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Abstract. In this work we analyze, from the numerical point of view, a dynamic problem
involving a thermoelastic rod. Two porosities are considered: the first one is the macro-porosity,
connected with the pores of the material, and the other one is the micro-porosity, linked with the
fissures of the skeleton. The mechanical problem is written as a set of hyperbolic and parabolic
partial differential equations. An existence and uniqueness result and an energy decay property
are stated. Then, a fully discrete approximation is introduced using the finite element method
and the backward Euler scheme. A discrete stability property and a priori error estimates are
proved, from which the linear convergence of the algorithm is derived under suitable additional
regularity conditions. Finally, some numerical simulations are presented to show the behaviour of
the approximation.
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1. Introduction

The study of thermoelastic problems with double porosity has become a topic
of increasing interest during the last twenty years. Some possible applications of
this kind of models have been found, for instance, in geophysics or in biomechanics
(bones) [1, 2, 3, 4, 5]. The main idea of this model is to consider two porosities: the
first one is the macro-porosity, which is connected with the pores of the material,
meanwhile the second one is related to the fissures in the skeleton. Straughan [4]
pointed out that “a good example of this may be seen in the pictures in [6] where
they show a pile of rocks, but the rocks themselves are full of fissures (or cracks),
and the macro porosity degrades over a period of ten years leaving a pile of finer
material characteristic of the micro porous structure”. It is usual to find relations
of this theory with the law of Darcy, and the presentation of the theory involves
displacement, pressure associated with the pores and pressure associated with the
fissures [4, 7, 8].

Since the first works of Barenblatt et al. [1, 9], a large number of papers have
been published dealing with mathematical issues as the existence and uniqueness
of solutions or the energy decay (see, for instance, [2, 4, 7, 8, 10, 11, 12, 13, 14, 15]).

To describe the behaviour of porous solids materials some proposals have been
stated. Nowadays, the theory proposed by Nunziato and Cowin [16] is commonly
accepted as one of the non-classical elasticity theories. Grosso modo, it is supposed
that in the materials there is a skeleton or material matrix that is elastic, and the
interstices are voids in the material. A lot of contributions can be found dealing
with this theory, even with applications to geological materials such as rocks and
soils or to manufactured materials such as ceramics and pressed powders [17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27].
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Based on the theory of Nunziato and Cowin, and following a rational process
(not just intuitive), Iesan and Quintanilla [28] set a model where it is supposed the
existence of two porous structures, one associated with the material pores and the
other with the microporosity. The material skeleton supporting both structures
and the interactions between them is described by the constitutive equations.
Both structures have influences on the elastic deformations of the material matrix
and also over the heat conduction through the material. That means the porous
structures and the heat conduction are strongly coupled. This alternative approach
is currently under research and several qualitative results have been obtained [17,
29, 30, 31]. Moreover, we can see our theory as a particular sub-case of the theory
proposed in [32]. Notice that the theory we consider here coincides with the classical
thermoelasticity theory if no porous structures are considered.

We want to highlight two issues. The first one is the novelty of the model,
and the second one is that our approach is mainly theoretical. From our point
of view, we believe that any theory needs a mathematical and physical analysis
that allows to decide its applications to the real-world situations. Our paper is
addressed in this line. We also want to remark the similarities, from a mathematical
perspective, between the equations for elastic materials with double porosity and
those for microstretch materials. That means that the equations that we study
in this paper can also be viewed as the equations used to describe a mixture of
microstretch materials if their macroscopic structures coincide.

Iesan and Quintanilla [28] introduced only the thermal dissipation in their model.
We consider dissipation also in the porous structures. To be precise, we will consider
one dissipative mechanism on each porous structure.

We restrict our attention to the one-dimensional problem. This work is parallel
to [33], where the existence of a unique solution and an energy decay property were
proved. Here, we provide the numerical analysis of the corresponding variational
problem, obtaining a discrete stability property, proving some a priori error esti-
mates and performing some numerical simulations which show the behaviour of the
solution.

The paper is outlined as follows. The mathematical model is briefly described
in Section 2 following the parallel contribution [33], deriving its variational formu-
lation. An existence and uniqueness result, and an energy decay property, are also
stated. Then, in Section 3 a fully discrete approximation is introduced, based on
the finite element method and the backward Euler scheme. A discrete stability
property is proved, a priori error estimates are obtained for the approximative so-
lutions and, under suitable regularity assumptions, the linear convergence of the
algorithm is derived. Finally, some numerical simulations are presented in Section
4

2. The model and its variational formulation

In this section, following [33] we describe briefly the model, derive its variational
formulation and state the main results (see [33] for further details).

Let us denote by [0,¢], ¢ > 0, and [0,7T], T > 0, the one-dimensional rod of
length ¢ and the time interval of interest, respectively. Moreover, let € [0, ¢] and
t € [0,T] be the spatial and time variables. In order to simplify the writing, we
do not indicate the dependence of the functions on x and ¢, the time derivatives
are denoted by one (first-order) or two (second-order) dots over a variable and the
subscript x under a variable represents its spatial derivative.
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Therefore, the mechanical problem of a one-dimensional thermoelastic rod with
double porosity is written as follows (see [33]).

Problem P. Find the longitudinal displacement field u : [0,£] x [0,T] — R,
the macroscopic porosity field ¢ : [0,£] x [0,T] — R, the microscopic porosity field
¥ :[0,4] x [0,T] = R and the temperature field 6 : [0,¢] x [0,T] — R such that

(1) pii = pugy + bdy + dipy — B0, in (0,£) x (0,T),

K10 = Qg + b1tes — by — 016 — agth + 710 — €19 — e21)
(2) in (0,€) x (0,7),

Kot = b1Bus + Voo — AUy — Q30 — a2th + 720 — e3¢ — €4

(3) in (0,0) x (0,7,

(4) b = Kbpz — Btz — 110 — 7200 in (0,£) x (0,T),

(5) w(0,t) = u(f, t)=0, ¢0,t)=¢{,t)=0 forae te(0,T),

(6) ¥(0,t) =(,t)=0, 6(0,t)=0((t)=0 forae te(0,T),

(7) u(®,0) = uo(x), &(x,0) = do(x), ¥(x,0)=1o(x) forae xe/(0,0),
(8) i(z,0) = vo(x), 6(x,0) = eolw), $(w,0) =&o(x) for ae. w € (0,),
(9) 0(x,0) =6by(x) for a.e. x€(0,0).

Here, p denotes the mass density, s is the thermal conductivity, ¢ denotes the
thermal capacity, k1 and ko represent the coefficients of inertia for each porous
structure and the remaining constants are constitutive constants of the material.
In particular ¢;, i = 1, 2, 3, 4, correspond to the porous dissipation.

In order to obtain the variational formulation of Problem P, let Y = L?(0,¥)
and £ = H'(0,¢) and denote by (-,-) the scalar product in the space Y, with
corresponding norm || - ||. Moreover, let us define the variational space V as follows,

V={ve Hl((),é); v(0) = v(¢) = 0},

with scalar product (-,-)y and norm || - ||y .

By using the integration by parts and the above Dirichlet boundary conditions
at x = 0, ¢, we write the variational formulation of the corresponding thermo-
mechanical problem, based on Problem P, in terms of the velocity v = u, the
macroscopic porosity speed e = (,2.5, the microscopic porosity speed & = 7,/} and the
temperature 6.

Problem VP. Find the velocity field v : [0,T] — V, the macroscopic porosity
speed field e : [0, T] — V, the microscopic porosity speed field & : [0,T] — V and
the temperature field 6 : [0,T] — V such that v(0) = vo, €(0) = e, £(0) = &,
0(0) = by, and, for a.e. t € (0,T) and for all z, r,l, m €V,

(10) p(0(t), 2) + p(ua(t), 2) = b(¢x(t), 2) + d((t), 2) — B(0:(1), 2),
R1(€(t), 1) + a(a(t), 72) + b1 (Ya(t), 72) +e1(e(t), 1) + ar(d(t), ) + az(y(t), r)
(11) Fea(8(t),r) = =blug(t),r) + 1 (0(t),7),

KQ(&( ) )+b1(¢1(t ?ll) ( .L(t)’ )+O¢3(¢(t),l) +Oég( ( )J) +€4(£(t)7l)
(12) +es(e(t), 1) = —d(ux(t),1) +72(0(2), 1),

(13) c(0:(t),m) + K(0:(t), ma) = —y1(e(t), m) = 22(£(t), m) — B(vs (1), m),
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where the displacement, macroscopic porosity and microscopic porosity fields are
then recovered from the relations

(14) u(t) = / o(s)ds +up,  G(t) = / e(s)ds+ g0, (1) = / £(s) ds + vo.

We assume the following conditions on the constitutive constants to guarantee
that the internal mechanical energy W defined as

W = plug|? +20uyd+ 2dusth + | do |* +y]the |2 + 201 ¢uthe + |0 + az|1h]? + 20300
is positive:
(15) wu>0, pap>b% ay>b2, pajag+2bdag — d?aq — b%as — a3 > 0.
We note that from these relations we also obtain that
(16) po > d%, ajag > a%.
The mechanical dissipation of the system is given by
(17) Dy = e1|¢]” + ealth]? + 2(e2 + £3) 0.
In our mathematical study it also plays a relevant role in the expression
(18) Dy = k|0,|?

and, in general, D* = D; + Dy. If we want that D* to be positive, we need to
impose that

1
(19) k>0, e164 > 1(52 +e3)%, €1 > 0.
The following result is proved in [33].

Theorem 2.1. Let the assumptions (15)-(19) hold and assume that p, ¢, k1, k2 > 0
and ug, Vg, ¢o, €y, Yo, o, 8 € E. Therefore, Problem VP has a unique solution
with the following regularity:

we C*([0,T)Y)NCY([0,T; E), 6€C'([0,T]:Y)N

p € C*([0,TLY)NCY[0, T E), +eC*[0,T)Y)nC

Moreover, this solution is asymptotically stable.
3. Fully discrete approximations: a priori error estimates

In this section, we will provide the numerical analysis of Problem V P, introduc-
ing a fully discrete approximation. This is done in two steps. First, we assume
that the interval [0, ] is divided into M subintervals ag =0 < a1 < ... < ap =¥¢
of length h = a;41 — a; = £/M and so, we construct the finite dimensional space
V" C V, approximating the variational space V, given by

Vh = {wh € C([0,4)) ; wﬁ | € Pi([ai,ai41]) i=0,...,M — 1,
ag,aqyl

w"(0) = w"(¢) = 0},
where P ([a;,ai+1]) represents the space of polynomials of degree less or equal
to one in the subinterval [a;, a;11]; i.e. the finite element space V" is composed
of continuous and piecewise affine functions. Here, h > 0 denotes the spatial
discretization parameter. Moreover, we assume that the discrete initial conditions,
denoted by uéﬂ U(’}, qbg, eg, 1/}3, &b and 98, are given by
u’(})L = Phan ’U(})l = PhUOa ¢8 = Ph¢07 e(})L = Ph607
v =Phyo, & =Phé, 0F =P"by,

where P" is the L2(0, £)-projection operator over V" (see [34]).

(20)

(21)
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Secondly, we consider a partition of the time interval [0,7], denoted by 0 =
top < t1 < -+ < ty = T. In this case, we use a uniform partition with step
size k = T/N and nodes t,, = nk for n = 0,1,..., N. For a continuous function
z(t), we use the notation z, = z(t,) and, for the sequence {z,}~_,, we denote by
02, = (2, — 2n—1)/k its corresponding divided differences.

Therefore, using the backward Euler scheme, the fully discrete approximations
are considered as follows.

Problem VP, Find the discrete velocity field v"t = {ol*}N_ C V7 the
discrete macroscopic porosity speed field e"* = {eh*IN_ . VI the discrete micro-
scopic porosity speed field "k = {¢"RIN_ - C VI and the discrete temperature field
Ok = {OREAN_ " C VT such that vk = ol eb* = elt, ¢hF = ¢h Ok = 61 and, for
n=1,...,N and for all 2", r" " mh e V",

(22) p(dun",2") + p((up®)e, 22) = b((¢1")a, 2") + (U5, 2") = BUOR s 2"),

ru(8en®, ") + al(6n)a, 1) + 0u(Wn")e, 1) +ex(en®, r") + an (@), ")

(23) +ea (&%, ") + as (k) = =b((ul)e, ™) + 1 (07F, "),
KQ((SS'ZIC? lh) + bl((qbzk)am l;l) + 7((¢Zk)aﬂ l;L) + 063( Zk7 lh) + aQ(ka7 lh)

(24) +ea(EnF, 1) + ea(en”, 1) = —d((uph)e, 1) + 202", 17),
c(607F,m") + K((07F) 0, ml) = —mi(en®,m") — ya(E1F, m")

(25) —B((v*)a,m"),

where the discrete displacement, macroscopic porosity and microscopic porosity
fields, u*, @M% and +"* respectively, are now recovered from the relations

n n n
(26)  upF =k o tul, oF =k et gh, wlF =k> &F .
j=1 j=1 j=1
Under the assumptions on the coefficients (see (15)-(19)), using the well-known
Lax-Milgram lemma, we can prove that there exists a unique discrete solution to
Problem V Ph*.

Remark 3.1. We note that we have used the backward Euler scheme for the sake
of simplicity in the calculations and the writing. However, we point out that other
(conservative) schemes (see, e.g., [35]) could be used but it would complicate the
proofs and the stability and energy decay results could not be obtained.

The following stability result is proved doing some algebraic manipulations.

Theorem 3.2. Under the assumptions of Theorem 2.1, it follows that the sequences
{ulk yhk ghk ehk ghk yhkY generated by Problem V PR satisfy the stability esti-
mate:
o™ 1% 4 1l () 1 + R I 4+ 1 @R")all? + n 11 + 1€ E 1% + 11 (wn®)a I
Henk 2 + 103517 < €,
where C' is a positive constant which is independent of the discretization parameters
h and k.

Proof. For the sake of clarity in the writing of this proof, we remove the superscripts
h and k in all the variables.

Taking 2" = v,, as a test function in discrete variational equation (22) it follows
that

P(évnv Un) + U((un)asa (Un)w) = b(((bn)wv vn) + d((%)x, vn) — B((On)e, Un)-
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Thus, using the estimates

(0vp, vn) = 2k {||vn||2 [
(e (n)e) 2 5 el = [ un1)el?}
and Cauchy’s inequality
(27) abgeaz—i—ibz, a,b,eeR, e>0,
we find that
£ loall? = o2} + 2 LI un)all® = 1 n-1)2}
(28) < O(I@)ell? + ol + 1) 2) = BB ) )

Taking m” = 0, as a test function in discrete variational equation (25) we obtain
C((Sen; en) + ’Q((en)za (en)w) =N (e’m en) - 72(§n7 en) - 6((”71)% Gn),
and then, using the estimates
1
(80, 0n) = o {116n]* = 1162111} ,
_B((Un)m7 en) = ﬂ(vna (Hn)ac)a
and Cauchy’s inequality (27) it follows that
c
(29) o {10l = 10011} < B(ons (0n)2) + C (16l + llenll® + lIgal1?).

Now, taking " = e,, as a test function in discrete variational equation (23) we
have

K1(0en, en) + a((dn)zsen) + 01((Vn)z,s (€n)z) +E1(en, en) + a1(dn, en)
+52(£n7 en) + a3(7~/]na en) = _b((un)ma en) + Y1 (Gna en)7

and therefore, using the estimates

((58»,“6” Z ﬁ {||en||2 |en 1||2} )
((Pn)a, (€ n)z Z o {II (@n)all* = 1 Pn—1)all” + (dn — Pn—1)al”} .
(¢na€n = {||¢n||2 ||¢n—1”2+ ‘|¢n7¢n—1||2}7

and inequality (27), we find that
K
*;{||€n|\2 len—1]® }+ 7 A1(@n)a” = (@12l + (60 = 1)}

+a72 {llénll? - H<25n—1||2 + 160 = dn-all’} + b1 (W), (en)a)
(30)  Has(¥n,en) < Cll(un)al® + llenll* + 16al1%) +71(0n, en).-

Proceeding in a similar form, we obtain the following estimates for the micro-
scopic porosity field:

’i/li{llfnll2 I€n—1]I? }+ = I@)ell® = 1(n1)ell® + (0 = Y1)}

+52 (Il = ||wn71||2 [ — Y2} + s )
(31) +01((Pn)zs (§n)z) < C(||(un):v||2 + ||fn||2 + ”enHQ) +72(0n; &n)-
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Observing that

b1((¥n)z, (en)z) + b1((Pn)as (§n)x)

ll’)l((% 2, (00n)z) + b1((dn)a, (6¢n)z)

?1 [(( n T ¢n) ) ((wnfl)m (anfl)f) + ((wn - 1/),1,1)1, (¢n - ‘anfl)Z)],
(wn n) + a3(Pn:&n) = az(Vn, 0¢n) + az(dn, 09n)

QJ

[(%7%) ((¢n 1)x7¢n 1) ((d)n _ﬂ}n—l):m(bn _¢n—1)]7

and that, using the required conditions (see (15)-19)),

« 9 5 b
gjk‘l((bn_qsnfl)zn + %Tk”("/}n_wnfl)r‘l ;‘E((wn_wnfl)mw&n_qbnfl)z) 207
o (n = Gn1)el® + G2 lln = vnal® + 2 (En = Gnt)a ton = ¥n 1) 2 0,

combining estimates (28), (29), (30) and (31), we find that

%{H%IP [vn—1]1? }+ = (1)l = (-2}
L {leall = leanrl? }+ el = N n2)el}
52 {lenl® = 1]} + f{ (n)e: (Dn)a) = (Bnr)a (Sn-1)a)}
F2 L — 6nt 17} + 2 {IW)ell® — Nebno)el®)
+ 22l = -] }+ (s ) = (W1, bu1)}
U D O(Hen||2 oall? 4+ 1) 2 + lal12)-
Summing up to n the previous estimates, it follows that

plloall® + pll(un)el” + kallen ] + all($n)oll® + arl|dnll® + rall&nl® + Il (n)z 12

<CkY) (llejH2 + [l l17 + 1) 11* + 1€51%) + C(llvoll* + [I(uo)|I* + lleol*
j=1
+J||(</5o)a;H2 + [16oll” + 160lI* + [l (o) |I* + lltol1?)-
Now, using again required conditions (16), we can choose (1, (2 > 0 such that
/v <G <afby, as/as < <ai/as,
which imply that

a||(¢n) H2 JF’YH(wn) ”2 +2b1((¢n)xa(¢n)x)
> (o = 0161) @n)el” + (v—) 1)l

¢
2 2 @3 2
ar||nll? + asllnll® + 2as(dn, ¥n) > (1 — asCa) [|énll + (az - <2> l[¥onll”,
and applying a discrete version of Gronwall’s inequality (see, e.g., [36]) we obtain
the desired stability property. (I

The following energy decay property is derived from the previous stability the-
orem.
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Corollary 3.3. If we define the discrete energy at time t = t,, by E'" as follows:
Ep* = pllon®|* + ull(up®)ell? + mallen® 12 + all (@5F)a1? + aa 67"
2 ERE 1P+ (0n*)a® + anllvi® I + cllOnF” + 201 (65" )as (¥7°))
(32) +203(O" nt) + 26((un®) e, O3F) + 2d((unh)e, ¥17),

then we have
By - Bl

<0.
A <
In the rest of this section, we will derive some a priori error estimates for the
numerical errors u, — uhk Vp — v,’;k, " — Zk, ey — eﬁk, n — ,’ik, & — §Zk and

0,, — 01" We have the following.

Theorem 3.4. Under the assumptions of Theorem 3.2, if we denote by (v,e,&,0)
the solution to Problem VP and by (v'* eh* ¢hk ghk) the solution to Problem
V P then we have the following a priori error estimates, for all 2" = {z N,C

Vh rh = {r;‘};vzo cVh ih= {l?}f;o CcV* and m" = {m?}jvzo cvh,

hk hk hk hk
smax {10 = O2F12 1 — 2o + e = 0+ — )

Fllen = €AFI12 + 11 (@n = OEF)all? + lbn — EFI2 + o — v°)12}

N
<CRY (165 = 005112 + 16; = ml 12 + 1165 — m}). |1
j=1
iy = dusl1? + oy = 117 + 1oy = 2l + 1|y — 615 2
llés = e + g — 80312 + (D5 — 865)all® + lles — 212 + l(es = r1)all
€5 — & 117 + 11y — 88512 + 1 — 885)all® + 1€ — L21% + 15 — 1)all?)

+ max {||vn—z2\|2+||en—rfzu2+||5n—12||2+||9n—m2\|2}

0<n<N
Z llvj — Z = (V1 — ;L-H )P + Z le; — T (ej+1— j+1)||2
]:
N— N-—-1

C C

+ Z 16 =1 = (&1 — U ) + 7 2 N6 = ml — (011 —ml )|

Il
—

Jj=1 J
+C (100 = 05117 + (b0 = 68 )all® + oo — w12 + ll(uo — uf)a?
+Hleo = eg | + ll(@0 — ¢8)I* + lldo — 511 + 160 — €51 + (w0 — ¥§) >
(33)  +lvo - vh 1),
where C' > 0 is a positive constant which is independent of the discretization param-
eters h and k, but depending on the continuous solution, and §0; = (6; — 0;_1)/k,
0y = (V5 =vi-1)/k, 0§ = (§=&-1)/k, 6vj = (v —vj-1)/k, Su; = (uj—u;-1)/k,
6¢j = (gbj - qu_l)/k: and 56j = (ej - ej_l)/k:.
Proof. First, we obtain some estimates for the temperature field. Then, we subtract
variational equation (13) at time ¢ = t,, for a test function m = m”" € V* C V and
discrete variational equation (25) to obtain, for all m" € V",
(O — 607F,m") + K((0n — O3F),mb) = —71(en — efF,mP) —qa(E — E1F, M)
—B((vn - upk)e, mt)
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and so, we have, for all m" € V",

C(en - 692ka 0 — 92'“) + K ((0n — Hﬁk)m (0 — 92’%) +1(en — egkﬁn - 92’“)
+72(€n - gﬁkv en - 921@) + B((vn - ’ng)zaen - 97};]@)

= c(0, — 50"k 6, —m ) + k((0,, — Hhk)gg, (0, —m™),) + 71 (en — ek 6, —mh)
+’72(§n - gr}:kaen -—m ) + B((vn - U )zae - mh)

Taking into account that

(0,, — 60"% 6, — 01%) > (0,, — 66,6, — OF)
1
tor {160 = 3512 = 116n—1 — %117},

(v, — V%), 0, — mP) = — (v, — VPF (0, — m"),),
((vn —Ufik)wa@ —O00F) = —(v, —vﬁk (6n = O2)z),

where §60,, = (6,, — 0,—1)/k, using Cauchy-Schwarz inequality and inequality (27)
we have

C .
o7 10 = 0511 = [16n 1 — 022, 1°] < C(Il9n = 80n* + llvn — vp* 1 + (10 — m"||?

(0 — MM l? + llen — epF I + 10 — X511 + (16, — 02’“”2)
(34)  +(660,, — 66", 0, —m") + B(v, — vI*, (6, — 67F),) ¥mM e V.

Secondly, we get the estimates for the velocity field. Thus, subtracting variational
equation (10) at time ¢ = t,, for a test function z = 2" € V* C V and discrete
variational equation (22) we obtain, for all 2" € V*,

p('[]n - 5U7hikv Zh) + N((un - Ufik)m a:) - b((¢n - ¢Zk)xv Zh) —d((n — ka)z7 Zh)
+B((0n — 02F), 2") =0,

and so we find that, for all 2" € V",

p('l.}n - 5”2’“» hk) + :u'((un - uhk) (Un - 'Uhk) ) - b((d) - ¢Zk)x7vn - vﬁk)
—d((Yn — 7/’hk)zv Un — v’ﬁ’“) + B((0r — 9'£k)z, Un — vhk)
= p(0n — 5Un yUn — 2 ) + p((un — uhk) (vn — 2 )x) b((¢n — qﬁzk)x,vn - Zh)
_d(('(/)n ¢n )wavn_zh)+/8((9 _eh )Ivvn_ h)

Taking into account that

(0, — 601* v, — 0P*) > (0, — dv,, v, — vzk)
+or [llon = vpF 12 = llon—1 — v3%4)7]
((un ?hk)  (vn — Uzk)r) ((un — uhk)zv (Un — bun)a)
g1~ s )
+| (un — up*)e — (un—1 —U E1)a || 1,
(B = 01F) g 00 — 2") = —(0n — O}F (Un —2")2)

where Su, = (Uy, — Un_1)/k, 0, = (v — v,_1)/k and we recall that v'* = sul* =

(ul* —ul* ) /k, using again Cauchy-Schwarz inequality and inequality (27) we have,
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for all 2" € V",

- [lon = 017 = llons = 0% 1 12] + = [l = ) 2 = [ty = whEy )2 2]
<c(||vn—vhk|\2+an—avnnzﬂuun—u ©)el2 + 1(6n — 1)l
1 W = ) 2 + o = 212 + (00 = =) 2 + 16 — 0152
| (itn = 6un)al?) = B((On = O4F)s v = 0F)
(35) +(0vy, — 60 v, — wh).

Next, we obtain the estimates for the macroscropic porosity speed field. Then,
we subtract variational equation (11) at time ¢ = ¢, for a test function r = r* €
V" C V and discrete variational equation (23) to get

K1 (én — depn®, h) + Oé((% OF) s z) + b1((¢n W)y ) +ei(en — ept ")
+OL1(¢n - n T ) + a3(¢n - n T ) + b(( uhk) ’,,,h)
Y10 — O3F, ") + e2(&n — E1F,1") = 0,

and so we find that, for all 7" € V",

¢h )Qfa(en_ehk) )
)+erlen, —ef e, — ey

k1€, — 0elF e, — ehk) 4 a((d;L
)a
ag(Pn — PhF, e, — el?)

+b1((¢n - ’(/)Zk)wv (en - enk
+ai(on — ¥ en —en®)
+b((un — uzk)xv €n — 67’3’“) —71(6n — 9Zk7 €n — eﬁk) +e2(n — &3 en — €37)
= Ri(én — 0epF en — ") + a((¢n — O3 )as (en — 1))
+bl((wn ¢hk)xa (en - Th)x) + 51(en - 62 y€n — Th)
+a; (¢n - ¢Zk7 €n — rh) + 043(1% - Zk’ €n — Th)
+b(( uhk)a:aen - Th) - 71(971 - sz?en - Th) + 52(671 - gka €n — Th)'

Taking into account that

(én — 5ezk,en — efbk) > (é, — dey, en — ezk)
+tor [llen — eX* |1 = [len—1 — ei¥ 1 |I?]

((¢n — ?Zk)zv (en — ezk)r) = ((¢n — ¢Zk)xa ((Pt)n — 0¢n)z)
+op [1(dn — &)l = II(% 1= BnE )

+ll(Pn — n) — (¢n- 1= L) H]
(¢n* nk €n — €y ) ((rbn* n 7¢n75¢n)

n

+or 160 = On° 17 = llén1 = $r2l1* + lI6n — 63 = (601 = e 0)IP],

where §¢,, = (¢, — dn_1)/k, S€n = (én — €n_1)/k and we recall that et = §ph* =
(¢h* — @k ) [k, using again Cauchy-Schwarz inequality and inequality (27) we have,
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for all r* € V",

K1

th2
2k

[llen —en len—1 — ey 1]

+%[||(¢n — Yol = [[(fn1 — ¢ 1)a
+[|(dn — o252 — (dn1 — pF1)al?]
57 [16n = G251 = llén—r — e
Jr||¢n - ¢hk - (¢n—1 - ?Lk—l)”Q]
+a3(¢n n ,e - e?ﬁ) + bl((wn - ngk):vv (en - ezk)z)
< C(Hen — |12 4 1én — Genl® 4 [l dn — SRF |12+ [[(6n — ¢1F). |12
H|&n — EXFIP + lldn — 0ol + II% — 0|2
+||en - rh”Q + ”(en - Th)x”Q + ||(¢n - 5¢n)x‘|2 + ||(¢n - wgk)tz
(36) = ul)al? 4+ (Ge = del e — 1)),

Finally, proceeding in a similar form we obtain the estimates for the microscopic
porosity speed field. We omit the details for the sake of clarity in the writing. Then,
we have the following estimates, for all [» € V',

o7 160 = €417 = 16y = €181 1] 4+ 5 [ — 08 = | (Gnr = i)
+||<wn—whk>z—<wn71— B Dal?] + S2 g = YRH2 = s — w22
+l[n = Up* = @n-1 = ¥R )]

C(llgn = €M1 + lén = 0al® + lom — N2 + (e = B5)all® + Nl — 0541
+as(dn — O En — E0F) +01((dn — O3z, (€0 — E1)0) + len — eI

+ [n = 6% |® + 1100 — 0% + 1160 — 12 4+ 11(&n — ")all? + 1| (¥ — 6%n) a2
(37)

+ (b0 = G )all® + 1 (un = up®)oll* + (660 — 064*, &n — lh))7

where 6/(/)n = (wn - Z[Jnfl)/k and 6£n = (fn - §n71)/k
Now, combining estimates (34), (35), (36) and (37) we find that, for all 2", r®, ("

mh e vh,

o (16 — 8511 ~ 18- l—eh’nn] L1 = )l = W — BB
(W = 90")e = (Y1 — )H]+b1(( — ")z, (€ — 62%)a)
o [lon — ol - ot — 1] sl — ol )

2 [t = ) = 1y = W )
(=) (s = eI
2% [llen = b1 = flens — el ||J

2k
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o 1n = 8)all® = (-1 — ¢i¢k Da
H(n = 318z = (D1 — 875 1)al”]
52 [16n = @1 = énos — o
Hlgn — O5F = (1 — 61 I7]
57 [16n = €517 = g1 — €254 1?]
S Ll e (o
o = Un* = (noy — )]
< C (110 = 8012 + l[on = vEF |2 + 18— m" |2 4 [[(6n — m")a
Hlen = en®1” + 160 = 517 + 1100 — 03711 + (86, — 3637, 6, — 2")
o = Svnll? 4 [l (un = wiF)al* + (S = S )all® + 1| (b — 20|
Hlon = 27 4 | (vn = ) I? + [1(ion = Sun)o® + (Bvn = S02*, v — 2")
e = denll* + lén — &1°11% + llon = 06nl® + 1(én — 3n)e
Hlew =17 + l1(en = r™)all” + (Gen — del¥, e — ")
Hlén = 8all? + lltbn — 8nl® + 1(&n — 0%n)a® + ll&n — 1|17
(& = )l + (060 — 868%, €0 — 1)),
From conditions (15)-(16) it follows that

ol (@n = 825)a = (=1 = S el + S llon = ¥0F = (Yo — )|

b
+,j(<¢> = O0)e = (But = O e n = U — (nma = 01E1)) 20,
Silldn = ok = (Bnr — Ol >||2+%||wn—whk—(wn L= YhE )|
+ 2 (60— it = (901 — 0 £ o — U (s — Y1) 20,

Therefore, keeping in mind that

bl(("/}n - wﬁk)x, (en - egk)z) + bl(((bn - (bzk)m (gn - ﬁr}fk)z)
= b1£(¢n ¢hk)za (an - 5¢n)a:) + bl((qs'n ¢hk)1,7 ('(/)n 6wn)w)
(60 = 69 0 = V10 = (o = 01 (s = 01511
((¢n ¢hk) (¢n 1 )ma(wn wﬁk) (wn 1 —¢n 1) )]7
O‘3(¢n hk en*e )+O‘3(¢n .kvfn* Zk)
= CVBOE'L/Jn (bn 5¢hk> + a3 ('wn — 0, o — ¢Zk)
+f[<¢n = 0¥ =) = (Bno1 — SN b — U
+(pn — OF — (Pn1 — P 1 — OPF = (Y1 —PpE )],
multiplying the previous estimates by 2k and summing up to n, we obtain, for all
= Vi b = el c Vi I = {1 OCVhandm ={mh}1_,
vh,
el = ORF 1% + A (o — ¥)all* + 201 (60 — 0, (¥ wh’“> )
pllon —ontl? 4 2a3(dn — On" e — Up") + pall (un — ug® )|
+h1llen — en®|” + all(9n — ¢1")a?
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|| dn — K2+ Kol|€n — EMFI1Z + anlliby, — YhF|?

<Ck), (Iléj = 00112 + llog — v *II* + 1165 — m3|1* + 185 — m3)all?

j=1

lles = €4FI12 + g — €152+ 116; — 03|12 + (38; — 01*, 0, — =)
it — 60312 + 1ty — )l + (05 — S0l + (855 — ¥3)all
oy = 212 4+ 11 = 2l + 1ty = Fuy)all? + (605 — S0i*, v — 21)
Hlés — dejll* + g — S5FI1° + 1o — 66511 + (5 — 565l

lles = T2+ (es = ri)all® + (6e; — del,e; — 1)
s — 812 + 1 — 85112 + 18 — 8365)a? + Il — 2212

1 = el + (08 — 3%, &5 — 1)) + € (0 — 0517 + (o — 6)all
o = w12 + (o — ub)all® + lleo — e I12 + (G0 — 641

+lido — 112 + lléo — €517 + 11(%o — w)al> + ligo — ¥ 1?).

Using again assumptions (15) and (16), as in the proof of Theorem 3.2, we can
choose (1, (2 > 0 such that

bl/’}/<C1 <a/b1, 043/Oé2<C2<041/0537
and therefore,
all(@n = &0 )all® + VI (on — Y2F)al” + 251((1/)%— V) a, (b — O1F)2)
> (0= 0060) [0 = 012+ (3= 2) 1w — w21,
aill¢n — ORF 12 + aolln — YRFIP + 2aa(dn — 3F, 0 — ¥n")
o
> (o1 — asCa) [|¢n — 03" |I° + (az - <§> [ pn — S22
Thus, we have, for all 2" = {z'}7_( c V' ol = {#i}0_ c VI " = (1)}, C
V" and m" = {mh}1_, C V*,
10, — 9Zk||2 + | (Yn — wzk)zHQ + [Jvn — vZk”z + [ (n — Ufik):rll2 + [len — 62’“”2
+(Pn — E2)all® + lldn — ORFI1P + 1160 — EXFI17 + lpn — F|1?
<CkY (||9j = 60511* + lloy — ¥ 1P + 110, = m} 117 + 11(6; — m))e|?

j=1
lles = €4FI12 + g — 1512+ 116; — 01|12 + (36; — 801*,0; — 21)

+lo5 — 6vi |12+ 1wy — ul*)al? + (05 — FF)ell® + 15 — ¥3F)all?

oy = 212 4+ 11 = 2l + 1ty = Fuy)all? + (605 — S0i*, 05 — 21)
Hllés — dejl* + g — S3FI1° + 1o — 66511 + (5 — 565 )l

ey = 212 + s — el + (6e5 — 8el*, e — 1%)

s — 817 + 1 — 835112 + 18 — 8365l + Il — 221

16 — )2 + (98 — 8%, &5 — 1) + C (180 — 811 + I1(o — )l
Hlleo = w12 + (o — ub)all® + lleo — e 2 + (G0 — 65 |1

o — &h112 + €0 — €517 + 1o — ¥)al> + 1o — ¥ 1?).
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Keeping in mind that

j=1
= (en e —rZ)—l—(eg—eo,el —7“?)

+ Z(Bj — el ey =l —(ej41 — 1)),
Jj=1

kY66 — s 6 — 1) = Y (& G IRIE

j=1

Jj=1
= (& —&* & -1+ (& - 50751—1?)
n—1
+D (&G -5 -1 = (G — 1),
j=1

kY (005 = 003%,0; —mif) = > (0; — 07" — (0;-1 = 0;51),0; — mj)
j=1 j=

1
= (6, —9%9 —mh) + (68 — 69,0, —mh)

+Z< — 0% 0, —m! — (0,51 —m,))),

using a discrete version of Gronwall’s inequality (see, for instance, [36]), it follows
a priori error estimates (33). O

Now, we point out that estimates (33) can be used to obtain the convergence
order under some additional regularity conditions. Hence, we have the following
result which states the linear convergence of the algorithm.

Corollary 3.5. Let the assumptions of Theorem 3.4 still hold. If we assume that
the solution to Problem V P has the additional regqularity:

gy 00 € HAOTIH0.0) 0 HY0.T3Y) 0 CH(0.7): H(0,0))

0 € H*(0,T;Y)NC([0,T]; H*(0,£)) N HY(0,T; V),
and we use the finite element space V" defined in (20) and the discrete initial
conditions ul, vl, b, el Wb, €& and O} given in (21), the linear convergence of
the algorithm is deduced; i.e. there exists a positive constant C' > 0, independent of
the discretization parameters h and k, such that

mewe {100 = 0¥+ 116 = €151+ 10n = w)all + b = W28 + o — o1

0<n
o — W)l + llem — eR¥I1+ (6 — 685)e | + 6n — 0141 }
<C(h+k).
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The proof of the linear convergence is done proceeding in a classical way. First,
we have the following approximation result by finite elements (see [34] for details):

kﬁxqm|mfjw Ant s = 2)el + ey =717

—|— inf |[(e; —r; 24+ mf 0; —mh 24 inf (0, —mD)a)?
B O N R N M RN
+ it g =P+ inf (g — 1) ]?)
thevh hevh
+ max 1nf ||11n - zh||2 + max mf ||en -2
0<n<N - 0<n<N rhe
+ max 1nf 6, —m”|? + max mf an — 12
0<n<N mheVh 0<n<Nihe

< Ch2(||uH01([O,T];H2(O,Z)) + ||¢||cl([o,T];H2(o,e)) + 19112 o, 13: 52 0,0
+||9H%'([0,T];H2(O,€)))'
From the additional regularity (38), we find that

lvo = v [I” + [I(uo — ug)all* + lleo — eg|I* + lldo — &5 |I* + (¢ — 68)a|®
+100 — 05117 + 11(0 — )z lI* + [0 — 81> + 160 — €112
< CP?(|luoll 20,6y + W0l Fr2(0,0) + 90llr2(0,0) + lleolFrzo.0)
+H0oll 70,0y + 1¥0ll372(0,6) + €0l 7r2(0,0))

N
kZ{ = 0u)al® + 105 — 6us11® + (5 — 665)all” + 195 — 605117 + 11€; — 6511

j=1
+léj — dejl* + 1105 — 6051 + (b5 — 9)al* + N5 — 5¢j||2}
< Ok2<||u||2;{2(o,T;H1(o,e)) + lullFs 0.2y + 1013207211 (0.0))
+||¢||%{3(O,T;Y) + |W||§{3(07T;y) + ||1/)||%12(07T;H1(0,e)) + H9||%12(07T;y)>~

Finally, the remaining terms in estimates (33) can be bounded as follows (see
[36, 37] for details),

N—
Z lv; — Z — (vj41 — ;l+1 )|+
= N—

1
EZw—m jﬂwmm2EZMj b= (= )P

j=1

w\H
?r\'—‘

N—
Z le; _7’ (ej+1 — j+1)||2

p—\

<Ch (HUHHz(O,T;Hl(Ol)) 19152 0,m50 0.0 T IMFr20,7:1 0,01
JFHGH%H(O,T;HI(O,@))'

Thus, keeping in mind the previous estimates and using a priori error estimates
(33), we derive the linear convergence of the algorithm.

4. Numerical results

In this final section, we describe the numerical scheme implemented in MATLAB
for solving Problem VP"*  and show some numerical examples to demonstrate the
accuracy of the approximation and the behaviour of the solution.

Let the finite element space be defined in (20), for n = 1,2,..., N and given
ul L olk L Cwhk ehk L gk etk 1 0hk | € VR, the discrete Ve10c1ty vhk | the dis-
crete macroscopic porosity speed en , the discrete microscopic porosity speed fﬁk
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and the discrete temperature 6%, at time t = t,,, are then obtained from equa-
tions (22), (23), (24) and (25), respectively. That is, we solve the following linear
problem, for all 2", v 1" mh e VI,

p(UlF, ) + kP (01F) 4, 20) = p(ul* |, 2") — pke((ulk )0, 20)
FOk((O)F )0, 2") + dk(W)F)e, 2") = BE((O2F)a, 2"),

() (), el )+ ekl
:m(e,’; ") + ak((o) )ra ) = bk (YR )e, ) — 2k (0%, )
_bk((un )mTh) alk( n— lvrh)_a?»k( Zk7rh)+71k(e7hzk>rh)7

Ra (0%, 1) + k> (607 z)+0<2k2( nt ) + e k( SN
= r2 (6381, 1) = yk((0nt 1)o, 1) = brk((9")a, 1) — esk(en®, 1")
—ask(9p",1") — dk((up")2, 1) — k(€151 1") + 72k(05,1),

c(0n®,m") + £E((05")a,mit) = c(0pF 1, m") — yik(en®, m") — yak(€n", m")
—Bk((vn")a,m"),

where we recall that the discrete displacernent, macroscopic porosity and micro-
scopic porosity fields, u*, ¢"* and ¥!*, are now recovered from the relations

upt =ty kot ont = onty ke, Upt =yt + ke

This numerical scheme was implemented on a 3.2 Ghz PC using MATLAB, and
a typical run (h = k = 0.01) took about 3.7 seconds of CPU time.

4.1. First example: numerical convergence. As an academical example, in
order to show the accuracy of the approximations the following simpler problem is
considered.

Problem P¢*. Find the displacement field u : [0,1] x [0, 1] — R, the macroscopic
porosity field ¢ : [0,1]x[0, 1] — R, the microscopic porosity fieldy : [0,1]x[0,1] = R
and the temperature field 6 : [0,1] x [0,1] — R such that

(39) it = gy + Gp + by — b+ F1 in (0,1) x (0,1),

(40) & = o + Yuw — s =20 =+ 0 =26 =+ F, in (0,1) x (0,1),
(41) = Guo +tue —us — = +0-20 =+ Fy in (0,1) x (0,1),
(42) 0 =0, — 0. —d—U+Fy in (0,1) x (0,1),

(43) w(0,t) =u(1,t) =0, ¢(0,t) =¢(1,t)=0 fora.e. te(0,1),
(44) ¥(0,8) = (1,8) =0, 0(0,t) =0(1,t) =0 for a.e. te (0,1),
(45)  wu(z,0) = ¢(x,0) = ¢Y(x,0) =x(x — 1) for a.e. x € (0,1),

(46)  (z,0) = ¢(x,0) = P(x,0) = x(x — 1) for a.e. x € (0,1),

(47) 0(x,0) =z(x —1) for a.e. x €(0,1),

where Fy, Fy, F3, Fy are artificial volume functions defined as, for all (z,t) €
(0,1) x (0,1),

Fi(x,t) =e'(Bx(z — 1) — 3 — 22),
Fy(z,t) = et (6x(x — 1) — 5 + 2z),
F3(x,t) = et(6x(z — 1) — 5 + 2x),
Fy(x,t) = e'(3x(z — 1) — 3 — 2x).
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We note that Problem P¢* corresponds to Problem P with the following data:
(=1, T=1 p=1, p=2, b=1, d=1, [B=1, k=1,
ki=1 ko=1 bi=1, a=1 a1=2, ax=1 az3=1 ~v=1,
=1, v=1 c=1 e =2, e=1, e3=1, e4=2,
and the initial conditions:
up =vg = ¢ = eg = g = &o = 0o = x(z — 1).

Although we added volume forces in all the equations, we note that the analysis
presented in the previous section can be extended straightforwardly.

The exact solution to Problem P¢* can be calculated and it has the following
form for all (z,t) € (0,1) x (0,1):

u(z,t) = ¢p(z,t) = Y(x,t) = 0(z,t) = ' z(x — 1).

Thus, the approximation errors estimated by

B = max {1160 = 05 4+ [ (n — 055 )e | + 1t — S5+ | — b

0<n<N
hk hk hk hk hk
Hlon = vp | + llen — en | + [[(dn — bn el + [[on — @n" [ + 160 — &n II}

are presented in TABLE 1 for several values of the discretization parameters h and
k. Moreover, the evolution of the error depending on the parameter h+ k is plotted
in FIGURE 1. We notice that the convergence of the algorithm is clearly observed,
and the linear convergence, stated in Corollary 3.5, is achieved.

TABLE 1. Example 1: Numerical errors for some h and k.

hlk— 0.01 0.005 0.002 0.001 0.0005 0.0002 0.0001
1/23 0.932221 | 0.929693 | 0.928971 | 0.928868 | 0.928843 | 0.928837 | 0.928836
1/24 0.471044 | 0.465977 | 0.464502 | 0.464289 | 0.464236 | 0.464221 | 0.464219
1/25 0.245245 | 0.235583 | 0.232657 | 0.232227 | 0.232120 | 0.232092 | 0.232086

1/26 0.139334 | 0.122758 | 0.117178 | 0.116326 | 0.116110 | 0.116051 | 0.116041
1/27 0.093661 | 0.069877 | 0.060236 | 0.058591 | 0.058162 | 0.058042 | 0.058024
1/2 0.075704 | 0.047102 | 0.033053 | 0.030119 | 0.029293 | 0.029054 | 0.029020
1/29 0.068924 | 0.038156 | 0.020987 | 0.016528 | 0.015057 | 0.014594 | 0.014526

1/210 0.066315 | 0.034779 | 0.016121 | 0.010492 | 0.008259 | 0.007428 | 0.007295
1/211 0.065327 | 0.033480 | 0.014271 | 0.008059 | 0.005238 | 0.003955 | 0.003711
1/212 0.064997 | 0.032992 | 0.013573 | 0.007136 | 0.004018 | 0.002365 | 0.001971
1/213 0.064903 | 0.032827 | 0.013304 | 0.006784 | 0.003555 | 0.001701 | 0.001172

If we assume now that there are not volume forces, and we use the final time
T = 10, the following data

(=1, T=10, p=1, p=4, b=2 d=3, =2 r=4
k1 =1, kKa=1, blzla a=2, oa1=2, az=3, az=1, T=4
n=1 m=1L c=5 a=2 =1 =1 a=2

and the initial conditions

ug =vo = ¢o =eg =P =& =0, 0o =10z(xz — 1),

taking the discretization parameters h = 1073 and k = 1073, the evolution in time
of the discrete energy E* defined in (32), is plotted in FIGURE 2 (in both natural
and semi-log scales). As can be seen, it converges to zero and an exponential decay
seems to be achieved.
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FIGURE 1. Example 1: Asymptotic constant error.
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FIGURE 2. Example 1: Evolution in time of the discrete energy

(natural and semi-log scales).

189

4.2. Second example: dependence on the parameter b;. As a second exam-
ple, we will analyze the dependence of the solution with respect to parameter b;.
Then, we will use the following data:

(=1,
I<61:].,
’lela

and the initial

T:17 p:17 /1':27 b= ’ lev ﬂzlu

ke=1 a=10, a1 =2, az=1, az3=1, v

72:17 Czla 51:21 52:17 53:17 €4 =

conditions

ug =vo = ¢o = €9 = 1o =& =0, 6o =10x(x —1).

Taking the discretization parameters k = h = 1072, we will assume that pa-
rameter by takes values 10, 1, 0.1, 0.01. Therefore, in FIGURES 3 and 4 we plot
the obtained results at final time. We can see that displacements have a similar
shape for all the values of the parameter. However, concerning the macroscopic
porosity we find that, for the greater value of the parameter, the quadratic be-
haviour changes completely. The same issue is also obtained for the microscopic
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porosity. Finally, the temperature has an oscillating shape, with big differences for
high values of the parameter.

u(x)

-0.04

@x.t)
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FiGure 3. Example 2: Displacements and macroscopic porosity
fields at final time for some values of b;.
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FIGURE 4. Example 2: Microscopic porosity and temperature
fields at final time for some values of b;.

4.3. Third example: dependence on the porous dissipation parameters
€1, €2, €3 and 4. As a third example, we will analyze the dependence of the
solution with respect to porous dissipation parameters €1, €2, €3 and £4. Then, we
will use the following data:

(=1, T=1, p=1, pu=2, b=1, d=1, p=1, k=1,
k1=1 kre=1 bi=1, a=5 a1=2, as=1, az3=1 ~v=2
=1, 1=1, c=1,
and the initial conditions:
g =vg=¢g=¢eg =1%o =& =0, Oy=10x(x—1).

We will simulate the following cases: (i) e1 =2, €2 =1, e3 =1 and €4 = 2, (ii)
g1 =20,e0=1,e3 =1 and g4 = 20, (iii) &1 = 1, &9 = 10, 3 = 10 and g4 = 1, and
(iV) €1 = 10, €9 = 0, €3 = 0 and €y = 0.
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Taking the discretization parameters h = 1072 and k& = 1073, in FIGURE 5 the
evolution in time of the discrete energy in both natural and semi-log scales is plotted
for cases (i)-(iv). We can see that an exponential decay is almost achieved unless for
case (iii), which does not satisfy the required conditions to obtain the theoretical
results. In fact, we obtain that the dissipation in that case is not positive.

— Case ()
——— Case (n)

0000
288

888

as
Case (w) aaaaa

v
log(Energy)
\

FiGURE 5. Example 3: Evolution in time of the discrete energy
(natural and semi-log scales) for some values of the viscosity pa-
rameters.

4.4. Fourth example: modification of the dissipation mechanism. As a
final example, we will consider a modification of the dissipation mechanism analysed
in Problem P. Therefore, we will study the following problem:

Problem P!. Find the displacement field u : [0,€] x [0, T] — R, the macroscopic
porosity field ¢ : [0,4] x [0,T] — R, the microscopic porosity field ¢ : [0,¢] x [0,T] —
R and the temperature field 6 : [0,¢] x [0,T] — R such that

pil = pigy + by + dipy — B0, in (0,£) x (07T)’
Hl(b. = a¢zm + bldjrr - bu'p - a1¢ - CV:’ﬂ/J + 710 - Of*d’rr + wle?ﬂft in (0’6) x (O’T)’

Kot) = b1ag + Voo — dity — 03 — ag) + 720 in (0,4) x (0,T),
cé:f-c9m—ﬁux—%¢—721/)+w2¢m in (0,€) x (0,7),

u(0,t) =u(l,t) =0, ¢(0,t) =@, t)=0 forae te€(0,T),
¥(0,t) =¥, t) =0, 6(0,t)=0(L,t)=0 for a.e. € (0,7),

u

8

(z,0)
(z,0)
0)

0(z,

= ( )a ( €T, ) ¢O( )’ 1/)(I, ): 1/’0(1’) fOT a.e. r € (076)7
vo(z),  d(x,0) =eo(x), ¥(,0) =Eo(x) for ae. z € (0,0),
Oo(z) for a.e. z € (0,0).

U

8

We note that Problem P! can be numerically studied in a similar form as for
Problem P. So, our aim now is to show if the energy also dissipates. We used the
following data:

(=1, T=10, p=1, pu=4, b=2 d=3, B=2 r=—4,
K:lzla "{2:17 b1:1, 0[22, 011:2, ag =3, 043:]., ’Y:]-a

1=1 v=1 c=5 w =1 w =1,
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and the initial conditions
U0:U0:¢0:60:1/}0:§0:O, 90:1056(93—1)

Taking the discretization parameters h = 1072 and k& = 1073, in FIGURE 6 the
evolution of the energy is plotted in both natural and semi-log scales. As can be
seen, the exponential decay seems to be achieved, although some oscillations are
found.

Energy functional Energy functional

E()
log(E()

FIGURE 6. Example 4: Evolution in time of the discrete energy
(natural and semi-log scales).

5. Conclusions

In this paper we analyzed, from the numerical point of view, a dynamic problem
involving a thermoelastic rod. Two porosities, related to pores of the material
(macroporosity) and to fissures of the skeleton (microporosity), were also included
into the model. The variational formulation was written as a parabolic system of
coupled linear variational equations in terms of the velocity, the speeds of both
porosities and the temperature. Then, we introduced a fully discrete scheme using
the finite element method to approximate the spatial variable and the implicit Euler
scheme to discretize the time derivatives. We proved a discrete stability result
and obtained some a priori error estimates. Finally, we presented some numerical
simulations to show the convergence of the numerical scheme and the decay of
the discrete energy (Example 1), the dependence on the coupling parameter by
(Example 2), the dependence on the porous dissipation parameters €1, €2, €3, €4
(Example 3) and the influence of another dissipation mechanism (Example 4).
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