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PROVABLY SIZE-GUARANTEED MESH GENERATION WITH

SUPERCONVERGENCE

XIANGRONG LI, NAN QI∗, WEIWEI ZHANG, AND YUFENG NIE

Abstract. The mesh conditions of high-quality grids generated by bubble placement method
(BPM) and their superconvergence properties are studied in this paper. A mesh condition that
for each pair of adjacent triangles, the lengths of any two oppsite edges differ only by a high

order of the parameter h is derived. Furthermore, superconvergence estimations are analyzed on
both linear and quadratic finite elements for elliptic boundary value problems under the above
mesh condition. In particular, the mesh condition is found to be applicable to many known
superconvergence estimations under different types of equations. Finally, numerical examples are

presented to demonstate the superconvergence properties on BPM-based grids.
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1. Introduction

Superconvergence of finite element solutions to partial differential equations has
been studied intensively for many decades [1, 2, 3, 6]. It is shown to be an important
tool to develop high-performance finite elements. The superconvergence property
can significantly improve the accuracy of finite element solution and its deriva-
tives with few extra calculation and storage. And it is mainly used to construct a
posteriori error indicator [3].

The existing research work basically follows two approaches. One is to find the
super-close point of finite element interpolation approximation, and then use the
interpolation weak estimation to obtain the superconvergence properties of finite
element solution and its derivatives [4, 5]. Another is to obtain superconvergence
properties by various post-processing techniques, including weighted averaging, lo-
cal L2-projection, extrapolation, and gradient recovery methods. In particular,
gradient recovery methods have achieved great success in numerical simulation-
s in engineering problems, such as the popular superconvergent patch recovery
(SPR) method [6, 7, 8] and the polynomial preserving gradient recovery (PPR)
method [24].

However, in early superconvergence theory, specially structured grids were nor-
mally required, such as the strongly regular grids composed of equilateral trian-
gles [9], which brought a great difficulty to mesh generation techniques. Thus a
consensus was hardly reached between theory of superconvergence and mesh gen-
eration.

Recently, several studies have striven to relieve this issue. From one hand, su-
perconvergence theory was well developed, though under assumed mesh conditions.
In particular, Bank and Xu [10, 11] studied superconvergence on mildly structured
grids where most pairs of elements form an ‘approximate parallelogram’. They also
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proved that linear finite element solution is superclose to its linear interpolant of
exact solution. From this work, Xu and Zhang [12] established the superconver-
gence estimations for several post-processing techniques. Further, Huang and Xu
investigated superconvergence properties of quadratic triangular element on mildly
structured grids [9]. From the other hand, superconvergence phenomena have ex-
isted in several mesh generation algorithms. For example, the centroidal Voronoi
tessellation (CVT)-based methods have been successfully applied to develop high-
quality grids [13]. However, its superconvergence estimations from some certain
mesh conditions were not clearly provided [14].

In recent years, the so called bubble placement method (BPM) has been system-
atically studied by Nie et. al. [15, 16, 17]. The advantage of BPM is to generate
high-quality grids on many complexly bounded 2D and 3D domains, and BPM
can be easily used in adaptive finite element method and anisotropic problem-
s [18, 19, 20, 21, 22, 30]. In addition, due to the natural parallelism of BPM,
computational efficiency has been improved greatly to solve large-scale problem-
s [23]. Yet, superconvergence on BPM-based grids has not been fully explored.
The goal of this paper is to analyze a mesh condition on BPM-based grids, such
that superconvergence results can be obtained both theoretically and numerically.

In this paper, we will carefully investigate the superconvergence properties on
BPM-based grids. Our work is mainly composed of two parts: in the first part, a
mesh condition associated with element edge length and desired length is derived for
BPM-based grids; the second part presents two superconvergence results for linear
and quadratic finite elements, respectively. These superconvergence results can be
used to construct posteriori error estimates under gradient recovery operators.

The rest of this paper is organized as follows. Section 2 gives the derivation
of mesh conditions for BPM-based grids. Superconvergence estimations on linear
and quadratic finite elements are analyzed in Section 3. Numerical experiments
on elliptic boundary value problem with some typical computational domains are
given in Section 4 and further discussed in Section 5. Conclusions and future works
are summarized in Section 6.

2. Mesh conditions

2.1. BPM. Bubble placement method was originally inspired by the idea of bub-
ble meshing [25, 26] and the principle of molecular dynamics. The computational
domain is regarded as a force field with viscosity, and bubbles are distributed in
this domain. Each bubble is driven by interaction forces from its adjacent bubbles,
expressed as [27]:

(1) f (w) =

{
k0

(
1.25w3 − 2.375w2 + 1.125

)
0 ≤ w ≤ 1.5

0 1.5 < w.

The output of bubble centers are denoted as nodes in the computational domain,

where w =
lij
¯lij
, lij is the actual distance between bubble i and bubble j, l̄ij is the

user-defined distance. The motion of each bubble satisfies the Newton’s second
law of motion. BPM can be mainly divided into 3 steps: initialization, dynamic
simulation, bubble insertion and deletion operations. And BPM is regarded to be
controlled by two nested loops, which is schematically illustrated in Fig. 1.
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Figure 1. The flowchart of BPM.

The inner loop (dynamic simulation) ensures a good bubble distribution by bal-
ancing forces and the outer loop (insertion and deletion operations) controls the
bubble number such that adjacent bubbles can be as tangent to each other as pos-
sible at force-equilibrium state. They both work together to get a closely-packed
configuration of bubbles, so that a well-shaped and size-guaranteed Delaunay tri-
angulation can be created by appropriately connecting the bubble centers.

2.1.1. Inner loop. In the inner loop, the motion of a bubble is analogous to a
damped vibrator. In the initial state, a potential energy exists between bubbles,
which partly converses to kinetic energy during simulation. The motion of the
bubble system also leads to energy loss due to the damping force. The potential
energy of the bubble system reaches its minimum at force-equilibrium state, and
at this moment the resultant force exerting on each interior bubble vanishes.

It is worthwhile to note that for any interior bubble at force-equilibrium state,
the applied forces from its adjacent bubbles are of same magnitude and sign. As
illustrated in Fig. 2, in an 1D case, for any interior bubble k, if it overlaps with its
left adjacent bubble k − 1, there will be a repulsive force f(k,k−1) between bubble
k and bubble k − 1. At force-equilibrium state, as the resultant external force of
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Figure 2. Force-equilibrium state in one-dimension. For bubble
k, there is a repulsive force f(k.k−1) from bubble k−1. When system
reaches an equilibrium state, resultant external force of bubble k is
zero. Therefore, f(k.k+1) and f(k.k−1) must be same in magnitude
and sign.

bubble k approaches to zero, there must exist a force in same magnitude and same
sign (′+′ for repulsion and ′−′ for attraction) from the right adjacent bubble k+1.
By analogy, the application of forces on each interior bubble satisfy the same rule
until the terminal bubble (note the terminal bubble is fixed).

Let us now define a bubble fusion degree Cij =
l̄ij−lij

¯lij
= 1−w, which character-

izes the relative overlapping/disjoint degree of bubble i and bubble j. It is easy to
derive the following relationship,

(2)


Cij > 0 ⇒ lij > lij , bubble i overlaps with bubble j,

Cij = 0 ⇒ lij = lij , bubble i is tangent to bubble j,

Cij < 0 ⇒ lij < lij , bubble i is disjoint from bubble j.

Note that if the inter-force between two adjacent bubbles are the same in mag-
nitude and sign, the variable w becomes a constant due to the monotonically at-
tractive/repulsive force definition in Eq. (1). Thus the bubble fusion degree of any
two adjacent bubbles is also a constant. It is essential to address that the bubble
fusion degree, for any directions in 2D cases, is a constant such as the one in the 1D
case. The corresponding bubble distribution is called force-equilibrium distribution
in later sections.

To illustrate, we execute BPM algorithm with an assigned size function as
d(x, y) = h = 0.1 on an unit circle region. As shown in Fig. 3, with an increasing
time step T , the initial bubble distribution gradually tends to the force-equilibrium
state. Meanwhile, it can be seen that the value of Cij approaches towards a constant
of 0.28.

2.1.2. Outer loop. Let

(3) ϵN = max
i,j∈ΓN

|Cij |,

where N is the total number of bubbles in the current loop, and ΓN denotes the
bubble set at force-equilibrium state with bubble number N . Outer loop controls
bubbles’ number by an overlapping ratio[16], i.e., deleting bubbles with too large
overlapping ratio, and adding new neighboring ones to bubbles with too small
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Figure 3. The bubble distributions and the corresponding values
of Cij at different time steps.

Figure 4. The bubble distributions under addition/deletion op-
erations and the corresponding values of Cij .

overlapping ratio. If ϵN no longer reduces, the whole iterative process/the outer
loop terminates.

For the same circle region in 2.1.1, Fig. 4 shows the bubble distributions with
different total number of bubbles under addition/deletion operations. It can be seen
that bubbles tend to become more tangent/with smaller overlaps, indicating that
the actual distance between two adjacent bubbles become closer to their assigned
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Figure 5. The bubble distributions and their corresponding val-
ues of Cij for a non-uniform square example.

distance. Meanwhile, we can clearly see that values of Cij and ϵN both decrease,
implying that operations of adding or deleting bubbles are effective.

In summary, BPM can be interpreted mathematically as: to find a bubble set
ΓN̄ , such that

(4) ΓN̄ =

{
ΓN : min

N

{
max

i,j∈ΓN

|Cij |
}}

.

Remark 2.1. The properties of inner loop and outer loop described above are also
suitable for non-uniform cases. These are valid under certain continuity conditions,
e.g., the Lipschitz continuity condition. And the Lipschitz constant is relevant to the
dividing point in the piecewise inter-force function in Eq. (1)(e.g. 1.5 in this paper).
We note that this continuity is local in BPM-based grids, which can be elaborated
in a shock wave example, shown in Fig.6 of [19]. Herein, we also provide a non-
uniform example by executing BPM algorithm on a square region [−3, 3]× [−3, 3],
under a given size function

(5) d (x, y) =

{
0.1

√
x2 + y2 < 2,

0.2×
∣∣∣√x2 + y2 − 2

∣∣∣+ 0.1
√
x2 + y2 ≥ 2.

Numerical results are given in Fig. 5, where ϵN = 0.236 and ϵN = 0.128 with total
number of bubbles N = 953 and N = 862, respectively.

2.2. Mesh conditions. It is aware that ϵN̄ can be used as a good indicator for
maximum mesh relative error, so as to study mesh conditions of BPM-based grids.
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(a) before error aver-
agely distributed

(b) after error aver-
agely distributed

Figure 6. (A) The bubble distribution with Nt elements be-
ing ideally subdivided and (B) the bubble distribution at force-
equilibrium state.

For a uniform case, i.e., its size function is a constant of h, then

(6) ϵN = max
i,j∈ΓN

∣∣∣∣h− lij
h

∣∣∣∣ .
Let us denote an ’ideal subdivision’ if the prescribed region can be precisely cov-

ered by equilateral triangles with assigned side size of h. For instance, an equilateral
triangle region with side length of 1 can be divided into 25 equilateral triangles with
length of 0.2, so that ϵN̄ = 0. However, what we normally encounter is not an ’ideal
subdivision’. So we have to look for a subdivision with N̄ elements such that ϵN is
minimized, and in general, its range can be easily estimated in advance.

Again, we start to illustrate from an 1D case. A domain with length L is required
to be uniformly segmented into elements with size h. Let Nτ = ⌊L

h ⌋ be the total
number of uniform subdivision, and the length of the remaining segment after Nτ

subdivisions is l = L − Nτ · h, and l ∈ [0, h). This becomes an ’ideal subdivision’
if l = 0. The element δ with length l introduces an error eδ, in spite that all other
elements are ideal (depicted in Fig. 6(A)). So the total error e = max {eδ, 0} =
|h− l| = |h− (L−Nτ · h)| = |(Nτ ) · h− L| = O (h).

For a BPM-based grid, the bubble fusion degree of any two adjacent bubbles
is a constant at force-equilibrium state, so the error of each element |lij − h| is
a constant, implying that the error eδ is averaged over all elements (depicted in
Fig. 6(B)). Thus

e = |h− lij | =
∣∣∣∣ (Nτ + 1) · h− L

Nτ + 1

∣∣∣∣ ≤ h

Nτ + 1
≤ h

Nτ
=

h⌊
L
h

⌋ = O
(
h2

)
,

which presents a higher order of accurancy.
Analogously, as to a 2D case, a planar domain with area S is required to be

uniformly segmented into equilateral triangles with side length of h. We know

that the area of the equilateral triangle sτ is
√
3
4 h2 = O

(
h2

)
. However, the value of

Nτ = ⌊ S
sτ
⌋ is not a good estimation since it ignores boundary effect. For instance, if

we segment a circle with radius of 0.5 into equilateral triangles with side length of 0.3
starting from its center, there normally appears a ring-like area near the boundary
that can not be precisely covered by equilateral triangles. Shown in Fig. 7, the
number of uniform subdivision Nτ = 6, therefore ⌊ S

sτ
⌋ = 9 over-estimates. We

henceforth modify Nτ to be ⌊ S
sτ
⌋ − n, where n is a positive constant relating to

the computational domain and given size function (e.g. n = 3 in the example of
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Figure 7. A 2D example of a circle segmented into equilateral
triangles, where the ring-like area is highlighted in gray near the
boundary, the uniform subdivision is bounded in red, so Nτ =
9− 3 = 6.

Fig. 7). Let s = S −Nτ · sτ be the remaining area, by noting that ⌊ S
sτ
⌋ > S

sτ
− 1

then we have

0 ≤ s = S − (⌊ S
sτ

⌋ − n) · sτ = (S − ⌊ S
sτ

⌋ · sτ ) + nsτ < sτ + nsτ = (n+ 1)sτ .

Analogy to the 1D example, and we notice that st = O(h2), so

0 ≤ lim
h→0

es
h2

= lim
h→0

∣∣∣S−Nτ ·st
Nτ

∣∣∣
h2

≤ lim
h→0

(n+1)sτ
Nτ

h2
≤ lim

h→0

(n+ 1)sτ
2

(S − (n+ 1)sτ )h2
= 0,

where es is the element error, and we note that Nτ → N , when h → 0. As each
edge shares the same order, then we obtain that the edge length error

(7) eh = |h− le| = O(h1+α),

where α is an arbitrary positive constant, and le denotes the length of edge e, which
is an equivalent denotation of the distance lij between bubble i and bubble j.

From Eqs. (6) and (7), we have ϵN̄ = O(hα). Therefore, in BPM-based grids

with ΓN̄ ,

(8) |h− le| = O(h1+α)

holds over all elements.

Remark 2.2. For a non-uniform case, the error introduced by the remaining area
s, instead of, averaged over all elements, distributed with some certain weights. One
example of feasible weight candidates is presented as

wτ =
l̄τ1 + l̄τ2 + l̄τ3∑

k

(l̄k1 + l̄k2 + l̄k3)

where wτ is the weight for the element τ , ¯lτi , i = 1, 2, 3 is its corresponding side
lengths determined by the size function. Hence, the error of element τ is

eτ = |wτ (S −
∑
k

sk)|,

Similar to the analysis in uniform case, it follows that

lim
¯lτi→0

eτ
¯lτi

2 = 0, (i = 1, 2, 3).
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Figure 8. Notations in the patch Ωe.

In particular, we know that in BPM-based grids, the size function satisfies locally
continuous conditions. Therefore, we conclude that for any element τ ,

| ¯lτi − lτi | = O( ¯lτi
1+α

)(α > 0), (i = 1, 2, 3).

3. Superconvergence estimates on BPM-based grids

In the works of Bank, Xu, Zhang and Wu[10, 11, 12, 14, 29], they analyzed a
series of superconvergence estimations on the basis of mildly structured grids, which
requires that two adjacent triangles (sharing a common edge) form an O(h1+α)
(α > 0) approximate parallelogram, i.e.

(9) |le+1 − le′+1| = O(h1+α),

where le denotes the length of an interior edge e shared by two elements τ and
τ ′. le+1 and le′+1 are the length of two opposite edges belonging to the patch
Ωe = τ ∪ τ ′.

Yet, this key mesh condition has not been proved to be satisfied by any mesh
generation techniques. However, from the derivation in Section 2, particularly from
Eq.(8) and by using the triangle inequality, the mesh condition Eq. (9) can be easily
obtained. In addition, some more rigorous mesh conditions can be also derived. For
example, for neighboring edges, we have

(10) |le+1 − le−1| = O(h1+α).

Henceforth, some useful superconvergence theories derived from the mesh con-
dition Eq. (9) can be directly applied to BPM-based grids. And superconvergence
estimations on linear and quadratic elements for Poisson problems are listed below,
and more details are referred to [12, 14].

Lemma 3.1. For a triangulation Th generated by bubble-type mesh generation, for
any vh ∈ Vh

k

(11)

∣∣∣∣∫
Ω

∇(u− uI)∇vh

∣∣∣∣ . h1+min(α,1/2)∥vh∥1,Ω,

(12)

∣∣∣∣∫
Ω

∇(u−ΠQu)∇vh

∣∣∣∣ . h2+min(α,1/2)∥vh∥1,Ω,

where Vh
k = {vh : vh ∈ H1(Ω), vh|τ ∈ Pk(τ)}, and uI ,

∏
Q u are the linear and

quadratic interpolants of u when k = 1, 2, respectively.

Let Ω ⊂ R2 be a bounded polygon with boundary ∂Ω. Consider problem: Find
u ∈ V such that

(13) a (u, v) =

∫
Ω

∇u∇vdx = (f, v) ,∀v ∈ V,
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where (·, ·) denotes inner product in the space L2 (Ω), and V ⊂ H1 (Ω). It is known
that a (·, ·) is a bilinear form which satisfies the following conditions:

(1) (Continuity) There exists C ≥ 0 such that

|a (u, v)| ≤ C∥u∥1,Ω∥v∥1,Ω,
for all u, v ∈ V .

(2) (Coerciveness) There exists M > 0 such that

a (v, v) ≥ M ∥v∥2
1,Ω

, ∀v ∈ V.

Let Vh
k be the conforming finite element space associated with triangulation Th,

then the finite element solution uh ∈ Vh
k satisfies

(14) a (uh, v) = (f, v) , ∀v ∈ Vh
k.

Theorem 3.2. Assume that the solution of (13) satisfies u ∈ H3 (Ω) ∩ W 2
∞ (Ω),

and uh is the solution of (14). Let uI ∈ Vh
1 and ΠQu ∈ Vh

2 be the linear and
quadratic interpolants of u, respectively. For a triangulation Th derived from BPM-
based grids, we have

(15) ∥uh − uI∥1,Ω = O(h1+min(α,1/2)),

and

(16) ∥uh −ΠQu∥1,Ω = O(h2+min(α,1/2)).

Proof. Taking vh = uh − uI in (11), we have

∥uh − uI∥1,Ω
2
= a(uh − uI , uh − uI) = a(u− uI , uh − uI)

=

∣∣∣∣∫
Ω

∇ (u− uI)∇(uh − uI)

∣∣∣∣
. h1+min(α,1/2)∥uh − uI∥1,Ω.

So (15) is obtained by canceling ∥uh − uI∥1,Ω on both sides of the inequality.
Similarly, by taking vh = uh −ΠQu in (12), (16) can be easily obtained. �
4. Numerical examples

In this section, some numerical examples are reported to validate Theorem 3.2,
so as to illustrate the superconvergence property of BPM-based grids on solving
Poisson equations. To the purpose of evaluating superconvergence performance,
uniform segmentations with constant size functions are analyzed. The examples
considered include both ideal subdivisions and non-ideal subdivisions.

In order to quantify the mesh quality, we first adopt a ratio between the radius
of the largest inscribed circle (times two) and the smallest circumscribed circle [28]
to define the quality of element τ as

qτ (lτ1 , lτ2 , lτ3) =
2rin
rout

=
(lτ2 + lτ3 − lτ1)(lτ3 + lτ1 − lτ2)(lτ1 + lτ2 − lτ3)

lτ1 lτ2 lτ3
,

where lτ1 , lτ2 , lτ3 are the computed side lengths of element τ . If an element is an
equilateral triangle, then qτ = 1. We also define the average mesh quality over the
whole computational domain as

Qavg =
1

M

M∑
τ=1

qτ ,
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(a) h = 0.2 (b) h = 0.1 (c) h = 0.05

Figure 9. BPM-based grids on an equilateral triangle region with
different h.

Table 1. Superconvergence results for an equilateral triangle region.

h ∥uh − uI∥1,Ω order (k=1) ∥uh −ΠQu∥1,Ω order (k=2) Qavg

0.2 1.81E-01 8.93E-03 0.9998
0.1 4.30E-02 2.08 1.14E-03 2.97 1.0000
0.05 1.05E-02 2.05 1.41E-04 3.02 1.0000
0.025 2.63E-03 2.01 1.78E-05 2.96 1.0000
0.0125 6.55E-04 2.01 2.30E-056 2.95 1.0000

where M represents the number of elements. The closer the value of Qavg to 1, the
higher mesh quality is, so that the more regular the grid is.

4.1. Example 1: An equilateral triangle region. The computational domain
is an equilateral triangle with side length 1, and we solve Poisson equation on it with
Dirichlet boundary conditions. The right-hand side f and the boundary conditions
are chosen such that the exact solution is u = cos 2πx sin 2πy. The initial size
h = 0.2, and it is reduced by half successively, the first three BPM-based grid
configurations with h = 0.2, 0.1, 0.05, respectively, are shown in Fig. 9. It is seen
that the nearly ideal subdivisions are generated for all four cases.

Table 1 presents some key superconvergence results, where uI and ΠQu are
the linear and quadratic interpolants of u, respectively. The superconvergence
properties are observed as the order of ∥(uI − uh)∥1,Ω and ∥uh −ΠQu∥1,Ω are larger

than 1 and 2, respectively. Note that when h is smaller than 0.2, the corresponding
Qavg can achieve to 1 to its four decimal digits. It may indicate a close relevance
between the superconvergence property and the grid regularity, which is also stated
in [9].

4.2. Example 2: A circle region. Given a unit circle region centered at origin,
the size values are taken as 0.2, 0.1, 0.05, 0.025, 0.0125, respectively. BPM-based
grids are selectively shown in Fig. 10. Choosing the exact solution u = sinxsiny,
some calculated results are presented in Table 2. Obviously, there is supercon-
vergence phenomenon on BPM-based grids and the results clearly indicate that
∥uh − uI∥1,Ω and ∥uh −ΠQu∥1,Ω are very close to O(h1.50) and O(h2.50). Although

the convergence order is lower than Example 1, these results are still consistent with
theoretic estimations (15) and (16).
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(a) h = 0.2 (b) h = 0.1 (c) h = 0.05

Figure 10. BPM-based grids on a circle region with different h.

Table 2. Superconvergence results for a circle region.

h ∥uh − uI∥1,Ω order (k=1) ∥uh −ΠQu∥1,Ω order (k=2) Qavg

0.2 1.09E-01 1.93E-02 0.9510
0.1 3.93E-02 1.47 3.53E-03 2.45 0.9635
0.05 1.36E-02 1.53 6.16E-04 2.52 0.9732
0.025 4.82E-03 1.50 1.09E-04 2.50 0.9702
0.0125 1.69E-03 1.51 1.96E-05 2.47 0.9753

Figure 11. Comparison of different errors for a unit circle region.
Dotted lines give reference slopes.

For a set of all edges E , we denote herr =
∑

|le−h|
#E as mean value of all edges’ er-

ror. Fig. 11 plots the relationship between herr, ∥uh − uI∥1,Ω and ∥uh −ΠQu∥1,Ω,
where logarithmic operations are applied on X and Y axes, so that the slope
of log10(Error) indicates the order of h. We can see that ∥(uh − uI)∥1,Ω and
herr have similar tendency, implying that the orders of errors in linear finite el-
ement solution and total edge length are consistent. Additionally, the slope of
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(a) BPM-based grids with h = 0.2 (b) Comparison of different errors

Figure 12. BPM-based grids on a regular pentagon region with
h = 0.2 and comparison of different errors.

Table 3. Results for regular pentagon region.

h ∥uh − uI∥1,Ω order (k=1) ∥uh −ΠQu∥1,Ω order (k=2) Qavg

0.2 9.52E-02 9.37E-03 0.9582
0.1 3.34E-02 1.51 1.70E-03 2.46 0.9651
0.05 1.09E-02 1.62 2.77E-04 2.62 0.9608
0.025 3.74E-03 1.54 4.86E-05 2.51 0.9670
0.0125 1.25E-03 1.58 8.31E-06 2.55 0.9711

log10(∥uh −ΠQu∥1,Ω) is nearly one order higher than the one of ∥uh − uI∥1,Ω, which
is in line with the superconvergence estimation in Theorem 3.2.

4.3. Example 3: A regular pentagon region. Same procedure are followed
except choosing the exact solution u = ex+y on a regular pentagon region. Table
3 shows again that ∥uh − uI∥1,Ω = O

(
h1.55

)
and ∥uh −ΠQu∥1,Ω = O(h2.50), and

the comparison are presented in Fig. 12(B), which may restates the rationality of
Theorem 3.2.

5. Discussion

We have provided some typical numerical examples validating our theoretical re-
sults on many uniform BPM-based grids. And some special situations are discussed
in details as follows.

5.1. The superconvergence estimations on domains with singularities.
From above examples, we have mainly tested on convex domains since supercon-
vergence estimation requires u ∈ H3 (Ω) ∩ W 2

∞ (Ω). In fact, many solutions may
have singularities at corners. On account of this issue, Wu and Zhang [29] had de-
duced superconvergence estimation on domains with re-entrant corners for a Poisson
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(a) (b)

Figure 13. (A) Mesh segmentation of an L-shape region with
h = 0.05; (B) Local zoom in at the re-entrant corner.

Table 4. Results for four types of regions.

Domain mean var max
e∈E

|le − h| herr =
∑

|le−h|
#E

Unit equilateral triangle 0.1000 7.0481e-14 4.6798e-07 1.6826e-07
Unit circle 0.0965 5.0513e-5 0.0184 0.0093

Regular pentagon 0.0955 7.3520e-5 0.0213 0.0087
L-shape 0.0946 2.0061e-4 0.0301 0.0120

Note: Mean denotes the mean value of all edges’ actual lengths, and var is their
variance value. Let E be the set of edges, le the length of edge e, so herr represents
the mean value of all edges’ errors.

equation on mildly structured grids as

(17)

{
∥uh − uI∥1,Ω . N

− 1
2−ρ

d ,

∥uh −ΠQu∥1,Ω . N−1−ρ
d ,

where ρ > 0 is related to some mesh parameters, and Nd is the total number of
degrees of freedom.

Based on (17), an L-shape region is selected to investigate the superconvergence
properties on domains with singularities. Shown in Fig. 13, elements near the re-
entrant corner are still well-shaped. The boundary conditions are chosen so that the
true solution is r2/3 sin 2

3

(
θ + π

2

)
in polar coordinates. Fig. 14 compares the loga-

rithm of errors in linear and quadratic solutions to the optimal convergence rates
(-0.5 and -1), respectively. It is clear to deduce that ∥uh − uI∥1,Ω and ∥uh −ΠQ∥1,Ω
are both superconvergent, which is consistent with (17).

5.2. The superconvergence estimations modification caused by ‘bad edges’.
Numerically, we notice that the mesh condition (8) is hardly satisfied for all edges
in BPM-based grids, i.e., there may exist few poor-shaped elements. Therefore,
we reanalyze the above four types of computing regions with h = 0.1 aiming to
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Figure 14. Comparison of different errors for a L-shaped domain.
Dotted lines give reference slopes.

evaluate the performance of edges. Table 4 shows that the mean edge length are
all very closed to h = 0.1.

However, compared with the mean edge errors herr, the maximal edge errors
maxe∈E |le − h| are normally more than doubled, implying that edges with large
errors (denoted as ‘bad edges’) are presented in computational domains. In fact, due
to numerical errors, the bubble system reaches a particularly close force-equilibrium
state, thus the bubble fusion degrees of a few bubbles are not precisely equal to a
constant, leading to errors of ‘bad edges’ being in a reduced order.

However, the number of these bad edges is very small since our algorithm guar-
antees nearly zero resultant force for each bubble, which is also justified by the fact
that the variance of edges length are extremely close to zero, so as the maximal
and average edge errors, shown in Table 4.

Hence, to depict the errors caused by ‘bad edges’, we follow the arguments about
‘bad edges’ set considered in [12, 29] and modify mesh conditions in BPM-based
grids accordingly. Denote E = E1⊕E2 be the set of all edges belongs to triangulation
Th, where E1 and E2 are ‘good edges’ and ‘bad edges’ sets, respectively, then the
mesh condition is modified into

(1) For any edge e ∈ E1

(18) |le − h| = O
(
h1+α

)
,

where α is a positive number.
(2) For any edge in e ∈ E2, |le − h| = O (h), and there exists a positive number

σ such that

(19)
∑
e∈E2

(|τ |+ |τ ′|) = O
(
h2σ

)
,

where τ and τ ′ are the two elements sharing edge e;



MESH GENERATION AND SUPERCONVERGENCE 251

or

(20) ♯E2 . N−σ,

where N is the total edge number.

For the two equivalent mesh conditions (19) and (20), they both require that the
number of ‘bad edges’ are comparably small.

Accordingly, the superconvergence estimations need to be modified as follows:

(21) ∥uh − uI∥1,Ω = O(h1+min(α,σ,1/2)),

and

(22) ∥uh −ΠQu∥1,Ω = O(h2+min(α,σ,1/2)).

Note that there is merely a slight modification by adding the parameter σ de-
riving from mesh conditions (19) and (20). And particularly, superconvergence
properties of our numerical experiments in Section 4 are still valid.

6. Conclusion

To conclude, many good properties of BPM algorithm have been detected in this
paper. In the force-equilibrium state, inter-forces between two adjacent bubbles are
the same, so that the bubble fusion degree appears constant for both uniform and
non-uniform bubble distributions. From these analyses, mesh conditions based on
edge errors are derived, which can be directly applied to many established super-
convergence theories. These estimations take account of both linear and quadratic
finite element solutions. Though simple two-dimensional Poisson equations are s-
tudied in our current preliminary superconvergence analysis on BPM-based grids,
complex equations, e.g., general elliptic equations or other time-independent prob-
lems, need to be further considered.

It is for the first time that mesh conditions of BPM-based grids are theoretically
derived and successfully applied to existing superconvergence estimations. Fur-
thermore, we believe that our derivations can be easily applied to posterior error
estimations and adaptive finite element methods in order to improve the accuracy
of finite element solutions.
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