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AN UNCONDITIONALLY STABLE NUMERICAL

SCHEME FOR A COMPETITION SYSTEM

INVOLVING DIFFUSION TERMS

SETH ARMSTRONG AND JIANLONG HAN

Abstract. A system of difference equations is proposed to approximate the solution of a system

of partial differential equations that is used to model competing species with diffusion. The
approximation method is a new semi-implicit finite difference scheme that is shown to mimic the
dynamical properties of the true solution. In addition, it is proven that the scheme is uniquely
solvable and unconditionally stable. The asymptotic behavior of the difference scheme is studied

by constructing upper and lower solutions for the difference scheme. The convergence rate of the
numerical solution to the true solution of the system is also given.
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1. Introduction

We consider the following system of nonlinear parabolic partial differential equa-
tions used to model dynamic population distribution or biomass of two species that
are competing for resources while each undergoes diffusion:

pt = m1△p+ a1p− b1p
2 − c1pq (t > 0, x ∈ Ω),(1)

qt = m2△q + a2q − b2q
2 − c2pq (t > 0, x ∈ Ω),(2)

∂p

∂η
|∂Ω = 0,

∂q

∂η
|∂Ω = 0 (t > 0),(3)

p(0,x) = p0(x), q(0,x) = q0(x) (x ∈ Ω).(4)

Here, p(t,x) and q(t,x) denote the time-dependent populations of the two species,
Ω ∈ Rn is a bounded domain with outward normal η along the boundary. The
Neumann boundary conditions suggest absence of migration. There is a substan-
tial body of work about this system, where many properties of the solutions are
extracted, including such considerations as coexistence and long-term population
behaviors of the competing species; see, for example, [1], [2], [3], and [6] and ref-
erences therein. If c1 = c2 = 0, each equation in the paired system has the form
of a so-called Fisher’s equation. Ways to approach the numerical solutions of these
equations can be found in [4] and [5].

For a numerical approximation of (1)-(4), the author in [8] proposes a discretiza-
tion that gives rise to a fully implicit finite difference scheme. For Ω ⊂ R, this takes
on the form

pk+1
i − pki
△t

= m1

[
pk+1
i+1 − 2pk+1

i + pk+1
i−1

(△x)2

]
+ pk+1

i (a1 − b1p
k+1
i − c1q

k+1
i )(5)
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qk+1
i − qki

△t
= m2

[
qk+1
i+1 − 2qk+1

i + qk+1
i−1

(△x)2

]
+ qk+1

i (a2 − b2q
k+1
i − c2p

k+1
i )(6)

where pki = p(k△t, i△x), qki = q(k△t, i△x).
The author in [8] then used Picard iteration to construct sequences of decreasing

upper solutions {p̄ k
i }m and {q̄ k

i }m, and of increasing lower solutions {
¯
p k
i }m and

{
¯
q k
i }m, such that if the time mesh size △t is chosen sufficiently small,

lim
m→∞

{p̄ k
i }m = lim

m→∞
{
¯
p k
i }m = pki and

lim
m→∞

{q̄ k
i }m = lim

m→∞
{
¯
q k
i }m = qki .

To study the asymptotic behavior of the numerical solution, the author in [8] s-
tudied the steady state solution of (5)-(6), or the solutions of the nonlinear algebraic
system

m1

[
pi+1 − 2pi + pi−1

(△x)2

]
+ a1pi − b1(pi)

2 − c1piqi = 0.(7)

m2

[
qi+1 − 2qi + qi−1

(△x)2

]
+ a2qi − b2(qi)

2 − c2piqi = 0.(8)

In [9]-[12], the author studies the result under the conditions where the minimal
solution (

¯
p∗i ,

¯
q∗i ) is equal to the maximal solution (p̄∗i , q̄

∗
i ) of (7)-(8). If this is the

case, the author shows that (pki , q
k
i ) → (

¯
p∗i ,

¯
q∗i ) = (p̄∗i , q̄

∗
i ).

The fully implicit scheme proposed in [8] conserves the dynamic properties of
the system (1)-(4). The author in [8] also applied this method in [13] for a coupled
system of quasilinear elliptic equations. However, it takes a significant amount of
time to approximate the numerical solution using Picard iteration. In addition, it
is hard to estimate the convergence rate as △t and △x approach zero. Finally,
△t must be chosen sufficiently small to guarantee convergence of the fully implicit
system to the theoretical solution.

In this paper, we develop a new method for numerical approximation of the true
solution (p, q) to (1)-(4); call this numerical approximation (pk, qk) for the time be-
ing. We propose a nonstandard finite difference method for discretizing the system
that ends up requiring that a semi-implicit system of difference equations be solved
for (pk, qk) rather than a fully implicit system as in [8]. We find the numerical so-
lution to the system of difference equations directly. Then, fully independent of the
choice of △t, we prove the nonnegativity of pk and qk, the stability of the difference
scheme, and that (pk, qk) converges to the true solution (p, q) of the system. We al-
so show its rate of convergence to be O(∆t+∆x2). We construct an upper solution
(p̄k, q̄k) and a lower solution (

¯
pk,

¯
qk) to the system of difference equations using a

related system of ordinary differential equations. Having constructed these upper
and lower solutions, we will then be able to give a sufficient condition for coexis-
tence of solutions of the system of difference equations and to provide a complete
analysis of the long-term behavior of the numerical solution to (1)-(4).

In Section 2, we will introduce the difference scheme used for the approximation
of (1)-(4) for Ω ⊂ R. We prove existence of the numerical solution to the scheme,
and that it is stable independent of the choice of ∆t and ∆x. We finish by giving
the convergence rate of the numerical scheme to the true solution. In Section 3,
we give more properties of the asymptotic behavior of the numerical solutions to
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the system. In Section 4, we show how the same results extend naturally from a
domain Ω ⊂ R to one in R2. In Section 5, we present some results of numerical
experiments that reflect the stability and convergence of the proposed difference
scheme in one and two-dimensional spatial domains.

2. A Semi-Implicit Difference Scheme

We can reduce the quantity of parameters from eight to three by applying nondi-
mensionalization to (1)-(4). This is done under the substitutions

T = a1t, X = x ·
√

a1
m1

, p(t,x) =
a1
b1

· u(T,X), and q(t,x) =
a2
b2

· v(T,X).

After applying these changes of parameters and renaming T and X back to t and
x, (1)-(4) becomes

ut = △u+ u(1− u− av) (t > 0, x ∈ Ω),(9)

vt = rm△v + ρv(1− v − bu) (t > 0, x ∈ Ω),(10)

uη|∂Ω = 0, vη|∂Ω = 0 (t > 0),(11)

u(0,x) = u0(x), v(0,x) = v0(x) (x ∈ Ω),(12)

where a = a2c1
b2

, b = a1c2
b1

, rm = m2

m1
, and ρ = a2

a1
.

Remark 2.1. For theoretical results about system (9)-(12), particularly regard-
ing the relation between the parameters a, b, rm, ρ and coexistence of two species
represented by populations u and v, details may be found in Chapter 2 of [6].

As stated in Section 1, to facilitate analysis of the difference scheme we study
the finite difference approximation of system (9)-(12) for a one-dimensional domain
Ω ⊂ R. We show how these results extend in a natural way to R2 in Section 4.

With this in mind, for t > 0 we introduce time step tk = k△t for k = 0, 1, 2, . . . ,
where △t is a fixed time step whose size will be given later; until then, the choice
of time step is relatively unimportant. In R, we choose Ω = (−L,L) and define the
partition

Ωx = {xi|xi = −L+ i△x, i = 1, 2, . . . , N − 1}, where △x = 2L/N.

We use uk
i to represent the approximation to u(tk, xi) and vki for v(tk, xi), where

(u(tk, xi), v(tk, xi)) is the true solution of the system (9)-(12) at (tk, xi). Our choice
of difference scheme for the system (9)-(12) is

uk+1
i − uk

i

△t
=

uk+1
i+1 − 2uk+1

i + uk+1
i−1

(△x)2
+ uk

i − uk
i u

k+1
i − auk+1

i vki(13)

vk+1
i − vki

△t
= rm

[
vk+1
i+1 − 2vk+1

i + vk+1
i−1

(△x)2

]
+ ρvki − ρvki v

k+1
i − ρbuk

i v
k+1
i(14)

for i = 0, 1, 2, ..., N and k = 0, 1, 2, . . . . To account for Neumann boundary condi-
tions (15) we define

uk
−1 = uk

1 , uk
N+1 = uk

N−1, v
k
−1 = vk1 , vkN+1 = vkN−1(15)

for k = 0, 1, 2, . . ., and for initial conditions (16) we let

u0
i = u0(xi), v0i = v0(xi)(16)
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for i = 0, 1, 2, . . . , N . Setting r = △t
(△x)2 , (13)-(14) is written as

−ruk+1
i+1 + [1 + 2r +△t(uk

i + avki )]u
k+1
i − ruk+1

i−1 = (1 +△t)uk
i(17)

−rmrvk+1
i+1 + [1 + 2rmr + ρ△t(buk

i + vki )]v
k+1
i − rmrvk+1

i−1 = (1 + ρ△t)vki(18)

for k = 0, 1, 2, . . . and for i = 0, 1, 2, . . . , N .
For each time step k = 0, 1, 2, . . ., obtaining the numerical approximation re-

quires that we solve the linear systems

A(k)
u U (k+1) = B(k)

u and A(k)
v V (k+1) = B(k)

v ,(19)

where A
(k)
u and A

(k)
v are the (N+1)×(N+1) tridiagonal matrices given by

A(k)
u =


α
(k)
0 −2r 0 · · · 0

−r α
(k)
1 −r 0
. . .

. . .
. . .

0 −r α
(k)
N−1 −r

0 · · · 0 −2r α
(k)
N

(20)

where α
(k)
i = 1 + 2r +△t(uk

i + avki ), i = 0, 1, 2, . . . , N , and

A(k)
v =


β
(k)
0 −2rmr 0 · · · 0

−rmr β
(k)
1 −rmr 0
. . .

. . .
. . .

0 −rmr β
(k)
N−1 −rmr

0 · · · 0 −2rmr β
(k)
N

 ,(21)

where β
(k)
i = 1 + 2rmr + ρ△t(buk

i + vki ) for i = 0, · · · , N . Matrices A
(k)
u and A

(k)
v

in (20)-(21) reflect the Neumann boundary conditions (15) in their first and last
rows.

Remark 2.2. Choosing a scheme that is semi-implicit as in (13)-(14) guarantees

that A
(k)
u and A

(k)
v are diagonally dominant matrices, an essential property on which

the results of this paper heavily depend. Choosing a fully implicit scheme would not

guarantee the required diagonal dominance of its corresponding matrices A
(k)
u and

A
(k)
v .

Solution vectors U (k+1) and V (k+1) in (19) are defined as

U (k+1) =


uk+1
0

uk+1
1
...

uk+1
N

 , V (k+1) =


vk+1
0

vk+1
1
...

vk+1
N

 ,(22)

and vectors B
(k)
u and B

(k)
v are given by

B(k)
u =


(1 +△t)uk

0

(1 +△t)uk
1

...
(1 +△t)uk

N

 , B(k)
v =


(1 + ρ△t)vk0
(1 + ρ△t)vk1

...
(1 + ρ△t)vkN

 .(23)
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If u0(x) > 0, v0(x) > 0, define for use in the theorem that follows the constants

u0 = max
0≤i≤N

{u0
i }, v0 = max

0≤i≤N
{v0i }, Ku = max{1, u0}, and Kv = max{1, v0}.

.

Theorem 2.3. The system of difference equations (19) has a unique solution
(Uk+1, V k+1) for k = 0, 1, 2, . . . . Furthermore, for all i = 0, 1, 2, . . . , N and
k = 0, 1, 2, . . . ,

0 < uk+1
i ≤ Ku and 0 < vk+1

i ≤ Kv.

Remark 2.4. The preceding theorem mentions no restriction on the sizes of △t
and △x. This omission is intentional since the scheme (13)-(14) unconditionally
preserves the positivity of the solution and is unconditionally stable, independent of
step size in time and space.

Proof. We first consider existence and uniqueness. Since u0(x) > 0 and v0(x) > 0,
we have u0

i > 0 and v0i > 0 for i = 0, 1, 2, . . . , N . For k = 0 and for i = 0, 1, 2, . . . , N ,
mimicking the notation in (19)-(23) we have

A(0)
u U (1) = B(0)

u and A(0)
v V (1) = B(0)

v

where α
(0)
i = 1+2r+△t(u0

i + av0i ) and β
(0)
i = 1+2rmr+ ρ△t(bu0

i + v0i ). If we set

A
(0)
u = (aij), then since aii = α

(0)
i = 1 + 2r +△t(u0

i + av0i ) > 0, since aij ≤ 0 for

i ̸= j, and since
∑N

j=0(aij) = 1 +△t(u0
i + av0i ) > 0 for i = 0, 1, 2, . . . , N , it follows

that A
(0)
u is an M -matrix (for the definition and properties ofM -matrices used here,

see Chapter 3.6 in [14]). Following Lemma 3.6.4 in [14], (A
(0)
u )−1 is a matrix with

strictly positive entries. Therefore, U (1) = (A
(0)
u )−1B

(0)
u and V (1) = (A

(0)
v )−1B

(0)
v

are both vectors with strictly positive entries: That is, u1
i > 0 for i = 0, 1, . . . , N ,

and v1i > 0 for i = 0, 1, 2, . . . , N , respectively. Hence the system has a unique,
positive solution for k = 0.

If we assume that the statement is true for k, then using the same argument we
can show that it must be true also for k+1. By mathematical induction, existence,
uniqueness, and positivity of solutions is guaranteed for all k = 0, 1, . . . .

To complete the proof, we must verify the upper bounds for solutions of (19).
We apply induction again. For k = 0, assume by way of contradiction that u0

i ≤ Ku

and v0i ≤ Kv for i = 0, 1, 2, . . . , N , but that there exists i1 or i2, 0 ≤ i1 ≤ N or
0 ≤ i2 ≤ N , such that u1

i1
> Ku or v1i2 > Kv.

Suppose without loss of generality that there is such an i1 and set Mu =
max{u1

0, u
1
1, . . . , u

1
N}, so that Mu > Ku ≥ 1. Then there exists j1, where 0 ≤

j1 ≤ N , such that u1
j1

= Mu. Setting i = j1 and k = 0 in (17), we have

−ru1
j1+1 + [1 + 2r +△t(u0

j1 + av0j1)]u
1
j1 − ru1

j1−1 = (1 +△t)u0
j1 .(24)

Since u1
j1

≥ u1
j1−1, u

1
j1

≥ u1
j1+1, av

0
j1

> 0, u1
j1

= Mu > Ku, and u0
j1

≤ Ku, we see
that

−ru1
j1+1 + [1 + 2r +△t(u0

j1
+ av0j1)]u

1
j1
− ru1

j1−1

> r(2− u1
j1−1 − u1

j1+1) + (1 +△tu0
j1
)u1

j1
> (1 +△t)u0

j1
.

This contradicts (17), so it must be that u1
i ≤ Ku for i = 0, 1, . . . , N . The same

reasoning shows that v1i ≤ Kv for i = 0, 1, 2, . . . , N , establishing the claim for k = 0.
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Under the assumption that the statement holds true for some k, we may apply the
same argument to show that it holds for k+1. Hence by induction, the conclusion
is true for all k, k = 0, 1, 2, . . . . �

We are ready to turn to the question of convergence and convergence rate of
solutions of the system of difference equations (13)-(16) to the true solution of
(9)-(12).

Theorem 2.5. If u0
i > 0 and v0i > 0 for i = 0, 1, 2, · · · , N , then for any T > 0, the

solution of the difference scheme (13)-(16) converges to the solution of the system
(9)-(12) on [0, T ]× [−L,L] as △t,△x → 0, with convergence rate O(△t+△x2).

Proof. Let (u(t, x), v(t, x)) be the solution of the system (9)-(12) and let T > 0 be
given. We define

Uk
i = u(tk, xi) and V k

i = v(tk, xi)(25)

as the evaluation of paired solutions (u, v) to (9)-(12) at partition points (tk, xi)
in [0, T ] × Ω = [0, T ] × [−L,L] for k = 0, 1, 2, . . . ,KT and i = 0, 1, 2, . . . N , where
without loss of generality we may assume that KT△t = T . From (13)-(16), we have
for k = 0, 1, 2, . . . ,KT ,

Uk+1
i − Uk

i

△t
=

Uk+1
i+1 − 2Uk+1

i + Uk+1
i−1

(△x)2
+ Uk+1

i

− (Uk+1
i )2 − aUk+1

i V k+1
i +R1(△t,△x),

(26)

and

V k+1
i − V k

i

△t
= rm

[
V k+1
i+1 − 2V k+1

i + V k+1
i−1

(△x)2

]
+ ρ V k+1

i

− ρ(V k+1
i )2 − ρ bUk+1

i V k+1
i +R2(△t,△x),

(27)

where R1 and R2 are functions of △t and △x that are O(△t+△x2). Additionally,
the Neumann boundary conditions (15) imply that

Uk
1 = Uk

−1 +O(△x2), Uk
N+1 = Uk

N−1 +O(△x2),

V k
1 = V k

−1 +O(△x2), V k
N+1 = V k

N−1 +O(△x2)

for i = 0, 1, 2, . . . , N .
We now define error terms

Xk
i = Uk

i − uk
i and Y k

i = V k
i − vki ,

for k = 0, 1, 2, . . . ,KT and i = 0, 1, 2, . . . , N . From (16), we see that

X0
i = 0, Y 0

i = 0 for i = 0, . . . , N.

For each k ≥ 0, (13)-(14) and (26)-(27) imply that

Xk+1
i −Xk

i

△t
=

Xk+1
i+1 − 2Xk+1

i +Xk+1
i−1

△x2
+ (Uk+1

i − uk
i )

+ [uk
i u

k+1
i − (Uk+1

i )2] + a[uk+1
i vki − Uk+1

i V k+1
i ] +R1(△t,△x),

(28)
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and

Y k+1
i − Y k

i

△t
= rm

[
Y k+1
i+1 − 2Y k+1

i + Y k−1
i−1

△x2

]
+ ρ(V k+1

i − vki )

+ ρ[vki v
k+1
i − (V k+1

i )2] + ρb(uk
i v

k+1
i − Uk+1

i V k+1
i ) +R2(△t,△x).

(29)

Theorem 2.3 implies that the numerical solution (uk
i , v

k
i ) is uniformly bounded.

We also know the theoretical solutions u and v to (9)-(12) are bounded with their
partial derivatives: the first partial with respect to time on [0, T ] and the second
partial with respect to space on Ω. Hence ut is uniformly bounded, guarantee-
ing |Uk+1

i − Uk
i | = O(△t). This implies that there exists a positive constant C1

independent of ∆t and ∆x such that the following error bounds hold:

|Uk+1
i − uk

i | = |Uk+1
i − Uk

i + Uk
i − uk

i | ≤ |Xk
i |+O(△t),(30)

|uk
i u

k+1
i − (Uk+1

i )2| ≤ |uk
i u

k+1
i − Uk

i u
k+1
i |+ |Uk

i u
k+1
i − Uk

i U
k+1
i |

+ |Uk
i U

k+1
i − (Uk+1

i )2|

≤ C1|Xk
i |+ C1|Xk+1

i |+O(△t),

(31)

|uk+1
i vki −Uk+1

i V k+1
i | = |uk+1

i vki − uk+1
i V k

i + uk+1
i V k

i

− Uk+1
i V k

i + Uk+1
i V k

i − Uk+1
i V k+1

i |

≤ uk+1
i |vki − V k

i |+ V k
i |uk+1

i − Uk+1
i |+ Uk+1

i |V k
i − V k+1

i |

≤ C1|Y k
i |+ C1|Xk+1

i |+O(△t),

(32)

and likewise for this C1,

V k+1
i − vki | ≤ |Y k

i |+O(△t),(33)

|vki vk+1
i − (V k+1

i )2| ≤ C1|Y k
i |+ C1|Y k+1

i |+O(△t),(34)

|uk
i v

k+1
i − Uk+1

i V k+1
i | ≤ C1|Xk

i |+ C1|Y k+1
i |+O(△t).(35)

We now rewrite (28)-(29) as

−rXk+1
i+1 + (1+2r)Xk+1

i − rXk+1
i−1

= Xk +△t(Uk+1
i − uk

i ) +△t[uk
i u

k+1
i − (Uk+1

i )2]

+ a∆t(uk+1
i vki − Uk+1

i V k+1
i ) +△tR1(△t,△x),

(36)

−rmrY k+1
i+1 + (1+2rmr)Y k+1

i − rmrY k+1
i−1

= Y k + ρ△t(V k+1
i − vki ) + ρ△t[vki v

k+1
i − (V k+1

i )2]

+ ρ b△t(vk+1
i uk

i − Uk+1
i V k+1

i ) +△tR2(△t,△x).

(37)
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System (36)-(37) leads to a linear system that involves the (N + 1) × (N + 1)
dimensional tridiagonal matrices M1 and M2 given by

M1 =


1 + 2r −2r 0 · · · 0
−r 1 + 2r −r 0

. . .
. . .

. . .

0 −r 1 + 2r −r
0 · · · 0 −2r 1 + 2r

 ,(38)

and

M2 =


1 + 2rmr −2rmr 0 · · · 0
−rmr 1 + 2rmr −rmr 0

. . .
. . .

. . .

0 −rmr 1 + 2rmr −rmr
0 · · · 0 −2rmr 1 + 2rmr

 .(39)

Since M1 and M2 are strictly diagonally dominant, following [15] we are assured
that they are nonsingular matrices with ||M−1

i || ≤ 1 for i = 1, 2, where || · || can
represent either the 1-norm or the ∞-norm of a matrix throughout, meaning its
maximal absolute column sum or row sum, respectively. Since matrix norms may
sometimes be defined without the submultiplicative property, we note that either
norm represented by || · || is submultiplicative.

Writing (36)-(37) as a matrix system using (38)-(39) while remembering the
Neumann boundary conditions (15) gives

M1X
k+1 = Xk + E

(k)
1 and M2Y

k+1 = Y k + E
(k)
2 ,(40)

where Xk+1 = (Xk+1
0 , Xk+1

1 , . . . , Xk+1
N )T with Y k+1 defined similarly, and where

for i = 0, 1, 2, . . . , N , if we set

γk
i = △t(Uk+1

i − uk
i ) + ∆t[uk

i u
k+1
i − (Uk+1

i )2] + a∆t(uk+1
i vki − Uk+1

i V k+1
i )

and

δki = ρ△t(V k+1
i − vki ) + ρ∆t[vki v

k+1
i − (V k+1

i )2] + ρ b∆t(vk+1
i uk

i − Uk+1
i V k+1

i ),

then, by resizing R1 and R2 as defined following (26)-(27) if necessary,

E
(k)
1 =


γk
0 +∆tR1(∆t,∆x)

γk
1 +∆tR1(∆t,∆x)

...
γk
N +∆tR1(∆t,∆x)

 and E
(k)
2 =


δk0 +∆tR2(∆t,∆x)
δk1 +∆tR2(∆t,∆x)

...
δkN +∆tR2(∆t,∆x)

 .

It follows from (40) that

Xk+1 = M−1
1

(
Xk + E

(k)
1

)
and Y k+1 = M−1

2

(
Y k + E

(k)
2

)
,(41)

which leads to

||Xk+1|| ≤ ||M−1
1 ||

(
||Xk||+ ||E(k)

1 ||
)
≤ ||Xk||+ ||E(k)

1 ||(42)

and

||Y k+1|| ≤ ||M−1
2 |||

(
||Y k||+ ||E(k)

2 ||
)
≤ ||Y k||+ ||E(k)

2 ||.(43)
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Applying the estimates from (30)-(34) gives bounds

||E(k)
1 || ≤ △t||Xk||+ C1△t||Xk+1||

+ C1△t||Y k||+△t||R1(△t,△x)||,
(44)

||E(k)
2 || ≤ △t||Y k||+ C1△t||Y k+1||

+ C1△t||Xk||+△t||R2(△t,△x)||
(45)

for functions R1 and R2 that are O(∆t+∆x2) as described.
Let us now choose △t such that C1△t < 1

2 , then by expanding (1 − C1∆t)−1

geometrically and substituting (44)-(45) into (42)-(43), we see that there exist con-
stants C2 and C3 such that

||Xk+1|| ≤ 1 +△t

1− C1△t
||Xk||+ C1△t

1− C1△t
||Y k||

+
C1△t

1− C1△t
||R1(△t,△x)||

≤ (1 + C2△t)||Xk||+ C3△t||Y k||+ C3△t||R1(△t,△x)||,

(46)

and such that for Y , we likewise obtain

||Y k+1|| ≤ (1 + C2△t)||Y k||+ C3△t||Xk||+ C3△t||R2(△t,△x)||.(47)

We now define N (k) by N (k) = ||Xk||+ ||Y k||, so that N (0) = 0, and we define the
function R3 by R3(∆t,∆x) = ||R1(△t,△x)|| + ||R2(△t,△x)||. Adding (46) and
(47) and letting C2 + C3 = C4 gives

N (k+1) ≤ (1 + C4△t)N (k) + C3△tR3(△t,△x)

≤ (1 + C4△t)2N (k−1) + C3∆t[1 + (1 + C4△t)]R3(△t,△x)

≤ (1 + C4△t)3N (k−2) + C3∆t[1 + (1 + C4△t) + (1 + C4∆t)2]R3(△t,△x)

...

≤ (1 + C2△t)k+1N (0) + C3∆t

[
(1 + C4△t)k+1 − 1

C4△t

]
R3(△t,△x)

= 0 + C(T )R3(△t,△x).

where C(T ) is a constant that depends only on T .
�

3. Asymptotic Behavior of the Numerical Solution

We have considered results about the numerical solution to (17)-(18) and its
approximation of the true solution of (9)-(12) on a bounded interval. In this section,
our goal is to study the the asymptotic behavior of a numerical solution as it
approximates the true solution. Similarly to the author in [8], we use the method
of lower and upper solutions as the means of investigating this long-term behavior.
We begin this study with a definition.

Definition 3.1. We say that (
¯
uk
i ,¯
vki ) and (ūk

i , v̄
k
i ) are a lower solution and an

upper solution, respectively, of system (17)-(18) if (a) 0 <
¯
u0
i ≤ u0

i ≤ ū0
i and

0 <
¯
v0i ≤ v0i ≤ v̄0i for all i = 0, . . . , N , and if (b) for constants r and rm defined
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in (17)-(18) for any △t > 0, (
¯
uk
i ,¯
vki ) and (ūk

i , v̄
k
i ) satisfy the system of difference

equations

−rūk+1
i+1 + (1 + 2r +△tūk

i + a△t
¯
vki )ū

k+1
i − rūk+1

i−1 = (1 +△t)ūk
i(48)

−rmrv̄k+1
i+1 + (1 + 2rmr + ρ△tv̄ki + ρ△tb

¯
uk
i )v̄

k+1
i − rmrv̄k+1

i−1 = (1 + ρ△t)v̄ki(49)

−r
¯
uk+1
i+1 + (1 + 2r +△t

¯
uk
i + a△tv̄ki )¯

uk+1
i − r

¯
uk+1
i−1 = (1 +△t)

¯
uk
i(50)

−rmr
¯
vk+1
i+1 + (1 + 2rmr + ρ△t

¯
vki + ρ△tbūk

i )¯
vk+1
i − rmr

¯
vk+1
i−1 = (1 + ρ△t)

¯
vki(51)

for all k = 0, 1, 2, . . . and i = 0, 1, 2, . . . , N .

Remark 3.2. We note that the Definition 3.1 is valid since, given initial conditions
u0
i and v0i for i = 0, 1, 2, . . . , N , the system (48) − (51) is solvable for all k, k =

0, 1, 2, . . . .

We now turn to the following comparison theorem, which ensures that if initial
conditions for (17)-(18) have desirable bounds as per Definition 3.1, then the cor-
responding inequalities are valid for all time steps k.

Theorem 3.3. Let (
¯
uk
i ,¯
vki ) and (ūk

i , v̄
k
i ) be lower and upper solutions of (17)-

(18), respectively, as in Definition 3.1. Then for all i = 0, 1, 2, . . . , N and all
k = 0, 1, 2, . . .,

0 <
¯
uk
i ≤ uk

i ≤ ūk
i and 0 <

¯
vki ≤ vki ≤ v̄ki .(52)

Proof. Using an argument similar to that used for Theorem 2.3, we are assured
that all of

¯
uk
i , u

k
i , ū

k
i ,¯
vki , v

k
i , v̄

k
i > 0 for i = 0, 1, 2, . . . , N and k = 0, 1, 2, . . . .

We use mathematical induction to prove that
¯
uk
i ≤ uk

i ≤ ūk
i . By Definition 3.1,

the conclusion holds for k = 0, for i = 0, 1, 2, . . . , N . We assume that the conclusion
is also true for some k, for i = 0, 1, 2, . . . , N . Then for the k + 1 case, since the
inequalities are assumed true for k we have that

¯
vki ≤ vki ≤ v̄ki . Then based on (48)

and (50),

−rūk+1
i+1 + (1 + 2r +△tūk

i + a△tvki )ū
k+1
i − rūk+1

i−1 ≥ (1 +△t)ūk
i ,(53)

−r
¯
uk+1
i+1 + (1 + 2r +△t

¯
uk
i + a△tvki )¯

uk+1
i − r

¯
uk+1
i−1 ≤ (1 +△t)

¯
uk
i .(54)

Let us set wk
i = ūk

i − uk
i and xk

i =
¯
uk
i − uk

i . Then by assumption, wk
i ≥ 0 and

xk
i ≤ 0 for i = 1, 2, . . . , N . If we subtract (17) from inequalities (53) and (54), we

have

−rwk+1
i+1 + 2rwk+1

i −rwk+1
i−1 + (1 + a△tvki )w

k+1
i

+△t(ūk
i ū

k+1
i − uk

i u
k+1
i ) ≥ (1 +△t)wk

i ,
(55)

−rxk+1
i+1 + 2rxk+1

i −rxk+1
i−1 + (1 + a△tvki )x

k+1
i +

△t(
¯
uk
i ¯
uk+1
i − uk

i u
k+1
i ) ≤ (1 +△t)xk

i .
(56)

Since

ūk
i ū

k+1
i − uk

i u
k+1
i = ūk

iw
k+1
i + uk+1

i wk
i ,

¯
uk
i ¯
uk+1
i − uk

i u
k+1
i =

¯
uk
i x

k+1
i + uk+1

i xk
i ,
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when we substitute these into (55) and (56), we obtain

−rwk+1
i+1 + 2rwk+1

i −rwk+1
i−1 + (1 + a△tvki +△tūk

i )w
k+1
i

≥ (1 +△t−△tuk+1
i )wk

i ,
(57)

−rxk+1
i+1 + 2rxk+1

i −rxk+1
i−1 + (1 + a△tvki +△t

¯
uk
i )x

k+1
i

≤ (1 +△t−△tuk+1
i )xk

i .
(58)

From Theorem 2.3, we know that uk+1
i is bounded by Ku = max{1,maxu0(x)}, so

that if △t is small enough we are assured that 1 +△t −△tuk+1
i > 0. Let us pick

such a ∆t.
We must use the inductive hypotheses to show that wk+1

i ≥ 0 and xk+1
i ≤ 0

for i = 0, 1, 2, . . . , N . Assuming this does not hold, there exist i0 and j0 such that
wk+1

i0
< 0 and xk+1

j0
> 0. Without loss of generality, we may assume that

wk+1
i0

= min
0≤i≤N

wk+1
i and xk+1

j0
= max

0≤i≤N
xk+1
i .

If we set i = i0 in (57) and i = j0 in (58), then

−rwk+1
i0+1 + 2rwk+1

i0
−rwk+1

i0−1 + (1 + a△tvki0 +△tūk
i0)w

k+1
i0

≥ (1 +△t−△tuk+1
i0

)wk
i0 ,

(59)

−rxk+1
j0+1 + 2rxk+1

j0
−rxk+1

j0−1 + (1 + a△tvkj0 +△t
¯
uk
j0)x

k+1
j0

≤ (1 +△t−△tuk+1
j0

)xk
j0 .

(60)

Now since

−rwk+1
i0+1 + 2rwk+1

i0
− rwk+1

i0−1 ≤ 0 and (1 + a△tvki0 +△tūk
i0)w

k+1
i0

≤ 0,

and likewise

−rxk+1
j0+1 + 2rxk+1

j0
− rxk+1

j0−1 ≥ 0 and (1 + a△tvkj0 +△t
¯
uk
j0)w

k+1
j0

≥ 0,

we see that

0 ≥ −rwk+1
i0+1 + 2rwk+1

i0
−rwk+1

i0−1 + (1 + a△tvki0 +△tūk
i0)w

k+1
i0

≥ (1 +△t−△tuk+1
i0

)wk
i0 ,

0 ≤ −rxk+1
j0+1 + 2rxk+1

j0
−rxk+1

j0−1 + (1 + a△tvkj0 +△t
¯
uk
i0)x

k+1
j0

≤ (1 +△t−△tuk+1
j0

)xk
j0 .

By the inductive assumption for k, as wk
i0

> 0 and xk
j0

< 0, we have that

(1 +△t−△tuk+1
i0

)wk
i0 > 0 and (1 +△t−△tuk+1

j0
)xk

j0 < 0.

This is a contradiction. Therefore, for all k > 0,
¯
uk+1
i ≤ uk+1

i ≤ ūk+1
i for

i = 0, . . . , N , with a similar sequence of inequalities holding valid for vk+1, k =
1, 2, 3, . . . .

�

We now construct an upper solution and a lower solution of the system (17)-(18)
in the following lemma.
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Lemma 3.4. Suppose that 0 < a, b < 1, ρ > 0, that all of ū0,
¯
v0, v̄0,

¯
u0 > 0, and

that

1− ū0 − a
¯
v0 < 0, 1−

¯
v0 − bū0 > 0,

1− v̄0 − b
¯
u0 < 0, 1−

¯
u0 − av̄0 > 0.

Then the system of difference equations

(1 +△tūk + a△t
¯
vk)ūk+1 = (1 +△t)ūk(61)

(1 + ρ△t
¯
vk + ρb△tūk)

¯
vk+1 = (1 + ρ△t)

¯
vk(62)

(1 +△t
¯
uk + a△tv̄k)

¯
uk+1 = (1 +△t)

¯
uk(63)

(1 + ρ△tv̄k + ρb△t
¯
uk)v̄k+1 = (1 + ρ△t)v̄k(64)

has a unique solution (ūk+1, v̄k+1,
¯
uk+1,

¯
vk+1) for k = 0, 1, 2, 3, . . . . Furthermore,

for k = 0, 1, 2, 3, . . ., we have

(a) ūk, v̄k,
¯
uk,

¯
vk > 0,

(b) 1− ūk−a
¯
vk < 0, 1−

¯
vk− būk > 0, 1− v̄k− b

¯
uk < 0, and 1−

¯
uk−av̄k > 0,

(c) ūk+1 < ūk,
¯
vk+1 >

¯
vk, v̄k+1 < v̄k, and

¯
uk+1 >

¯
uk, and

(d) lim
k→∞

ūk = lim
k→∞ ¯

uk =
1− a

1− ab
and lim

k→∞
v̄k = lim

k→∞¯
vk =

1− b

1− ab
.

Proof. We first establish (a) by mathematical induction. By assumption, the state-
ment is true for k = 0.

Assume the statement is true for some k > 0. Then since ūk > 0, v̄k > 0,
¯
uk > 0,

¯
vk > 0, and ∆t > 0, we have

ūk+1 =
(1 +△t)ūk

1 +△tūk + a△t
¯
vk

> 0,(65)

¯
vk+1 =

(1 + ρ△t)
¯
vk

1 + ρ△t
¯
vk + ρb△tūk

> 0,(66)

¯
uk+1 =

(1 +△t)
¯
uk

1 +△t
¯
uk + a△tv̄k

> 0,(67)

v̄k+1 =
(1 + ρ△t)v̄k

1 + ρ△tv̄k + ρb△t
¯
uk

> 0.(68)

So (a) is true for k + 1 and, by mathematical induction, for all k = 0, 1, 2, . . .;
see Figure 1 as reference for the proof of this lemma.

We now turn to (b). Using (65) and (66), 1− ūk+1 − a
¯
vk+1 < 0 is equivalent to

(1− ūk−a
¯
vk) +△t[ρ

¯
vk + ρbūk + a

¯
vk − ρūk

¯
vk − ρb(ūk)2 − aρ

¯
vk

− aūk

¯
vk − a2(

¯
vk)2] + (△t)2aρ

¯
vk(

¯
vk + būk − ūk − a

¯
vk) < 0.

(69)

Since the statement we want to prove is true for k by the inductive hypothesis,

1− ūk − a
¯
vk < 0 and 1−

¯
vk − būk > 0,
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which implies

ūk >
1− a

1− ab
and

¯
vk <

1− b

1− ab
.(70)

The inequalities in (70) imply that (1− a)
¯
vk < (1− b)ūk. Then

(△t)2aρ
¯
vk(

¯
vk + būk − ūk − a

¯
vk) < 0.(71)

Since ūk > 0,
¯
vk > 0, 1− ūk − a

¯
vk < 0 and 1−

¯
vk − būk > 0,

ρ
¯
vk + ρbūk + a

¯
vk − ρūk

¯
vk − ρb(ūk)2 − aρ

¯
vk − aūk

¯
vk − a2(

¯
vk)2

= ρbūk(1− ūk − a
¯
vk) + a

¯
vk(1− ūk − a

¯
vk) + aρ

¯
vk(būk − 1) + ρ

¯
vk(1− ūk)

< ρbūk(1− ūk − a
¯
vk) + a

¯
vk(1− ūk − a

¯
vk) + aρ

¯
vk(būk − 1) + aρ

¯
vk
¯
vk

= ρbūk(1− ūk − a
¯
vk) + a

¯
vk(1− ūk − a

¯
vk) + aρ

¯
vk(būk + vk − 1) < 0.

(72)

Therefore, inequality (69) stands and we have established that

1− ūk+1 − a
¯
vk+1 < 0,

and the first inequality of (b) is established using induction.
Next we prove 1−

¯
vk+1 − būk+1 > 0. Let us substitute ūk+1 and

¯
vk+1 from (65)

and (66) into the inequality to obtain an equivalent form

1− (1 + ρ△t)
¯
vk

1 + ρ△t
¯
vk + ρb△tūk

− b(1 +△t)ūk

1 +△tūk + a△t
¯
vk

> 0,(73)

so that, as in the previous case,

(1−
¯
vk − būk) +△t[ρbūk + ūk + a

¯
vk − ūk

¯
vk − a(

¯
vk)2 − bρūk

¯
vk−

ρb2(ūk)2 − buk] + (△t)2aρbūk(−
¯
vk − būk + ūk + a

¯
vk) > 0.

(74)

Since the statement is true for k, from (70), we have

1−
¯
vk − būk > 0 and aρbūk(−

¯
vk − būk + ūk + a

¯
vk) > 0.(75)

Therefore we consider the remaining portion

ρbūk + ūk + a
¯
vk − ūk

¯
vk − a(

¯
vk)2 − bρūk

¯
vk − ρb2(ūk)2 − buk

= ρbūk(1−
¯
vk − būk) + ūk(1−

¯
vk − būk) + a

¯
vk(1−

¯
vk) + būk(ūk − 1).

(76)

Since 1−
¯
vk > būk, we have

a
¯
vk(1−

¯
vk) > ab

¯
vkūk,

which when substituted into (76) yields

ρbūk + ūk + a
¯
vk − ūk

¯
vk − a(

¯
vk)2 − bρūk

¯
vk − ρb2(ūk)2 − buk

= ρbūk(1−
¯
vk − būk) + ūk(1−

¯
vk − būk) + a

¯
vk(1−

¯
vk) + būk(ūk − 1)

> ρbūk(1−
¯
vk − būk) + ūk(1−

¯
vk − būk) + būk(a

¯
vk + ūk − 1).

(77)

Exploiting the inductive hypotheses 1− ūk − a
¯
vk < 0 and 1−

¯
vk − būk > 0 again,

we have

ρbūk + ūk + a
¯
vk − ūk

¯
vk − a(

¯
vk)2 − bρūk

¯
vk − ρb2(ūk)2 − buk > 0,(78)

and invoking mathematical induction we have shown the second inequality in (b)
holds for all k = 0, 1, 2, . . . .
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As the proof of the last two inequalities in (b) is similar to that as for the first
two parts, we omit it here.

To establish part (c) of Lemma 3.4, we observe that

ūk+1 − ūk =
(1 +△t)ūk

1 +△tūk + a△t
¯
vk

− ūk =
△tūk(1− ūk − a

¯
vk)

1 +△tūk + a△t
¯
vk

(79)

and

¯
vk+1 −

¯
vk =

(1 + ρ△t)
¯
vk

1 + ρ△t
¯
vk + ρb△tūk

−
¯
vk =

ρ△t
¯
vk(1−

¯
vk − būk)

1 + ρ△t
¯
vk + ρb△tūk

,(80)

so that the result follows immediately from part (b). Likewise, v̄k+1 < v̄k and

¯
uk+1 >

¯
uk.

Finally, for part (d), we call on part (b) of Lemma 3.4, which ensures that

ūk >
1− a

1− ab
,
¯
vk <

1− b

1− ab
, v̄k >

1− b

1− ab
, and

¯
uk <

1− a

1− ab
.(81)

.. u.

v

...
1
b

.

1
a

.

( 1−a
1−ab ,

1−b
1−ab )

.

(ū0,
¯
v0)

. •.

•
.

(
¯
u0, v̄0)

.

•

..

1− u− av = 0

..
1− v − bu = 0

Figure 1: Bounded regions as described in Lemma 3.4
with initial conditions (

¯
u0, v̄0) and (ū0,

¯
v0).

Since {ūk} and {v̄k} are decreasing and bounded below, and likewise {
¯
uk} and

{
¯
vk} are increasing and bounded above, their limits exist. Then we have

lim
k→∞

ūk = L1 ≥ 1− a

1− ab
> 0, lim

k→∞¯
vk = L2 ≥

¯
v0 > 0,(82)

and

lim
k→∞

v̄k = L3 ≥ 1− b

1− ab
> 0, lim

k→∞ ¯
uk = L4 >

¯
u0 > 0.(83)

Taking the limit in (61)-(64), we have

(1 +△tL1 + a△tL2)L1 = (1 +△t)L1,(84)

(1 + ρ△tL2 + ρb△tL1)L2 = (1 + ρ△t)L2,(85)

(1 +△tL4 + a△tL3)L4 = (1 +△t)L4,(86)

(1 + ρ△tL3 + ρb△L4)L3 = (1 + ρ△t)L3.(87)
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Solving system (84)-(85) and system (86)-(87), and since L1, L2, L3, L4 > 0, we
have

L1 = L4 =
1− a

1− ab
and L2 = L3 =

1− b

1− ab
.(88)

�

Theorem 3.5. Define K1, K2, K3 and K4 by

K1 = minu0(x), K2 = maxu0(x), K3 = min v0(x), and K4 = max v0(x).

Suppose that 0 < a, b < 1, and that 0 < K1 ≤ K2 ≤ 1/b and 0 < K3 ≤ K4 ≤ 1/a.
Then the solution (uk

i , v
k
i ) to system (17)-(18) satisfies

lim
k→∞

uk
i =

1− a

1− ab
and lim

k→∞
vki =

1− b

1− ab
(89)

for i = 0, 1, . . . , N .

Proof. Since 0 < K1 ≤ K2 ≤ 1/b and 0 < K3 ≤ K4 ≤ 1/a, we may choose a point
(
¯
u0, v̄0) in Region I and another point (ū0,

¯
v0) in Region II, both as shown in Figure

2, such that

¯
u0 ≤ K1, v̄0 ≥ K4,

¯
v0 ≤ K3, and ū0 ≥ K1.

.. u.

v

...
1
b

.

1
a

.

(ū0,
¯
v0)

.

I

. II.

•
.

(
¯
u0, v̄0)

Figure 2: Regions I and II with initial conditions
as described in Theorem 3.5.

Using Lemma 3.4, we have

lim
k→∞

ūk = lim
k→∞ ¯

uk =
1− a

1− ab
and lim

k→∞
v̄k = lim

k→∞¯
vk =

1− b

1− ab
(90)

for i = 0, 1, . . . , N .
Since ūk,

¯
uk, v̄k, and

¯
vk also satisfy (48)-(51), (ūk, v̄k) and (

¯
uk,

¯
vk) are an upper

solution and a lower solution, respectively, of system (13)-(14). By Theorem 3.3,
we have

¯
uk ≤ uk

i ≤ ūk and
¯
vk ≤ vki ≤ v̄k(91)

for i = 0, . . . , N and k = 0, 1, 2, . . . .
Letting k → ∞ and using the squeezing theorem, we have

lim
k→∞

uk
i =

1− a

1− ab
and lim

k→∞
vki =

1− b

1− ab

for i = 0, 1, . . . , N .
�
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In the next lemma, we test what happens when the interaction rate of one species
exceeds unity. We confirm that the other species is driven to extinction.

Lemma 3.6. Suppose that 0 < b < 1, a > 1, ρ > 0, and that ū0 > 0 and
¯
v0 > 0

satisfy

1− ū0 − a
¯
v0 < 0 and 1−

¯
v0 − bū0 > 0.

Suppose further that (ūk,
¯
vk) satisfies the system of difference equations

(1 +△tūk + a△t
¯
vk)ūk+1 = (1 +△t)ūk

(1 + ρ△t
¯
vk + ρb△tūk)

¯
vk+1 = (1 + ρ△t)

¯
vk

(92)

for k = 0, 1, 2, . . .. Then the following are satisfied:

(a) ūk,
¯
vk > 0, 1− ūk − a

¯
vk < 0, and 1−

¯
vk − būk > 0;

(b) ūk+1 < ūk and
¯
vk+1 >

¯
vk; and

(c) lim
k→∞

ūk = 0 and lim
k→∞¯

vk = 1.

Proof. As before, we proceed to prove (a) by induction; note Figure 3 throughout
the proof of this lemma. By assumption, the statement is true for k = 0.

Assume the statement is true for k > 0. Then for k + 1, using (65) and (66) as
before,

1− ūk+1 − a
¯
vk+1 < 0

is equivalent to

(1−ūk − a
¯
vk) +△t[ρ

¯
vk + bρūk + a

¯
vk − ρūk

¯
vk − bρ(ūk)2−

aρ
¯
vk − aūk

¯
vk − a2(

¯
vk)2] + (△t)2aρ

¯
vk(

¯
vk + būk − ūk − a

¯
vk) < 0.

(93)

Then since

1− ūk − a
¯
vk < 0 and 1−

¯
vk − būk > 0

imply that

¯
vk < 1 and (1− a)

¯
vk < (1− b)ūk.(94)

Hence

aρ
¯
vk(

¯
vk + būk − ūk − a

¯
vk) < 0,(95)

and we have

ρ
¯
vk + ρbūk + a

¯
vk − ρūk

¯
vk − ρb(ūk)2 − aρ

¯
vk − aūk

¯
vk − a2(

¯
vk)2

= ρbūk(1− ūk − a
¯
vk) + a

¯
vk(1− ūk − a

¯
vk) + aρ

¯
vk(būk − 1) + ρ

¯
vk(1− ūk)

< ρbūk(1− ūk − a
¯
vk) + a

¯
vk(1− ūk − a

¯
vk) + aρ

¯
vk(būk − 1) + aρ

¯
vk
¯
vk

= ρbūk(1− ūk − a
¯
vk) + a

¯
vk(1− ūk − a

¯
vk) + aρ

¯
vk(būk + vk − 1) < 0.

(96)

This implies that

1− ūk+1 − a
¯
vk+1 < 0.

Since similar reasoning we may establish that 1−
¯
vk+1 − būk+1 > 0, mathematical

induction implies that part (a) is true for all k, k = 0, 1, 2, . . ..
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To prove part (b), we use the system of difference equations

ūk+1 − ūk =
△ūk(1− ūk − a

¯
vk)

1 +△tūk + a△t
¯
vk

< 0

¯
vk+1 −

¯
vk =

ρ△t
¯
vk(1−

¯
vk − būk)

1 + ρ△t
¯
vk + ρb△tūk

> 0

(97)

from part (a). This leads directly to ūk+1 < ūk and
¯
vk+1 >

¯
vk, completing the

proof of (b).

.. u.

v

...
1

.

1

.
1
b

.

1
a

.

(ū0,
¯
v0)

.

•

..

1− u− av = 0

..

1− v − bu = 0

Figure 3: Initial conditions (ū0,
¯
v0) and the region

of interest in Lemma 3.6.

We now turn to part (c) to finish the proof of Lemma 3.6. From part (a),

0 < ūk < 1/b and 0 <
¯
vk < 1.(98)

Then the sequence {ūk} is decreasing and bounded below, while {
¯
vk} is increasing

and bounded above; hence their limits exist so that there exist constants L1 and
L2 such that

0 ≤ lim
k→∞

ūk = L1 ≤ 1/b < 1 and
¯
v0 ≤ lim

k→∞¯
vk = L2 ≤ 1.(99)

Taking the limit as k → ∞ in (92), we have

(1 +△tL1 + a△tL2)L1 = (1 +△t)L1

(1 + ρ△tL2 + ρb△tL1)L2 = (1 + ρ△t)L2.
(100)

When this limiting system is solved, using L1 ≥ 0, L2 > 0, a > 1 and b < 1, we
arrive at

L1 = 0 and L2 = 1.

This establishes (c).
�

Theorem 3.7. Define M1, M2, M3 and M4 by

M1 = minu0(x), M2 = maxu0(x), M3 = min v0(x), and M4 = max v0(x).

Assume that 0 < b < 1, a > 1, and that 0 < M1 ≤ M2 ≤ 1/b with 0 < M3 ≤ M4 ≤
1. Then the solution (uk

i , v
k
i ) to system (17)-(18) satisfies

lim
k→∞

uk
i = 0 and lim

k→∞
vki = 1

for all i = 0, 1, 2, . . . , N .
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Proof. Since 0 < M1 ≤ M2 ≤ 1/b and 0 < M3 ≤ M4 ≤ 1, we can choose two points
(
¯
u0, v̄0) and (ū0,

¯
v0) in Region I as shown such that

¯
u0 = 0, v̄0 = 1,

¯
v0 ≤ M3, and ū0 ≥ M2.

.. u.

v

...
1

.

1

.
1
b

.

1
a

.

I

Figure 4: Initial conditions (ū0,
¯
v0) and the region

described in Theorem 3.7.

Applying Lemma 3.6 yields

lim
k→∞

ūk = 0 and lim
k→∞¯

vk = 1.(101)

for i = 0, 1, 2, . . . , N .
Since

¯
u0 = 0 and v̄0 = 1, from (63)-(64) we have that

¯
uk = 0 and v̄k = 1. Since

all of ūk,
¯
uk, v̄k, and

¯
vk also satisfy (48)-(51), (ūk, v̄k) and (

¯
uk,

¯
vk) are an upper

solution and a lower solution of system (13)-(14). Drawing on Theorem 3.3, we
have the inequalities

¯
uk ≤ uk

i ≤ ūk and
¯
vk ≤ vki ≤ v̄k(102)

for i = 0, . . . , N and k = 0, 1, 2, . . . . This implies that

lim
k→∞

uk
i = 0, lim

k→∞
vki = 1.

for i = 0, 1, 2, . . . , N .
�

Theorem 3.8. If 0 < a < 1, b > 1, maxu0(x) ≤ 1 and max v0(x) ≤ 1/a, then the
solution (uk

i , v
k
i ) to system (17)-(18) satisfies

lim
k→∞

uk
i = 1 and lim

k→∞
vki = 0(103)

for i = 0, 1, 2, . . . , N .

Proof. As the proof is similar to that for Theorem 3.7, we omit here. �

4. The Extension to R2

It is valuable to discuss the case where Ω ⊂ R2 here to demonstrate why the
results carry over in a natural way to higher dimensions. This became necessary to
develop the numerical approximation in Section 5 in the case of a two-dimensional
domain. To accomplish this, we modify the discretization of (13)-(16) by renaming
any ui and vi to populations in two dimensions uij and vij in (17)-(18).
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For a rectangular domain (−L,L)× (−M,M) ⊂ R2, we have

Ωx, y = {(xi, yj)|xi = −L+ i△x, yj = −M + j△y,
1 ≤ i ≤ Nx − 1, 1 ≤ j ≤ Ny − 1},

where △x = 2L/Nx and △y = 2M/Ny.
Then for the discretization of diffusion terms in expanding (17) and (18), and

given that wk
ij now means w(tk, xi, yj), we include on the right-hand sides

uk+1
i,j+1 − 2uk+1

i,j + uk+1
i,j−1

(△y)2
and

vk+1
i,j+1 − 2vk+1

i,j + vk+1
i,j−1

(△y)2
,(104)

respectively. We also replace r by rx = ∆t
(∆x)2 and ry = ∆t

(∆y)2 and leave rm un-

changed. We must include Neumann boundary conditions (15) extending to u and
v along all four boundaries in the natural way. Then taking all terms with time step
k + 1 to one side gives rise to the replacement of (19) by the system of equations

G(k)
u U(k+1) = H(k)

u and G(k)
v V(k+1) = H(k)

v(105)

for i = 0, 1, 2, . . . , Nx and j = 0, 1, 2, . . . , Ny, to be solved for k = 0, 1, 2, . . . .
For j = 0, 1, 2, . . . , Ny, we let Λj(k) and Λ′

j(k) be the tridiagonal, (Nx + 1) ×
(Nx + 1) matrices given by

Λj(k) =



α
(k)
0j −2rx 0 · · · 0

−rx α
(k)
1j −rx · · · 0
. . .

. . .
. . .

0 · · · −rx α
(k)
Nx−1,j −rx

0 · · · 0 −2rx α
(k)
Nx,j


(106)

where α
(k)
ij = 1 + 2rx + 2ry +△t(uk

ij + avkij) for i = 0, 1, 2, . . . , Nx, and

Λ′
j(k) =



β
(k)
0j −2rmrx 0 · · · 0

−rmrx β
(k)
1j −rmrx · · · 0
. . .

. . .
. . .

0 · · · −rmrx β
(k)
Nx−1,j −rmrx

0 · · · 0 −2rmrx β
(k)
Nx,j


,(107)

where β
(k)
ij = 1 + 2rmrx + 2rmry + ρ△t(buk

ij + vkij) for i = 0, 1, 2, . . . , Nx.

We then define Ry to be the (Nx + 1) × (Nx + 1) diagonal matrix given by
Ry = ryINx+1, where In is the n × n identity matrix, and we let Θ mean the
(Nx + 1)× (Nx + 1) zero matrix. Finally, for j = 0, 1, 2, . . . , Ny, and for W = U or
W = V , we define the 1×Nx row vectors

W
(k′)
j = (wk′

0j , w
k′

1j , w
k′

2j , . . . , w
k′

Nx,j).(108)
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With these definitions in hand and setting M = (Nx + 1) · (Ny + 1), in (105) the

matrices G
(k)
u and G

(k)
v are the M ×M block matrices defined by

G(k)
u =


Λ0(k) −2Ry Θ · · · Θ
−Ry Λ1(k) −Ry Θ

. . .
. . .

. . .

Θ −Ry ΛNy−1(k) −Ry

Θ · · · Θ −2Ry ΛNy
(k)

 and(109)

G(k)
v =


Λ′
0(k) −2rmRy Θ · · · Θ

−2rmRy Λ′
1(k) −rmRy Θ
. . .

. . .
. . .

Θ −rmRy Λ′
Ny−1(k) −rmRy

Θ · · · Θ −2rmRy Λ′
Ny

(k)

 .(110)

Drawing on U
(k+1)
j and V

(k+1)
j as the row vectors described in (108), we define the

two block RM vectors U(k+1) and V(k+1) in (105) by

U(k+1) =
(
U

(k+1)
0 |U (k+1)

1 | . . . | U (k+1)
Ny

)T

and

V(k+1) =
(
V

(k+1)
0 |V (k+1)

1 | . . . | V (k+1)
Ny

)T

.

We can now finish definitions of the individual parts of (105) by defining

H(k)
u = (1 +△t) ·U(k) and H(k)

v = (1 + ρ△t) ·V(k).

We observe that Λj(0) and Λ′(0) in (106)-(107) are both positive definite for each
j = 0, 1, 2, . . . , Ny so that block diagonal elements of Gu(0) and Gv(0) in (109)-
(110) are positive definite. In addition, the off-diagonal blocks of Gu(0) and Gv(0)
are negative matrices and the row sums are positive, so that the higher-dimensional
analog of the result of Theorem 2.3 holds for Ω = (−L,L)× (−M,M) ⊂ R2 as well
as for Ω = (−L,L) ⊂ R. That is, mathematical induction can be used to (19) in
order to arrive at the result for (105) as that for (19): For the two dimensional case,
existence of a solution to the system of difference equations, as well as its uniqueness,
positivity, and uniform boundedness of uk

ij and vkij , for all i = 0, 1, 2, . . . , Nx and
j = 0, 1, 2, . . . , Ny follows for k = 0, 1, 2, . . . .

5. Numerical results

Now that we have verified the stability and convergence of the numerical scheme
and studied the long term behavior of the numerical solution, and now that we have
shown that the numerical solution preserves the properties of the theoretical solu-
tion, in this section we examine the results from some computational experiments.

For all of the following results, we have chosen ρ = 0.7 and rm = 0.8 in (9)-(12).
While we have varied ∆t as a convergence test in Table 1, there is no restriction on
the size of ∆t for any mesh. For one-dimensional graphs, we compare over a mesh
of 50 spatial subintervals.

We consider the case of coexistent, competing species over a one-dimensional
domain 0 ≤ x ≤ 1. We have chosen u(0, x) = 77

1800 (15 + 15 sin 3πx + 5 sin 9πx +

3 sin 15πx) and v(0, x) = 1
20 (980x

4 − 1730x3 + 770x2 − 25x+ 22) and a = 2/5 and
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(a) Initial conditions u(0, x) and v(0, x) (b) Approximation to u(0.1, x) and v(0.1, x)

(c) Approximation to u(1.0, x) and v(1.0, x) (d) Approximation to u(2.5, x) and v(2.5, x)

(e) Approximation to u(10, x) and v(10, x) (f) Approximation to u(40, x) and v(40, x)

Figure 5: The limits for species coexistence predicted by Theorem 3.5 for
∆t = 0.1, a = 2/5, b = 4/5; u is solid and v is dashed.

b = 4/5, since if 0 < u0(x) ≤ 5/4 and 0 < v0(x) ≤ 5/2 for 0 ≤ x ≤ 1, then by
Theorem 3.5 we have that

lim
k→∞

uk
i =

1− b

1− ab
=

5

17
and lim

k→∞
vki =

1− a

1− ab
=

15

17

for i = 0, 1, 2, . . . , N .
We compare the numerical solutions for various choices of △t and different △x

in Cases 1 and 2; the results are summarized in Tables 1 and 2.

Case 1: Fix △x = 0.02 and vary △t.

Let (u(t, x), v(t, x)) represent the numerical solution corresponding to △t and let
(u1(t, x), v1(t, x)) represent the numerical solution corresponding to △t1. The the
differences between u(t, x) and u1(t, x) and between v(t, x) and v1(t, x) are shown
at t = 20.

Table 1: Solution differences for varied △t.

△t △t1 max|u(20, x)− u1(20, x)| max|v(20, x)− v1(20, x)|
0.1 0.05 0.0116 0.0242
0.01 0.005 0.0099 0.0207
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0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8
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1.2

(a) Initial condition u(0, x) (b) Initial condition v(0, x)

0.2 0.4 0.6 0.8 1.0

-0.010

-0.005

0.005

0.010

0.0 0.2 0.4 0.6 0.8 1.0

0.995

1.000

1.005

1.010

(c) Approximation to u(60, x) (d) Approximation to v(60, x)

Figure 6: The limits of 0 and 1 being approached as t → ∞ as predicted in
Theorem 3.7 for ∆t = 0.1, a = 10/9, b = 4/5.

Case 2: Fix △t = 0.01 and vary △x.

Let (u(t, x), v(t, x)) represent the numerical solution corresponding to △x and
let (u1(t, x), v1(t, x)) represent the numerical solution corresponding to △x1. The
differences between u(t, x) and u1(t, x) and between v(t, x) and v1(t, x) are shown
at t = 20.

Table 2: Solution differences for varied △x.

△x △x1 max|u(20, x)− u1(20, x)| max|v(20, x)− v1(20, x)|
0.1 0.05 1.5471e-04 3.1988e-04
0.05 0.025 2.9465e-05 6.0942e-05

The order of convergence in Tables 1-2 follows the convergence results of Theorem
2.5. Graphs provided in Figure 5 - Figure 7 confirm limit results in Theorems 3.5,
3.7, and 3.8.

In Figure 6, we consider the case of one competitor dominating the other over the
one-dimensional domain of existence 0 ≤ x ≤ 1. We have chosen u(0, x) = 77

1800 (15+
15 sin 3πx + 5 sin 9πx + 3 sin 15πx) again for one initial condition that shows the
species with population u(t, x) is concentrated closer to the boundary of the domain,
which function is used due to being a truncated Fourier series approximation to a
step function. Now, however, we choose v(0, x) = 1−4(x− 2

3 )
4 < 1 so that a = 10/9

and b = 4/5 since if 0 < u0(x) ≤ 5/4 and 0 < v0(x) ≤ 1 for 0 ≤ x ≤ 1. Then, by
Theorem 3.7, we have that

lim
k→∞

uk
i = 0 and lim

k→∞
vki = 1

for i = 0, 1, 2, . . . , N . Once again, the theorem predicts the results that are demon-
strated in Figure 6: the extinction of the species whose population is given by
u(t, x) and uniform distribution of the competing species across the domain.
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(a) Initial conditions u(0, x, y) and v(0, x, y)

(b) Approximations of u(0.05, x, y) and v(0.05, x, y)

(c) Approximation of u(0.5, x, y) and v(0.5, x, y)

(d) Approximations of u(1.0, x, y) and v(1.0, x, y)

(e) Approximation of u(10.0, x, y) and v(10.0, x, y)

(f) Approximations of u(15.0, x, y) and v(15.0, x, y)

Figure 7: The case of coexistence for Ω ∈ R2 in Theorem 3.5 over
(x, y) ∈ [0, 1]× [0, 1] for ∆t = 0.01, a = 1/3, b = 1/2.
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Finally, in Figure 7 we consider the case of competing species over a two-
dimensional square domain [0, 1]× [0, 1]. We have chosen u(0, x, y) = 1+0.9 sin 3πx

cos 2πy and v(0, x, y) = 2+cos(4
√
x2 + y2) so that if we choose a = 1/3 and b = 1/2

then following Theorem 3.7, we see that 0 < u(0, x, y) ≤ 2 and 0 < v(0, x, y) ≤ 3.
Hence we have that

lim
k→∞

uk
i =

1− b

1− ab
=

4

5
and lim

k→∞
vki =

1− a

1− ab
=

3

5

for i = 0, 1, 2, . . . , N . In this case, due to heavier computational cost of solving an
(Nx+1)×(Ny+1) matrix system at each time step, we have used ∆t = ∆x = 0.05.
Despite being a much bigger system than for the for the one-dimensional case, in
Mathematica we were able to generate the data shown in Figure 7 in less than ten
seconds. Once again, Theorem 3.5 predicts what is demonstrated in the numerical
approximation as k → ∞.
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