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A FINITE DIFFERENCE SCHEME FOR CAPUTO-FABRIZIO

FRACTIONAL DIFFERENTIAL EQUATIONS

XU GUO, YUTIAN LI, AND TIEYONG ZENG

Abstract. In this work, we consider a new fractional derivative with nonsingular kernel intro-
duced by Caputo–Fabrizio (CF) and propose a finite difference method for computing the CF
fractional derivatives. Based on an iterative technique, we can reduce the computational com-
plexity from O(J2N) to O(JN), and the corresponding storage will be cut down from O(JN)
to O(N), which makes the computation much more efficient. Besides, by adopting piece-wise
Lagrange polynomials of degrees 1, 2, and 3, we derive the second, third, and fourth order dis-
cretization formulas respectively. The error analysis and numerical experiments are carefully
provided for the validation of the accuracy and efficiency of the presented method.
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1. Introduction

As an intensively developing area of the calculus during the past decades, frac-
tional calculus has received much attention from both physicists and mathemati-
cians, because it can describe the memory and hereditary properties of various
materials and can faithfully capture the dynamics of physical processes in many
research fields, including physics, engineering, chemistry, biology, and economics.

In the literature, there are two mostly used definitions for fractional differenti-
ation, namely, the Riemann–Liouville (RL) and Caputo fractional operators. The
RL definition plays an important role in the theory of fractional calculus and has
many applications in pure mathematics, such as the definitions of new functions,
see [32]. Besides, it has been found that the RL derivative is useful to characterize
anomalous diffusion, Lévy flights and traps, and so forth [24]. On the other hand,
practical considerations require proper definitions of fractional derivatives, which
provide initial conditions with clear physical interpretation for the differential equa-
tions of fractional order. Therefore, even though the definition of Caputo derivative
is more restrictive than the RL, it seems to be more welcome as well as crucial in
practical applications.

Caputo’s fractional derivative also has numerous applications in different areas
of science [7, 9, 12, 21]. Let us start with the definition of the traditional Caputo
fractional derivative [23, 32]. Given b > 0, u ∈ H1(0, b), and 0 < α < 1 with
α being the fractional order, then the well-known Caputo fractional derivative of
order α is defined by

(1) CDαu(t) =
1

Γ(1− α)

∫ t

0

(t− s)−αu′(s)ds, t > 0.

Despite of the great success in applications, the singularity of the Caputo deriva-
tive in its kernel brings both theoretical and numerical difficulties. There are many
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investigations have been done for numerically solving differential equations with the
Caputo derivative, see [3, 14, 29, 30]. A recent progress is made by J. Zhang and his
collaborators on the fast algorithms for the Caputo derivatives [22, 33], where the
sum-of-exponential approximation is used to approximate the smooth kernel and
then an iterative scheme is introduced. For numerical strategies to overcome the
initial singularity, one can refer to the recent work [26] and for stability analysis,
see the work [27, 28].

To have a smooth kernel and at the same time to keep the nonlocal property,
Caputo and Fabrizio proposed a new kind fractional derivative in [10]. Indeed,
replacing the kernel (t−s)−α by the function e−α(t−s)/(1−α), and replacing Γ(1−α)
by (1− α), we obtain the new Caputo–Fabrizio (CF) fractional derivative of order
0 < α < 1.

Definition 1 (Caputo–Fabrizio fractional derivative). Let 0 < α < 1, the Caputo–
Fabrizio fractional derivative of order α of a function u is defined by

(2) CF
0D

α
t u(t) :=

1

1− α

∫ t

0

e−
α

1−α
(t−s)u′(s)ds, t ≥ 0.

Notice that in the original definition [10], there is a normalization factor M(α)
in the CF derivative, which satisfies M(0) = M(1) = 1. In a later paper [11], this
factor M(α) is chosen to be the identity.

According to the new definition, it is clear that if u is a constant function, then
CF
0D

α
t u = 0 as in the usual Caputo derivative. The main difference between the old

and the new definitions is that, contrary to the old definition, the new kernel has
no singularity at t = s. This suggests that the CF fractional model can describe the
behavior of classical viscoelastic materials, thermal media, electromagnetic systems,
etc. In fact, the original Caputo definition of fractional derivative appears to be
particularly convenient for those mechanical phenomena, related with plasticity,
fatigue, damage and with electromagnetic hysteresis. When these effects are not
present, it seems more appropriate to use the new fractional derivative [10]. The
CF derivative brings more and more attention in physics and engineering science,
see [2, 4, 5, 6, 11, 17]. It is worthy to mention that there are some other kinds of
nonlocal operators have been developed and used in variant time-nonlocal evolution
models for describing anomalous diffusive dynamics; see for example [1, 13, 16, 35].

The objective of the present work is to develop a finite difference algorithm for
the equations involving the CF fractional derivatives, which is crucial for many
important applications. For example, consider the following fractional diffusion
equation

(3) CF
0D

α
t u = uxx + f.

A popular method for solving such an equation is to use the piecewise linear inter-
polation of u(x, t) on each time interval, and the order of accuracy of the method
is 2. A similar method for the equation with traditional Caputo derivative has an
accuracy of order 2−α, and the loss of order is due to the singularity appearing in
the Caputo derivative. Moreover, the existing schemes for solving Eq. (3) require
the storage of the solution at all previous time steps, so the computational com-
plexity of these schemes is O(J2N), and the storage is O(JN) on average, with J
being the total number of time steps and N the number of grid points in space.
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This leads to a serious bottleneck for long time simulations, especially when solv-
ing the time fractional partial differential equations. While for the usual diffusion
equations, one only needs to store the solution at a fixed number of time steps
and the computational complexity is linear with respect to J . Thus it is necessary
to develop an efficient algorithm for solving the equations with the CF fractional
derivatives.

The transitional Caputo derivative can be approximated by finite difference for-
mulas of types L1, L2 or L2-1σ, see [3, 25, 29, 33], see also [34] for a most recent
progress in this direction. An important observation is that the kernel in the CF
derivative is exponential, hence an iterative technique, which is first proposed in
[22] for Caputo derivative, can be applied to the CF definition. Using this idea,
we can reduce the computational complexity from O(J2N) to O(JN), and the
corresponding storage will be cut down from O(JN) to O(N), which improve the
computation efficiency significantly.

Another aim of the present paper is to develop a higher order finite difference
scheme for solving the CF fractional differential equations. To this end, we use
high order interpolating polynomials for u, instead of the original piece-wise linear
interpolation. In this work, based on a piece-wise Lagrange polynomial of degree 1,
2, and 3, we propose some second, third, and fourth order difference formulas for
the CF derivative respectively. It is worthy to mention that Chen, Shi and Deng
proposed a Lubich’s type difference formulas for the Fokker–Planck equation with
CF derivatives recently [15].

The rest part of the paper is organised as follows. In Section 2, we propose a
new kind of finite difference algorithms for the CF fractional derivatives. Using
the Lagrange polynomials, we derive a class of second, third, and fourth order
discretization formulas. The error analysis is further provided in Section 3. In
order to verify the accuracy and efficiency of the present method, we also carefully
construct several numerical experiments in Section 4. Some concluding remarks are
made in the last section.

2. Iterative algorithms for Caputo–Fabrizio derivatives

In this section, we shall develop a new kind of finite difference algorithms based
on the iterative technique and with up to fourth order accuracy for the CF frac-
tional derivatives, and prove that they are efficient in solving the time fractional
differential equations under the CF definition.

2.1. An iterative algorithm with second order accuracy. We now introduce
the iterative algorithm of the CF fractional derivative with second order accuracy.

For a positive integer J , let the temporal step size τ = T/J , and denote tj = jτ ,
{uj}Jj=0 as the mesh function approximating u(t) at time {tj}Jj=0. If we use the lin-
ear interpolation for u(t), then the first order time derivative can be approximated
with a second order difference scheme as

u′(s) ≈
uj − uj−1

τ
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on the interval (tj−1, tj). Hence we can rewrite the CF definition as

CF
0D

α
t u(t

j) ≈
1

1− α

j
∑

k=1

(

uk − uk−1

τ

∫ tk

tk−1

e−
α

1−α
(tj−s)ds

)

, tj ≥ 0,

at some specific time point tj , j = 0, 1, 2, · · · , J . As one may notice, in order to
compute the above derivative, all the history values of u, i.e. uk for k = 0, 1, · · · , j−
1 are needed, which requires a great deal of memory and storage, especially when
solving a PDE problem.

Since the kernel of the CF derivative is an exponential function, we can decom-
pose the derivative into two parts

(4) CF
0D

α
t u(t

j) =
1

1− α

(

∫ tj−1

0

e−
α

1−α
(tj−s)u′(s)ds+

∫ tj

tj−1

e−
α

1−α
(tj−s)u′(s)ds

)

.

The first part of the CF fractional derivative has the form

1

1− α

∫ tj−1

0

e−
α

1−α
(tj−s)u′(s)ds =

1

1− α

∫ tj−1

0

e−
α

1−α
(tj−1+τ−s)u′(s)ds

= e−
ατ
1−α

1

1− α

∫ tj−1

0

e−
α

1−α
(tj−1−s)u′(s)ds

= e−
ατ
1−α

CF
0D

α
t u(t

j−1).(5)

If we further denote

C1 := e−
ατ
1−α , uhist :=

CF
0D

α
t u(t

j−1),

then the first part is equal to C1uhist.
Motivated by this, we can perform the computation iteratively, and in each step,

the history part is already computed and requires only the previous value uj−1,
which saves the computation resources significantly.

For the other term, we just need to evaluate the integral on (tj−1, tj). One
possible approach is to use the Lagrangian polynomial [33]. We denote the linear
interpolation over the time interval (tj−1, tj) with 1 ≤ j ≤ J by

Π1,ju(t) = uj−1 t
j − t

τ
+ uj t− tj−1

τ
.

A direct calculation gives

(

Π1,ju(t)
)′

=
uj − uj−1

τ
,

and hence the second part of the CF derivative can be approximated as

1

1− α

∫ tj

tj−1

e−
α

1−α
(tj−s)u′(s)ds ≈

1

1− α

(

uj − uj−1

τ

)
∫ tj

tj−1

e−
α

1−α
(tj−s)ds

=
1

ατ
(1 − C1)(u

j − uj−1)

:= C2(u
j − uj−1),(6)

where C2 is given by

C2 :=
1

ατ
(1− C1) =

1

ατ
(1 − e−

ατ
1−α ),
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Therefore, the CF derivative at time point tj can be discretized as

(7) CF
0D

α
t u(t

j) ≈ C1uhist + C2(u
j − uj−1

)

:= CF∆α
2u(t

j),

which has second order accuracy.

2.2. Higher order scheme. The method mentioned in the last subsection greatly
saves the computational cost, and improves the efficiency, whereas it is only second
order accurate in time, which is the same as the direct method. In the following
part, we shall consider to improve the accuracy to a higher order. It is evident
from Eq. (4) that the CF derivative can be split into two parts: the history part
and an integral, and the accuracy only depends on the integral part. We attempt
to improve the computation accuracy of the integral part in what follows.

Denote the quadratic interpolation over the interval (tj−1, tj) as

Π2,ju(t) = uj−2 (t− tj−1)(t− tj)

2(τ)2
−uj−1 (t− tj−2)(t− tj)

2(τ)2
+uj (t− tj−2)(t− tj−1)

2(τ)2
,

then the first order derivative is calculated as

(

Π2,ju(t)
)′

=
uj−1 − uj−2

τ
·
tj−1/2 − t

τ
+

uj − uj−1

τ
·
t− tj−3/2

τ
.

Now set

C3 :=
1

ατ

(

1− (1− α)C2

)

.

By substituting the above expression of
(

Π2,ju(t)
)′

into the formula (4), the second
part of the CF fractional derivative can be rewritten as

(8)

1

1− α

∫ tj

tj−1

e−
α

1−α
(tj−s)u′(s)ds

≈

(

C3 +
τ2

2
C2

)

uj − 2C3u
j−1 +

(

C3 −
τ2

2
C2

)

uj−2.

Hence the CF derivative has the form

(9)
CF
0D

α
t u(t

j) ≈C1uhist +

(

C3 +
τ2

2
C2

)

uj − 2C3u
j−1 +

(

C3 −
τ2

2
C2

)

uj−2

:=CF∆α
3u(t

j).

Here we use the values of three points uj , uj−1, and uj−2 to evaluate the CF
derivative and the local truncation error is O(τ3).

It is worthy to mention that, since the kernel is smooth, we can apply an inte-
gration by parts to the integral term of the CF derivative. This is an alternative
method to compute the CF derivative. The integral in the second part of the
derivative can be decomposed as

∫ tj

tj−1

e−
α

1−α
(tj−s)u′(s)ds

=e−
α

1−α
(tj−s)u(s)

∣

∣

∣

tj

tj−1

−

∫ tj

tj−1

α

1− α
e−

α
1−α

(tj−s)u(s)ds,(10)

and we can approximate u(t) by an interpolating polynomial and to obtain a quad-
rature rule for this integral. It can be shown after a careful calculation that these
two approaches for evaluating the CF derivative result in exactly the same formula.
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For instance, if we take the cubic interpolation over the time interval (tj−1, tj)
with 1 ≤ j ≤ J as

Π3,ju(t) = uj−3 (t− tj−2)(t− tj−1)(t− tj)

−6τ3
+ uj−2 (t− tj−3)(t− tj−1)(t− tj)

2τ3

−uj−1 (t− tj−3)(t− tj−2)(t− tj)

2τ3
+ uj (t− tj−3)(t− tj−2)(t− tj−1)

6τ3
.(11)

Then by using the method of integration by parts,

CF
0D

α
t u(t

j) ≈ C1uhist + uj
[ 1

ατ

(

− C4 +
3

2

)

+ C2

(

C2
4 − C4 +

1

3

)

]

+uj−1
[ 1

ατ

(

3C4 −
7

2

)

+ C2

(

− 3C2
4 + 2C4 +

1

2

)

]

+uj−2
[ 1

ατ

(

− 3C4 +
5

2

)

+ C2

(

3C2
4 − C4 − 1

)

]

+uj−3
[ 1

ατ

(

C4 −
1

2

)

+ C2

(

− C2
4 +

1

6

)

]

:= CF∆α
4 u(t

j),(12)

with C4 defined as

C4 :=
1− α

ατ
.

Since we adopt four points in formula (12), the truncation error hereby should be
O(τ4), and the error analysis will be provided in Section 3.

Note that there will be a significant cancellation error in evaluating the coeffi-
cients of uj , uj−1, uj−2, and uj−3 when τ is small [22]. In this case, the coefficients
can be computed by taking a few terms of a Taylor expansion for the exponential
terms. For example, the coefficient of uj can be expressed as

(13)

1

ατ

(

−C4 +
3

2

)

+ C2

(

C2
4 − C4 +

1

3

)

≈
1

1− α

[

1−
3

8

1

C4
+

19

180

1

C2
4

−
17

720

1

C3
4

+
22

5040

1

C4
4

−
83

120960

1

C5
4

+ · · ·

]

.

Furthermore, in the fourth order method, we need to use the values of u at
three previous time levels, i.e. uj−1, uj−2, and uj−3, in the computation of uj.
To start the iteration, we have to compute the values u1 and u2, and the initial
value u0 is given as the initial condition. To this end, we shall first use a second
order method to obtain the values of u1 and u2. Besides, in order to keep the
overall computation accuracy and efficiency and to prevent the pollution on the
later computation results, it is necessary to improve the accuracy of u1 and u2.
Therefore, we perform the Richardson extrapolation on the second order method
twice to get three values, with an error O

(

τ4
)

. Now let u1
1, u

1
2 and u1

4 denote the

approximate values of u1 by the second order method with steps being τ , τ/2, and
τ/4 respectively, then

u1 =
32u1

4 − 12u1
2 + u1

1

21
+O

(

τ4
)

.

Since the extrapolation is only used for two time steps, the stability of the extrap-
olation will not be an issue.
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2.3. An alternative approach based on the integral equation. One reviewer
pointed to us that the differential equation with CF derivative can be reformulated
to an equivalent integral equations. For example, if we consider a fractional diffusion
equation

(14) CF
0D

α
t u(t)−∆u(t) = f(t), with u(0) = u0.

If one sets v(t) = e
α

1−α
tu(t) and F (t) = (1− α)e

α
1−α

tf(t) + u0, after an integration
by parts, the original problem is equivalent to

(15) v(t)−
α

1− α

∫ t

0

v(s)ds− (1− α)∆v(t) = F (t), with v(0) = u0.

The last equation is an integral equation with constant kernel and easy to solve
by an efficient algorithm. Indeed, by approximating v(t) using piece-wise Lagrange
polynomials of degree 1, 2 or 3, one can get the corresponding Newton–Cotes formu-
la (trapezoidal, Simpson’s and Simpson’s 3/8 rules, respectively) for the integral
term, and the Newton–Cotes formula can be performed iteratively for efficiently
solving the integral equation. For instance, if Simpson’s rule is used, we then have
a scheme with third order accuracy, for which the error analysis is very similar
to that in Section 3 and hence omitted here. In the numerical simulations of the
fractional diffusion equation problem considered in Section 4.2, we compared the
two methods, IMFD and IMI, that is the iterative method for fractional derivative
proposed in Section 2.2 and the iterative method for the integral equation form
discussed above. The numerical results suggest that these two methods are numer-
ically equivalent in terms of convergence rate and computational cost. We should
also mention that there are other methods, like collocation methods, for solving the
Volterra type integral equation (15); see [8].

3. Error analysis

3.1. Truncation error. The finite difference formula proposed in (12) is con-
sistent with fourth order accuracy in time and the error analysis is given in the
following theorem.

Theorem 2. For any α ∈ (0, 1), and u(t) ∈ C4[0, T ],

(16)
∣

∣

CF
0D

α
t u(t)−

CF∆α
4 u(t)

∣

∣ = |R(t)| ≤ Cτ4, for each tj−1 < t < tj ,

where the constant C = 27M/(8(1− α)) with

M = max
0≤t≤T

∣

∣

∣
u(4)(t)

∣

∣

∣
.

Proof. For tj−1 < t < tj , the value u(t) is approximated by Π3,ju(t) based on
uj, uj−1, uj−2 and uj−3, that is

u(t) ≈ Π3,ju(t) =

3
∑

k=0

uj−kLk(t), 0 ≤ t ≤ t3,

where Lk(t) is the Lagrange coefficient polynomials of degree three. Recall that

|u(t)−Π3,ju(t)| ≤
(tj − tj−3)4

4!

∣

∣

∣

∣

max
tj−3≤t≤tj

u(4)(t)

∣

∣

∣

∣

≤
(3τ)4

4!
M.
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Using a integration by part, we have

∣

∣R(t3)
∣

∣ =

∣

∣

∣

∣

∣

1

1− α

∫ t3

0

e−
α

1−α
(t3−s)u′(s)ds−

1

1− α

∫ t3

0

e−
α

1−α
(t3−s)

(

Π3,3u(s)
)′
ds

∣

∣

∣

∣

∣

=
α

(1− α)2

∣

∣

∣

∣

∣

∫ t3

0

e−
α

1−α
(t3−s)

[

u(s)−Π3,3u(s)
]

ds

∣

∣

∣

∣

∣

,

which leads to

∣

∣R(tj)
∣

∣ ≤
α

(1− α)2

∫ tj

0

e−
α

1−α
(t3−s) |u(s)−Π3,3u(s)| ds

≤
27M

8(1− α)
τ4.

Here we have made use of the fact
∫ tj

0

e−
α

1−α
(tj−s)ds =

1− α

α

(

1− e−
α

1−α
tj
)

≤
1− α

α
.

�

The proofs of the second order and third order truncation errors are similar to
that of the fourth order case.

3.2. Stability and convergence for the full concretization of a fractional

diffusion equation. Consider a fractional diffusion problem

(17)











CF
0D

α
t u = uxx + f, 0 < x < 1, t > 0,

u(0, t) = u(1, t) = 0, t ≥ 0,

u(x, t) = u0(x), 0 ≤ x ≤ 1.

Let h and τ denote the step sizes for space and time directions respectively. In the
rectangle {(x, t) ; 0 ≤ x ≤ 1, 0 ≤ t ≤ T } we introduce the mesh Ωh,τ = Ωh × Ωτ

with Ωh = {xn = nh}Nn=1 and Ωτ = {tj = jτ}Jj=1. The general difference scheme
for the problem (17) is given by

(18)















CF∆αuj+1
n = δ2uj+1

n + f j+1
n , 1 ≤ n ≤ N − 1, j = 0, · · · , J − 1,

uj
0 = 0, uj

N = 0, j = 1, 2, · · · , J,

u0
n = u0(xn), 0 ≤ n ≤ N,

where the CF∆αuj+1
n is a difference operator approximating the CF derivative

CF
0D

α
t u(xn, t

j+1) and it takes the form

CF∆αuj+1
n =

j
∑

k=0

gj+1
k (uk+1

n − uk
n)

with the coefficients gj+1
k .

We shall recall the following two results in [3]. Although The original results
in [3] is for the Caputo derivative, we can easily verify that the same arguments
will lead to the same results for the CF derivative.
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Theorem 3 ([3]). If

gj+1
j > gj+1

j−1 > · · · > gj+1
0 ≥ C > 0,(19)

gj+1
j

2gj+1
j − gj+1

j−1

≤ σ ≤ 1,(20)

where j = 0, 1, . . . , J−1, g1−1 = 0, and C is a constant. Then the difference scheme
(18) is unconditionally stable and its solution satisfies the following a priori estimate

(21) ‖uj+1‖2 ≤ ‖u0‖2 +
1

2µC
max
0≤j≤J

‖f j‖2,

where µ is a constant such that (−δ2u, u) ≥ µ‖u‖2. (Recall that the central differ-
ence for second order derivative is negatively definite.)

Theorem 4 ([3]). If the conditions of Theorem 3 are satisfied and difference scheme
(18) has the approximation order O(hr1 + τr2), where r1 and r2 are some known
positive numbers, then the solution of the difference scheme (18) converges to the
solution of the problem (17) with the order equal to the order of the approximation
error O(hr1 + τr2).

Therefore, to show the stability and convergence of the difference scheme (18), we

only need to prove that the coefficients gjk in the second, third and fourth difference
formulas of the CF derivative satisfy conditions (19)-(20) with the choice σ = 1.

Lemma 5. For the second order difference formula of the CF derivative introduced
in (7)

CF∆α
2 u

j+1
n =

j
∑

k=0

gj+1
k (uk+1

n − uk
n),

the coefficients {gj+1
k } satisfy the conditions (19)-(20) with σ = 1.

Proof. A straightforward calculation shows that

gj+1
j = C2 =

1

ατ
(1− e−

ατ
1−α ),

and

gj+1
k = Cj−k

1 C2 = e−(j−k) ατ
1−α

1

ατ
(1− e−

ατ
1−α ),

where C1 and C2 are given in Section 2.1. It is readily seen that gj+1
k is decreasing

as k increases. Moreover,

gj+1
0 = e−

αjτ
1−α

1

ατ
(1− e−

ατ
1−α ) ≥ e−

αT
1−α

1

ατ

ατ

2(1− α)
≥ e−

αT
1−α

1

2(1− α)
:= C,

where we have made use of the fact that jτ ≤ Jτ = T and the inequality 1− e−x ≥
x/2 for 0 ≤ x ≤ 1. Hence {gjk} satisfy condition (19). Now

gj+1
j

2gj+1
j − gj+1

j−1

=
C2

2C2 − C1C2
=

1

2− C1
=

1

2− e−
ατ
1−α

≤ 1,

which verifies the condition (20). This completes the proof of this lemma. �



204 X. GUO, Y. LI, AND T. ZENG

By a similar calculation, we can easily show that the third order and fourth order
schemes CF∆α

3 and CF∆α
4 proposed in Section 2.2 are also satisfy the conditions (19)-

(20), hence the stability and convergence of the corresponding difference scheme are
proved by Theorem 4.

4. Numerical simulations

In this section, we present three numerical experiments to investigate and illus-
trate the accuracy and efficiency of the schemes. The L∞ norm is used to measure
the numerical errors, and all the simulations in this paper are carried out in the
Matlab platform.

4.1. Numerical results for an ODE. Consider the following ordinary differen-
tial equation (ODE)

(22) CF
0D

α
t u(t) = λu(t) + f(t)

with the given exact solution u(t) = cos t. We then calculate the corresponding
initial value and source term given by

u0(t) = 1, f(t) = −
(1− α)(C1 − cos t) + α sin t

(1− α)2 + α2
− λ cos t.

The ODE is solved at time T = 1 with time step size τ = T/J , the parameter λ = 1,
and α = 0.5, 0.8, respectively. The numbers of time steps are taken as J = 2n with
n = 6, 7, 8, 9.

We take the second order and fourth order formulas (7), (12) for the discretization
of the given ODE. The maximum computational errors and convergence orders are
listed in Table 1 and 2, which confirms the desired convergence rates perfectly.

Table 1. The second order discretization for Eq. (22).

J = 2n α = 0.5 α = 0.8
n error rate error rate
6 1.14e-4 2.84e-4
7 2.84e-5 2.00 7.11e-5 2.00
8 7.11e-6 2.00 1.78e-5 2.00
9 1.78e-6 2.00 4.44e-6 2.00

Table 2. The fourth order discretization for Eq. (22).

J = 2n α = 0.5 α = 0.8
n error rate error rate
6 8.35e-9 2.09e-8
7 5.36e-10 3.96 1.34e-9 3.96
8 3.39e-11 3.98 8.47e-11 3.98
9 2.27e-12 3.90 5.31e-12 4.00
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4.2. Numerical results for a linear PDE. Next we solve a fractional diffusion
problem

(23) CF
0D

α
t u(x, t) = uxx(x, t) + f(x, t)

in the domain 0 < t ≤ 1, with zero boundary conditions, and the initial condition
is set to be

u(x, 0) = u0(x) = x4(1− x)4.

For a well-posed problem, we impose a generalized Dirichlet boundary condition
for x in the complementary set of the solution domain, i.e., x ∈ R \ (0, 1). The
exact solution of the fractional partial differential equation is given by

u(x, t) = x4(1 − x)4e−t,

and source term f can be solved as

f = −
1

2α− 1

(

e−t − e−
α

1−α
t
)

x4(1− x)4 − 4e−tx2(1 − x)2
(

3− 14x+ 14x2
)

.

Choose the number of time steps as J = 2n with n = 5, 6, 7, 8, and set the frac-
tional order α = 0.3, 0.7. We now use the formulas (7) and (12) for the discretization
of the CF fractional derivative, and adopt second and fourth order central difference
on the diffusion term respectively. For the comparison purpose, the iterative meth-
ods based on the integral equation form mentioned in Section 2.3 are also examined.
The maximum errors and the convergence rates are listed in Tables 3 and 4, where
IMFD stands for the iterative methods for fractional derivative (7) and (12), and
IMI stands for the iterative methods for reduced integral form in Section 2.3. The
results in Tables 3 and 4 show that these schemes have the optimal convergence in
the order of O(τ2 + h2) and O(τ4 + h4), respectively.

Additionally, we also compare the computational time between the direct method
and the iterative algorithms in this example. Let the fractional order α = 0.7,
and J = 2n with n = 6, 7, 8, 9. The results in Table 5 show that, although the
direct method and the iterative methods have the same convergence, the iterative
algorithm saves the CPU time significantly, especially when a large number of
iterations are taken. As for the two iterative methods IMFD and IMI, the CPU
times are about the same scale. This suggests that the two iterative methods have
the same convergence rate and the same complexity, they are equivalent in principle.

Table 3. The second order discretization for Eq. (23).

J = 2n α = 0.3 α = 0.7
IMFD IMI IMFD IMI

n error rate error rate error rate error rate
5 2.06e-6 2.06e-6 2.12e-6 2.12e-6
6 5.13e-7 2.01 5.13e-7 2.01 5.28e-7 2.00 5.30e-7 2.00
7 1.28e-7 2.00 1.28e-7 2.00 1.32e-7 2.00 1.32e-7 2.00
8 3.21e-8 2.00 3.20e-8 2.00 3.30e-8 2.00 3.31e-8 2.00
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Table 4. The fourth order discretization for Eq. (23).

J = 2n α = 0.3 α = 0.7
IMFD IMI IMFD IMI

n error rate error rate error rate error rate
5 6.38e-8 6.38e-8 6.91e-8 6.90e-8
6 4.19e-9 3.93 4.19e-9 3.93 4.54e-9 3.93 4.53e-9 3.93
7 2.68e-10 3.96 2.68e-10 3.96 2.91e-10 3.96 2.89e-10 3.97
8 1.71e-11 3.97 1.70e-11 3.98 1.84e-11 3.98 1.82e-11 3.99

Table 5. Comparison between the direct method and iterative algorithms.

J = 2n direct method IMFD IMI
n time rate time rate time rate
6 1.09e-2 8.95e-3 8.85e-3
7 2.52e-2 2.00 1.07e-2 2.00 1.01e-2 2.00
8 7.93e-2 2.00 3.23e-2 2.00 1.17e-2 2.00
9 3.17e-1 2.00 8.79e-2 2.00 3.73e-2 2.00

4.3. Numerical results for a fractional diffusion equation with a nonlinear

source term. We then manage to solve a fractional diffusion equation with a
nonlinear source term.

Consider the following problem

(24)

{

CF
0D

α
t u(x, t) = uxx + |u|pu+ f(x, t),

u(x, 0) = u0(x, t),

where p, µ are constant numbers, and p is positive. This equation is very similar to
a fractional Klein–Gordon equation, only with the value range of α changed from
(1, 2) to (0, 1).

Now we take 0 < t ≤ 1, with vanishing boundary conditions, and the exact
solution is set to be

u(x, t) = x(1 − x) sin t.

The corresponding initial value and source term f can be solved as

u(x, 0) = 0,

and

f =
x(1− x)

1− 2α+ 2α2

(

−αe−
α

1−α
t + α cos t+ (1− α) sin t

)

+2 sin t+ µx2(1− x)2| sin t| sin t.

The proper Dirichlet boundary condition can be obtained in a similar way as in
Example 2.

The numbers of time steps are taken as J = 2n with n = 4, 5, 6, 7, and the
fractional order α is set to be 0.8. Let p = 1, µ = 1. We now use the second
and fourth order central difference on the diffusion term respectively, and the CF
fractional derivative is discretized by formulas (7) and (12). The nonlinear term
in Eq. (24) is evaluated through a Newton’s iteration method. The maximum
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errors and the convergence rates are listed in Table 6, which confirms the desired
convergence rates perfectly for a nonlinear diffusion problem.

Table 6. The second and fourth order discretizations for Eq. (24).

J = 2n second order fourth order
n error rate error rate
4 9.69e-5 2.81e-8
5 2.36e-5 2.04 1.80e-9 3.96
6 5.80e-6 2.02 1.14e-10 3.98
7 1.44e-6 2.01 7.27e-12 3.97

For the nonlinear problem, the proposed methods have a good performance for all
time t if the initial condition is zero, but for non-zero initial condition, the methods
produce a relative large error for the first few time steps. This phenomenon is
shown in Figure 1, where the errors are plotted for all (x, t). In this simulation,
we choose the second order scheme and the non-zero initial value example has the
exact solution u(x, t) = x(1 − x) cos t.

Figure 1. Errors of the second-order scheme for problem (24).
Left: zero initial value; Right: non-zero initial value.

4.4. A time-space fractional diffusion equation. Finally we consider to solve
a time-space fractional equation. Assume that the target problem is

{

CF
0D

α
t u(x, t) =

RL
0D

β
xu(x, t) +

RL
xD

β
1u(x, t) + f(x, t),

u(x, 0) = u0(x, t),
(25)

where the space fractional derivative in (25) is under the Riemann–Liouville (RL)
definition [32],

RL
0D

β
xu :=

1

Γ(n− β)

dn

dxn

∫ x

0

u(y)

(x − y)β+1−n
dy,

RL
xD

β
1u :=

(−1)n

Γ(n− β)

dn

dxn

∫ 1

x

u(y)

(y − x)β+1−n
dy,

with n = ⌊β⌋+ 1 being the smallest integer exceeding β. In this example, we take
β ∈ (1, 2), hence n = 2. We remark that the RL derivative might be replaced by
the tempered fractional derivatives, which has many applications in physics and
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other sciences. The fast algorithm of the tempered fractional derivatives developed
in [19, 20] can be used with the method presented here to achieve an efficient
difference method of order O(h4 + τ4).

Take the exact solution of the above problem to be

u(x, t) = x5(1 − x)5e−t,

and the generalized boundary condition can be fixed accordingly for this showing
example.

Then in the domain 0 < x < 1, 0 < t ≤ 1, the initial condition can be calculated
as

u(x, 0) = x5(1− x)5,

and the source term has the form

f(x, t) = −
1

2α− 1

(

e−t − e−
α

1−α
t
)

x5(1− x)5

−e−t
[ Γ(6)

Γ(6− β)

(

x5−β + (1− x)5−β
)

− 5
Γ(7)

Γ(7− β)

(

x6−β + (1− x)6−β
)

+10
Γ(8)

Γ(8− β)

(

x7−β + (1− x)7−β
)

− 10
Γ(9)

Γ(9− β)

(

x8−β + (1− x)8−β
)

+5
Γ(10)

Γ(10− β)

(

x9−β + (1− x)9−β
)

−
Γ(11)

Γ(11− β)

(

x10−β + (1− x)10−β
)

]

.

We are going to use a higher order difference formula for the space fractional
derivative terms of Eq. (25). In [18] a fourth order difference scheme was derived
based on the weighted and shifted Lubich’s formula, and it is shown that when the
shifted parameters are chosen as (1,−1, 2,−2), all the eigenvalues of the difference
matrix have negative real parts, which grantees the numerical stability. For the
time fractional term in (25), we use the fourth order difference formula introduced
in Section 2.

The numbers of time steps are taken as J = 2n with n = 6, 7, 8, 9, and the
fractional orders (α, β) are set to be (0.3, 1.5) and (0.7, 1.8) respectively. Table 7
shows the maximum errors at time t = 1 with τ = h; the numerical results confirm
the convergence with the global truncation error O

(

h4 + τ4
)

.

Table 7. The fourth order discretization for Eq. (25).

J = 2n α = 0.3, β = 1.5 α = 0.7, β = 1.8
n error rate error rate
6 1.45e-8 2.02e-8
7 1.00e-9 3.86 1.27e-9 3.99
8 6.54e-11 3.93 8.17e-11 3.96
9 4.17e-12 3.97 5.14e-12 3.99

5. Conclusion

The Caputo definition of fractional derivative is commonly used as time fraction-
al derivative, but the singularity in its kernel brings both theoretical and numerical
difficulties. Caputo–Fabrizio (CF) defined a new fractional derivative with smooth
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kernel, which is drawing more and more attention in applications and analysis. In
the present work, we provide an iterative algorithm for computing the CF frac-
tional derivatives. Noting the kernel is an exponential function, a time marching
scheme can be evaluated in an iterative manner, which reduces the storage and
computation complexity significantly. To have high-order convergence rate, we al-
so consider the use of Lagrange interpolating polynomials of degree one, two and
three, which leads to finite difference formulas for the CF derivatives with accuracy
of order O

(

τ2
)

, O
(

τ3
)

and O
(

τ4
)

respectively. Several numerical experiments are
designed to examine the convergence rate and the computational complexity of the
proposed finite difference formulas. These examples include ordinary differential
equations, linear and nonlinear diffusion equations, and time-space fractional diffu-
sion equations with the CF time derivatives. All the numerical simulations confirm
the convergence rates of the higher-order schemes. An equivalent formulation of the
equation involving CF derivative is a Volterra type integral equation, to which the
iterative method can be applied in a similar way, and the two iterative methods are
numerically equivalent in terms of convergence rate and computational cost. The
numerical analysis of the fully discrete schemes for the nonlinear fractional diffusion
equations and for the time-space fractional diffusion equations are not included in
the current paper and we shall address this issue in a future work.
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