 1 show that Theorem 12 is sharp. When ε = 1, it is obvious
that the error is proportional to N−1. For small N and ε, the O(N−2) term in
Theorem 12 appears to dominate. For largerN , it is clear that the O(ε1/2N−1 lnN)
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Table 1. Errors, ‖u− uN,N,N‖ε, for the standard Galerkin FEM
with trilinear elements for various N and ε.

ε2 ‖u − uN,N,N‖ε × ρ N = 4 N = 8 N = 16 N = 32 N = 64 N = 128 N = 256

ρ = 1 8.455e-3 4.201e-3 2.097e-3 1.048e-3 5.241e-4 2.620e-4 1.310e-4
1 ρ = N 0.034 0.034 0.034 0.034 0.034 0.034 0.034

ρ = N2 0.135 0.269 0.537 1.073 2.147 4.293 8.585

ρ = N/(ε1/2 lnN) 2.440e-2 1.616e-2 1.210e-2 9.676e-3 8.065e-3 6.912e-3 6.048e-3
ρ = 1 6.458e-2 4.264e-2 2.196e-2 1.107e-2 5.547e-3 2.775e-3 1.388e-3

10−2 ρ = N 0.258 0.341 0.351 0.354 0.355 0.355 0.355

ρ = N2 1.033 2.729 5.622 11.336 22.721 45.466 90.964

ρ = N/(ε1/2 lnN) 0.589 0.519 0.400 0.323 0.270 0.232 0.203
ρ = 1 2.815e-2 2.141e-2 1.477e-2 9.417e-3 5.700e-3 3.336e-3 1.909e-3

10−4 ρ = N 0.113 0.171 0.236 0.301 0.365 0.427 0.489

ρ = N2 0.450 1.370 3.781 9.643 23.347 54.657 125.110

ρ = N/(ε1/2 lnN) 0.812 0.824 0.852 0.870 0.877 0.880 0.881
ρ = 1 1.121e-2 7.060e-3 4.815e-3 3.069e-3 1.858e-3 1.087e-3 6.221e-4

10−6 ρ = N 0.045 0.056 0.077 0.098 0.119 0.139 0.159

ρ = N2 0.179 0.452 1.233 3.143 7.610 17.809 40.770

ρ = N/(ε1/2 lnN) 1.023 0.859 0.879 0.896 0.904 0.907 0.908
ρ = 1 7.413e-3 2.503e-3 1.540e-3 9.740e-4 5.893e-4 3.449e-04 1.973e-4

10−8 ρ = N 0.030 0.020 0.025 0.031 0.038 0.044 0.051

ρ = N2 0.119 0.160 0.394 0.997 2.414 5.651 12.930

ρ = N/(ε1/2 lnN) 2.139 0.963 0.889 0.899 0.907 0.910 0.911
ρ = 1 6.916e-3 1.370e-3 5.245e-4 3.100e-4 1.865e-4 1.091e-4 6.242e-5

10−10 ρ = N 0.028 0.011 0.008 0.010 0.012 0.014 0.016

ρ = N2 0.111 0.088 0.134 0.317 0.764 1.788 4.091

ρ = N/(ε1/2 lnN) 6.310 1.667 0.957 0.905 0.908 0.910 0.911
ρ = 1 6.864e-3 1.200e-3 2.557e-4 1.038e-4 5.928e-5 3.452e-5 1.974e-5

10−12 ρ = N 0.027 0.010 0.004 0.003 0.004 0.004 0.005

ρ = N2 0.110 0.077 0.065 0.106 0.243 0.566 1.294

ρ = N/(ε1/2 lnN) 1.981 4.617 1.476 0.958 0.912 0.911 0.911

term is dominating. These results can be further visualised in the log-log plot of
Figure 5.
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Figure 5. A log-log plot of the errors for the standard Galerkin
FEM in three dimensions for various N and ε.
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6. Concluding remarks and observations

It has been shown by Liu et al., that for a Galerkin finite element method applied
to a singularly perturbed reaction-diffusion problem in two dimensions, one has the
following result

(17) ‖u− uN,N‖ε ≤ C(N−2 + ε1/2N−1 lnN),

where uN,N is the numerical solution computed on a Shishkin mesh [11]. The-
orem 12 proves that the same result applies to the analogous problem in three
dimensions, suggesting that the error estimate of this method is independent of
the dimension in which the problem is posed. However, although this result is not
surprising, until now, a proof is not available in the literature.

This theorem has other applications. For example, Liu et al. not only prove (17),
but also establish a similar bound for a two-scale sparse grid method applied to a
two-dimensional problem [11]. Since the development of sparse grid methods for
the three-dimensional problem is even more pertinent, in a companion paper we
have done just that [18]. However, the analysis hinges on the theory presented here.

Finally, we note that the estimate given above is not “balanced”, in the sense
in which that term is introduced by Lin and Stynes [9]. That is, the presence of
ε1/2 term in the error estimate means this component is under-weighted (and the
results presented in Table 1 verify that this under-weighting is observed in practice,
and is not just an artefact of the analysis). However, to extend the FOSLS-type
approach of Adler et al. [1], for example, requires the results of Theorem 11 (as well
as addition interpolation results for higher derivatives). Therefore, this theorem has
applications beyond its direct use to prove Theorem 12.
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