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AN ERROR ESTIMATE OF A EULERIAN-LAGRANGIAN
LOCALIZED ADJOINT METHOD FOR A SPACE-FRACTIONAL
ADVECTION DIFFUSION EQUATION

TINGTING WANG!, XIAOFAN LI2, AND HONG WANG?3

Abstract. We derive a Eulerian-Lagrangian localized adjoint method (ELLAM) for a space-
fractional advection diffusion equation that includes a fractional Laplacian operator for modeling
such application as a superdiffusive advective transport. The method symmetrizes the numerical
scheme and generates accurate numerical solutions even if large time steps and relatively coarse
grid meshes are used. We also study the structure of the stiffness matrix to further reduce the
computational complexity and memory requirement. We prove an error estimate for the ELLAM.
Numerical experiments are presented to show the potential of the method.
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1. Introduction

Advection diffusion partial differential equations (PDEs) model advective d-
iffusive transport in porous media, stochastic dynamics and other applications
[3, 10, 12]. The traditional integer-order advection diffusion PDEs, which can be
viewed as the Fokker-Planck PDEs of the Ito stochastic processes driven by Brow-
nian motion, were shown to provide accurate description of Fickian diffusive trans-
port in relatively homogeneous porous media. However, in strongly heterogeneous
porous media, the underlying particle motions exhibit superdiffusive transport be-
havior that has an algebraic decaying heavy tail and so has a large deviation from
the Brownian motion. Consequently, space-fractional advection diffusion PDEs
were shown to provide an accurate description of the superdiffusive transport [13].

It is well known, even in the context of the traditional integer-order advection
diffusion PDEs, conventional numerical methods tend to generate some combina-
tion of nonphysical oscillations and excessive numerical diffusion [5, 19]. Eulerian-
Lagrangian methods provide a competitive means for accurately and efficiently solv-
ing these problems [2, 9, 8]. These methods exhibit the advantages of alleviating
the Courant number restrictions and reducing the time truncation errors. Namely,
they can produce accurate numerical solutions even if the mesh is coarse and the
time step is large. There are two principal drawbacks of the Eulerian-Lagrangian
method, i.e., it is failure to conserve mass and it is difficult to treat various boundary
conditions. However, for advection-dominated problems, the ELLAM can overcome
the two principal shortcomings of Eulerian-Lagrangian method, while maintaining
their advantages [11]. In this paper we derive a ELLAM for a space-fractional
advection-diffusion PDE and prove its error estimate. In the framework of the EL-
LAM [5], the advective component is treated by a characteristic tracking algorithm
and the diffusive component is treated separately by using a more standard spatial
approximation, i.e., the Eulerian-Lagrangian methods combine the convection and
capacity terms in the governing equation to carry out the temporal discretization in
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a Lagrangian coordinate, and discretize the standard or anomalous diffusion term
on a fixed mesh. In other words, the characteristic methods change an fractional
advection diffusion equation into a fractional diffusion equation, which transports
along with the characteristic curves. We also analyze the structure of its stiffness
matrix to develop a fast solution method for the resulting linear algebraic system
with a full stiffness matrix. Finally, we conduct some numerical examples to verify
the accuracy of the ELLAM scheme and the efficiency of the fast solution method.

The remainder of this paper is organized as follows. We begin in section 2 by
giving the nonlocal model and some preliminaries. In section 3, we derive the
ELLAM scheme for the fractional equation. We provide an error estimate for the
ELLAM scheme in section 4. Section 5 investigates the structure of the coefficient
matrix and section 6 proves an auxiliary lemma used in section 4. In section 7, we
conduct some numerical tests. Finally, we summarize some remarks.

2. Model Problem and Preliminaries

We consider the following space-fractional advection diffusion transport PDE

) pe+ (V(@,0)p)s — d pow +7(=A)Fp = f(a,1), z €R, t € (0,T],
p(x,t) =0, =z¢ (a,b), t€(0,T], p(z,0)=po(x), zx€R,

where
a p(z,t) — p(y, t)
2 () plat) = Ca [ dy, a € (0,2),
R |z —y[tte
14«
with Co = 5=3% \/Ell:((ﬁ%))' In such application as advective diffusive transport,

p(z,t) usually represents the concentration of the solute or solvent in the fluid,
V(z,t) refers to the velocity field of the fluid, —dp,, models the Fickian diffusive
transport, v(—A)Zp(x,t) models the superdiffusive transport, and f(x,t) repre-
sents the source term. Here d and 7y are nonnegative constants. In stochastic
dynamics, p(x,t) is the probability density function that describes the ensemble
of realizations of a Lévy process, —dp,, models the Brownian motion component
and V(z,t) is the drift. po(xz) > 0 is the initial configuration of the model which

satisfies the constraint
/ po(z)dx = 1.
R

Since p(z, t) is zero outside the interval (a, b) for any time ¢t € (0, T], we just consider
this model on the interval (a,b) in this paper.

2.1. Sobolev Spaces and Approximation Properties. First, let W;(a, b) con-
sist of functions whose weak derivatives up to order-k are p-th Lebesgue integrable
n (a,b). Let H*(a,b) :== W¥(a,b)

2 1/2

L2(a,b)) '

For any Banach space X, we introduce Sobolev spaces involving time

ol oty = (1oBssury + | e

Wit t2: X) = { Haﬁ, I eLp(thtz),ogﬁgk,lgzoSoo},

z G

81,‘5
max ess su
0<8Xk (ta tp)H 8t5 H

1/p
t) , 1<p<oo,
X

[l o i) 5=
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Let I, N be the positive integers. We define a uniform space-time partition on
[a,b] x [0,T]: =; := a+ih for 0 < ¢ < I with h := (b — a)/I and ¢, := nAt
for 0 < n < N with At := T/N. If a function f(xz,t) is defined only at discrete
time steps t,, we understand that the function f has been extended by constant
to the time interval (¢,_1,t,]. Thus, the preceding space-time norm reduce to the
following equivalent discrete norm

(an ) 1<p <o,

e fG )l p=ce.

£l zeo,7:x) =

Let Sp(a,b) C Hi(a,b) be the finite element space that consists of continuous
and piecewise-linear functions with respect to the spatial partition in (a,b). We let
;v € Sp(a,b) be the piecewise-linear interpolation of v for any v € H}(a,b). The
following estimate holds [6, 7]

(3) o — UHHk(a’b) < Cih%7k ||UHH2(a,b)7 Yv € H2(a,b), k=0,1.

Second, let H*(R) be the fractional Sobolev space, which is defined by

(
H*(R) = {v € L2(R) : [u] o) < 00,0 < s < 1},

where

(4) V] s (r) = // |a:— 1+25) dx dy)%

denotes the Aronszajn-Slobodeckij seminorm. The space H*(R) is a Hilbert space,
equipped with the norm

vl s @) = vllL2 @) + [v]ms ®)-
3. Derivation of the ELLAM Formulation

We develop a ELLAM to solve the nonlocal model (1). In the ELLAM for-
mulation, the space-time test functions w(x,t) are chosen to be continuous and
piecewise smooth, and vanished outside the space-time strip (a,b) X (tn—1,tn].
Specially, the test functions w(z,t) satisfy that w(z,t,) = lim;_;, o w(x,t), but

w(z, tn—1) # limy, 4o w(x,t) in general. In this paper, we use the notation

w(x, tt ) =limy_;, 1+ ow(z,t) to describe the possible discontinuity of w(z,t) in
time at time ¢,,_1.

We multiply Eq. (1) by test functions w and integrate the resulting equation on
R X (t;,—1,t,]. For the sake of convenience in writing, we put C,, into the coefficient
~. By using the boundary condition and the integration by parts formula, we obtain
a weak formulation

/Rp(:z: tn)w(z, ty derd/n /pz z, )wy (2, t)dzdt
/t / z,1) wt<;t;+V(m D, (v, 1) ) dudt

R AL

t'Vl
/p(a:tn 1)(7n1d$—|—/ /fxt (x,t)dxdt.
R tn—1
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In the ELLAM framework [5], the test functions w are chosen to satisfy the
adjoint equation of the hyperbolic part of Eq. (5), i.e.,

This implies that the test functions w is constant along the characteristic curve
r(t;x,t,). Here r(t; T,t) refers to the characteristic curve passing Z at time ¢ defined
by

(7) T von, renp =z
dt t=t

Thus, once the test functions w(z,t) are specified in [a, b] at time step ¢, they
are determined completely in the space-time strip [a,b] X (tn—1,x].

3.1. Evaluation of Source, Diffusion and Fractional Laplacian Terms. For
convenience, in the evaluation of diffusion, source and fractional Laplacian terms, we
reserve x for points in [a, b] at time ¢,, representing the heads of the characteristics.
We use the variable y to represent the spatial coordinate of an arbitrary point at
time t € (t,—1,t,). Substituting r(¢; z, t,) for the variable y, we evaluate the source
term by the Euler quadrature as follows

tn
[ [ 0wt
tns /R
=/ /f(r(t;x,tn),t)w(r(t;x,tn),t)m(t;m,tn)dxdt
th_1 JR
b ptn
:/ [/ flr(tx, ty), Ore(t; z, t,)dt | w(x, t,)dx
a li)fn—l
:At/ flz, tn)w(z, ty)de + Eqy(w).

Here F4(w) is the local truncation error defined by

©9)  Ei(w) = /ab/t" {f(’r(t;:E,tn),t)rx(t;x,tn)ff(x,tn)]dtw(x,tn)dx.

tn—1

We evaluate the diffusion term similarly
tn
d [ [ oty v
tn—l ]5
= d/ /py(r(t; z,tn), )wy (z,tn)ry(t; x, ) dtde
byt tf{
:d/ / py(r(t; z,tn), hwy(x, t,)dtde
a tn—1
b
= dAt/ Doz, by )wy (z, ty)dx + dEs(p, w).

Here Es(p,w) is the local truncation error defined by

boptn
(11) Es(p,w) ::/ /t [pz(r(t;x,tn),t) — pz(x, tn) |dt we(z,t,)dz.
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Next, we evaluate the fractional Laplacian term similarly. For convenience, we
use (—A)Zp(y,t) to replace the integral form of it and obtain

tn
/ / A)Ep(y, t)yw(y, t)dydt
n 1

_7/,7 1/ 2p(r(t @, tn), w(r(t; @, tn), )1 (t 2, tn ) dedt

) fe

_’YAt/]R A)%p(x t ) ( atn)dl'-l-'VES(pvw)a

NE

N\Q

r(tx, ty), Ore(t; z, ty)w(z, t,)dedt

where Fs5(p,w) are the local truncation errors and defined as
/ / —A)2p(r(t;z,ty), t)re(t; z,ty)
(13)

)Ep(a,t )} wl(z, tp)dadt.

We can rewrite the first term on the right-hand side of the last equation in (12) as
[14]

yAt/(—A)g (2,1 ) (@, t)d

(14) —'yAt// |x— 1+Zi, ")d w(z,t,)dx
(p(z,tn) = p(y, tn)) (w(z, tn) — w(y, tn))
= yAt A 2w — ypte dydz.

3.2. ELLAM Formulation and Numerical Scheme. We substitute Eqgs. (8),
(10), (12) and (14) into Eq. (5) to obtain a ELLAM formulation for problem (1)

b b
/ p(z,t,) )dx—|—dAt/ Do, tn)we(x, by, )de
e

:/ p(gj tn,l) (a?t ) T5(tn—1;%,tn )dCE

+At/ F @ty e, tn)de + Ey (w) — dEs(p, w) — vEs(p, w),
for z€R, t€ (th_1,tn)

Here z* is the foot of the characteristic curve r(¢; x, t,,) backtracking from x at time
t,. We also let Z be the head of the characteristic curve r(t; Z,t,) at time ¢,, which
backtracks to x at time t,,_1. In other words,

(16) ¥ =r(th_1;2,tn), x=1(tp_1;T,tn).

In (15) we have used the fact that w is constant along the characteristics to rewrite
the first integral at time ¢,_; on the right-hand side of (5) as an integral at time
t, in (15)

/ Py, tu)w(y, 5 )y = / D, b1 )0(@, )7 (b3 7, )
R R
b

=/ p(a* tn—1)w(x, ty)re(tn1;x, t,)dx.
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Note that it is not feasible to get the exact characteristic r(¢; x, ¢,,) in general, so
we choose r,(t; ,t,) to approximate the exact characteristic numerically, which is

(17) ra(t;2,8) = &+ V (2, 6)(t - 1).

Consequently, the numerical scheme states as follows: Find py(x,t,) € Sp(a,b) for
n=1,..., N, such that for any wy(z,t,) € Sn(a,b),

b b
p (z,tn)wp(z,tn)de + dAL | pp (@, ty)wn (2, t,)de

+’7At// ph z, t ph(lyvtn))(wh(xvtn) _wh(y’t")>dydx
o — e

= / ph(xh,; tn—l)wh(xa tn)rh,m(tn—l; xz, tn)dx
a

b
—|—At/ [z, ty)wp(x, t,)dx.

(18)

Here z, and Zj, are defined by
(19) x;ky, :Th(tn,1;$7tn), &€ :Th(tnfl;ii'h7tn)~

The ELLAM needs to impose the following type of constraint on the time step
At (see [15])
||V||L°°(O,T;W;c)At < 1.
This constraint guarantees that the approximate characteristics defined in (17),
which are extended from different spatial points, do not intersect with each other
during the time period [t,—1,t,]. In other words, the traceback operator defined
by the approximate characteristic tracking is a diffeomorphism.

4. An Error Estimate for the ELLAM Scheme

We prove an error estimate for the ELLAM scheme for the problem (1). First,
we introduce the following lemma refers from the references [15, 18].

Lemma 4.1. Let r(s;x,t) and ri(s;2,t) be the exact and approzimate characteris-
tics defined in (7) and (17), respectively. Assume that V, 9% € L>°(0,T; W (a,b)).
Then the following estimates hold

|2}, — 2*| < O((At)?),
(20) Ire(t; 2, tn) — 1] < O(t, — t), and
|Th,x(tn—1;x7tn) —re(tn_1;2,t,)| = O((At )2)

Theorem 4.1. Assume the exact solution p € L>(0,T; H®) N H'(0,T; H®) with
s > 0. Then the following error estimate for the ELLAM scheme holds

N
[P = pllLos(0,7:22) + dAtZ [Ph,z (s tn) = Pa(-tn)ll 2
n=1
N (H FISNE
(21) - dt llL2(0,1;L2) ez + dt A)zp L2(0,T;L?)

+ 1 (=A) 2 pll2(0,7522) + ||E||L2(O,T;H1))
+ Chs”pHHl (0,T;H%) + C(At + hs + hs+1_a_e)“p||Loo(0’T;Hs),

where the constant C' depends on d and the parameter ~y.
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Proof. We let e = p;, — p and choose the test function wy(+,t,) € Sp(a,b). We then
subtract Eq. (15) from the Eq. (18) to obtain a ELLAM error equation for any
wp(x,t,) € Sp(a,b),

b b
e(x, ty)wp(z,ty)de + dAL | ex(z,tn)wn o(z, t,)de

+’)/At// JC t y;t ))(wh(xatn)*wh(yatn))dydx

2|x_y|1+o¢

= / (x}utn—l)wh(xatn)rh,w(tn—l;x,tn)dx
a

b
+/ (p(x;kmtnfl)rh,m(tnfl; x7tn) - p(x*atnfl)rz(tnfl;xatn))wh(xytn)dx
a
—E1(wp) + dE2(p, wn) + vE3(p, wh).
Let IIp € Sih(a,b) be the interpolation of the true solution p, &, = pp — lpp €
Sk(a,b), and n = IIpp — p. The error estimate for n is given in (3). We need to

estimate &,. We choose wp(z,t,) = &n(z,t,) and rewrite the error equation in
terms of &, and 7 as follows

b
f (x,t,)dx + dAt fhx(xt )dx

+’}/At// gh x, tn gh(ya ))Qdydﬂﬁ

2|z — y|tte

/ gh xh? n— 1)§h(x 3 )Thm(tn 1,2, ty )d

+/ n(wha nfl)gh(x»tn)rh,z(tnflamvtn)d
b b
f/ n(x,tn)fh(z,tn)dx—dAt/ Ne (2, t0)En 2 (2, L) da

b

+/ p(x*vtn—l)(rh,m(tn—l;x7tn) _Tz(tn—l;xytn))gh(x,tn)dx
b

+/( xha n— 1) p(aj tn 1))7ah,a:(tn71;xvt'rL)gh(matn)dx

’YAt// 1(@stn) = 0y t0)) 0 s tn) = 05 t0)) ) 0

2|z — y|ite
—E1(&n) + dEs(p, &n) + vE3(p, &n)-

We bound the first term on the right-hand side of Eq. (22) by

/ En(xh, tn—1)En(x, tn)rh,e (tn_1;2,t )dm‘

1+ CAt 1+ CAt
;/ ghxt)dx"’—;/ghxhun 1)dw

1+ CAt 1+ CAt dx}
Si/kat)dﬁLi/ (), tp) |2

dx
1+CAt 1+0At
< ——— & t)llFe + ——lén (s tne1) 172

(23)
dzfl

Here the constant C' depends on ||V e (o,r;wz). In the second term after the
second inequality, we used the substitution of variables from x to x} given by the
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first equation in Eq. (19). We also use Eq. (17) to get

rh,z(tnfl%ratn) =1- Vm(x:tn)Atv

(24) (v tn) = (1= Vil b))~ = 1+ O(AY).

A delicate analysis shows an optimal-order error estimate of the second and
third terms on the right-hand side of Eq. (22). For clarity of exposition, the proof
is presented in Lemma 6.1, where we obtain

5) ’/ n(xy, tn—1)En (T, tn)rh o (tn-1; T, t,)dx —/b (2, t)En (2, ty)de

< C'At||€h2( w22 +e1dAt|€ne (s ta)lI 22 + O bl e,y eimre)
+CA||pl|7 o (0.7, 114

Let x;_1 /o be the middle point of the interval [z;_1,2;]. Note that &, .(z,t,
constant on each interval [x;_1,x;] and that n satisfies n(x;—1,t,) = n(x;, tn) =
fori=1,...,I, we bound the fourth term on the right-hand side of Eq. (22)

\dm / e ), )|

I o
(26) — |3 hrCoisyatn) [ )l
z?l i—1
- ‘dAtZghvm(%i—l/%tn)(n(xiatn) n(zi—1,t ’70
=1

We use the estimate (20) to bound the fifth and sixth terms on the right side of
Eq. (22) by

b

P&t 1) (Pho(ta15 2, tn) — To(tn—1; x,tn))gh@,tn)dx]
b

@ 1/2
) < CAOPnCotlla ([ 17" tur)d)
< CAY|En (- tn) |22 + CA [l L e 0,75L2)
and
b
(p(xh, tn—1) = P(x" tn—1))rna(tn—1; :v,tn)&z(x,tn)dx‘
py yatn—l)dy rh,z(tn—l;xatn)gh(xatn)dx’
(28) byt )ldy] len (e ta)lde

1
2

<t ([ o)

< O(At)2||§h( )||L2||py||L<>C(0TL<>c)
< CAHE( ta)l1 72 + CAD [Pl 7o 0,10w -

We bound the seventh term on the right-hand side of Eq. (22). Generally, we
use the Sobolev’s interpolation inequality [|ul| ¢ < ||u||;5 [lul| 71 to estimate and
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get

’WAt// (n(x,tn)—n(y,tn))(ﬁh(x,tn)—£h(y7tn))dydx

z\x - |1+a

(Y, tn))”
_47&// |x_ =S d;l
(n(@,tn) — En(y,tn))
47At// |:B—y|1+°“ dydzx

I ) + 1)1, 5
28 InC BT 0 )l + €n (s ta) 25
< CAt h2(3_7)|‘pl|L°°OTHS + OAL&n (- ta) |12, -

Here the constant C' depends on the parameter . This estimate is of order
O(h*~% + At). Another estimate with higher order can be bounded by

"}/At// n(@,tn) =10y, ta)) (En(z, tn) — En(y, tn) dydx‘

/\

IN

2|x— y[Hte
— (Y, tn))(En (@, tn) — En(y,tn))
,’yAt’// 1+2(u =y T dydz
Iw* lz —y|~ >
(29) < CAC ta)ll go—1+el€n (s tn) | 51—
< CAHCs ta)ll go—1+e€n,z (5 tn)l| 2
C’At

=5 d Aettrae ||P|\%oo(o,T;Hs)+€1dAtH5h,m("tn)H%2

< CAL RT3 o ey + E1dALIER( En) |72

Here the constant C' depends on d and the parameter . The parameter &1 is

a constant and the parameter 0 < ¢ < 1. In the second inequality, we use the
following estimate (see [1])

1€ (s tn)l[mr—e < ClIER G tn)llm < Clina (s tn) |l 2

We decompose the eighth term on the right side of Eq. (22) in two terms
[2%

r(t;z, ty), e (t 2, t,) — f(x,tn)} dt &p(z, ty,)dx
g/ / F (s tn) — Fr(tm, ), 8)[dt € (2, t)|da
/ / Pt t), )] |1 — ot 2, )|t |64 (2, 1) da.

The first term on the right-hand side is bounded by

tn
/ / (,tn) — f(r(t;z, tn))|dt |En(z, ty)|dx

(30) / / / (r(0;,tp),0)d0||En (v, t,) | dadt

tn b tn
< CAUE( )2 +CAt/ / | (G r6:2,8.),0) o
tn t

df
< CAtEn( tn)ll72 + C(AL)? [n HL2(tn LtnsL?)"
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We use the estimate (20) to bound the second term

// (2 b)) 11 — 1 (t: 20 )| E0(2, )| d

(31) / / At f(r(t; 2, t0), 0)] [€n (@, tn)|ddt

< CAtEn (- ta)ll7e + COA [ fl T2t 22

We similarly bound the ninth term on the right-hand side of Eq. (22) by

’d/b /t" o 10) = pa (1, £0), )t (2, 1)
(32) = |a / Epaltn /t” tt" ;lepz (05 2, 1), 0)d0d ] d

SN O .
< erdd s o)l + OO L

where the constant C depends on d and ¢; is a positive constant.
We estimate the tenth term by decomposing it into two terms, i.e.,

M\Q

r(t;x, ty), )re(t; z, t,)

)2 (e, )6 (3, b ddt

a

<7/t" / VEp(, tn) — (—A) Ep(r(t; 2, tn), 1)] §h(x,tn)dxdt‘

a

/At )3p (txt)t)fh(x,tn)dxdt‘

o 2
—A)Sp(r(e;x,tn),e)de) da:dt‘

t

+c/ / (AL(—=A)2 p(r(0; 2, t,),0)) dedt + CAL|ER (- )]z

goAt/" / / =) Ep(r(0:3, 1), 0)*d0dadt

e

t’!L
+c/ / (AH(=A) 2 p(r(0; 2, ), 0))2dadt + CAL|En (- 1) |12

< CAtlgn (-, ta) 22 + C(AL)? II*( D) EplTae, s i)
+CO(AL?[(=A) 2 pl T2,y t0iL2),

where the constant C' depends on the parameter ~.
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We substitute estimates (23)—(33) for the corresponding terms in Eq. (22) to
obtain the following estimate

z, f tn))?
L e

1+ CAt
< +T(Hﬁh( w1z + 116n (- o 1)||L2)+351dAtII£h,x(w tn)[72

d a
ro@n? (13, sinite) 4 Mty U (O E Pl
D D0, izt 1 s itrny) + R bl it
ron((An? + 1% + e O )Pl < oz

We choose €1 = % and sum the estimate for n =1,..., N1(< N), and cancel like
terms to obtain

\x — gyt

o (n(,tn) = €0y, tn))?
16n (st )32 + AAES (st ||L2+7Atz / / n( n8: )" g g
n=1
Ni—1

< CAt Z ||§h tn)HL2 + C(At (H dt HL2(0 T;L2) + HfHL2(0 T;L2)

d
+||a(— )2 p||L2(o,T;L2>+H(— )2 PHL? 0TL2)+|| HL2<0TH1))
+OR* [Pl 0,mymrey + C (A8 + 12+ BT ) ] 7,115

We then apply Gronwall inequality to conclude

Ny
€n ]l oe 0.7:22) + dAE D [1€n,a (s n)| 2
n=1
d o
< ont(]5] R PSR
< atll s OTL2)+Hf”L2 (0,7;L2) T dt( )2p L0150

I8l i + 12 ooz )
+CP||pll a1 0,75125) + C(AL+ B + W=7 Il oo (0,714 -
The general constant C depends on d, 7y, and also depends exponentially on the final

time T in problem (1) due to the application of Gronwall inequality. We combine
this estimate with (3) to finish the proof. O

5. The Structure of Coefficient Matrix and A Fast Solution Method

In the numerical scheme (18), we choose the piecewise linear hat function
{#i()}. =} as the test function wy,(z,t,) € S (a,b) for 1 <n < N. Then py,(z,t,) €
Sh(a, b) can be represented in a unique way as a linear combination of the hat
function ¢;(x). We define several (I —1) x (I — 1) matrices A, B, H, D and vectors

PZZ = (p2717pz,2"" 7pZ,I—I)T? F= (f{vagL? 7fIn—l)T7

where pj ; = pn(wi,t,) fori=1,2,...,1 =1, n=0,1,...,N. Then we obtain the
matrix form for (18) as follows

(34) (A+ dAtB +~yAtH)PP = DPP' + AtF, 1 <n <N,
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b b
Ay = / @(x)@(x)dx, B, = / b0 (2) 1.0 (2)
) no- [ | (63(0) = 50 (6:0) ~ i)

2|x — [t

D;; = / b (@) @)z, 7 = / £ (@, t)bs(w)da

for1<i,j<I—-1,1<n<N.
We find the coefficient matrices A, B are tridiagonal and symmetric Toeplitz ma-
trices. Then we investigate the structure of the matrix H in the following theorem.

Theorem 5.1. The matriz H described in (35) is a Toeplitz matriz for any o €
(0,2).

Proof. We rewrite the expression of H; ; in (35) as

H;; = /¢J )oi(x /wmdy—i—/boo Wdy)dw
L[ [ S0 o)

T

(36)
- [ oo f<x—a>‘“+f<b—w>‘”‘}dw

/ / ()= GG = i) g,

‘1+o¢

for 1 < 4,5 < I —1. Since the matrlx H is symmetric, we just need to evaluate
the upper triangular part of it. For the convenience of proof, we divide the upper
triangular part of the matrix H into three parts, i.e., the entries on main diagonal
(I), superdiagonal (IT) and any other diagonals (IIT).

We ﬁrst consider the part IIT with 1 <4 < T—3, j > i+ 2. Since the integration
f ¢j(x)¢;(x)dx vanishes for j — i > 2, the entries H; ; represent as follows

it1 Tj+1 ¢
i () d
=— T dy ¢i(x)dx
/i;i—l [E_j_l |x - y|1+a !
o x—xz 1/ S R e
=— dydx—/ 7/ —h—dydx
/ xTi_1 |1+o¢ Ti_1 h x; |1' - y‘1+oz

Ji— J

Titl g +1 _ y_m}f_l dud Tit1 Tif1—x Tj41 7+1W dud
- y[i+e yar— h |z — ‘1+o¢ yax
x X

j—1 J

1— a
—h / / = s—i—y—z 1+adtds—|—/ / _H_2 - S)H—adtds
+/0 s/o (j—i—2+t+s)1+adtd8+/o 8/0 (j—i—t+s)1+adtd8)'

On the right-hand side of the third equation, s = (x — z;—1)/h in the first two
integrals and s = (x;41 —x)/h in the last two integrals; t = (y —x;_1)/h in the first
and third integrals and ¢ = (z;4+1 — y)/h in the second and fourth integrals. From
the above equations, we observe that, once j —i =m,2 < m < I — 2, is specified,
the entries on that diagonal are the same.
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Next, we consider the entries on the main diagonal (part I). For 1 <¢ <1 —1,

Ha= [ @@ (-0 200

e a
b b
pi(x) — ¢i(y)
+ /a ¢i(x) Ty dydz.
We rewrite the second term on the right-hand side of (37) as follows

b b g () — o

|z —y[ite

[ e [
= (@ e y+/ e y) z
Ti—1 ! a |‘T - y‘1+a Tit1 “/L. - y|1+(¥

B [ e [T AWy

i—1 i—1 |x

= Lwi+1w((x—xi_1)a—(x—a)a+(xi+1_x)a_(b_x)a>dm

i—1 o
[T i) — auly)
+ / oi(x / 2 dydx,
Ti—1 l( ) Ti—1 |x7y|1+04
where the second term after the second equation can be represented by

[ o [

i—1 Ti—1

x4 . x; TTTi—1 Y~ Ti-1
= C T 1 h h_ dydx
h |z — g+
Ti—1 Ti—1 Y

T; T — T Tit1 I*"zifl _ 1+1 Yy
_— —h  _h qydx
(39) ' / h / o=y

T; r; LTit1—X Yy— wz 1
i+1 :L.Z+1 —x i T —
T4 h Ti—1 ‘13 - y|

i

Tit1 LL"+1 —r Tit1 ‘Tz+’1 z _ L+1 Ud y
+ Ty W yax

_ 1a s—t
— 21 //|8_t|1+adtds+// S Hadtds).

On the right-hand side of the second equation, we apply s = (z — x;—1)/h in the
first two integrals, s = (z;4+1 — x)/h in the lats two integrals and t = (y — x;—1)/h
in the first and third integrals, t = (x;11 — y)/h in the second and forth integrals.
Combining equations (37) — (39), we obtain

-« 1 1 —Q
Hii =2h (a(3fa)_a(3—a)<1_23 )

4
— (1227 —
+ 2_@( )

4
- (1= 21a
l—a( )

s—1
/ /s_t|1+adtds+ / —— 1+adtds),
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for any 1 <7 <TI—1 and for any o € (0,2),« # 1. For the case of a« = 1,

s—t
12_24m2—2+/‘ / s—tPﬁm%%/ L/ T ﬁ%)

We observe that the entries on the main diagonal are equal for any « € (0, 2).
Finally, we consider the entries on the superdiagonal (part IT). Using the similar
techniques for computing the entries on the main diagonal, we obtain that

H; i1 :/“H Git1(x)i(x )[1(a:—a) a—f—é(b—x)—a dx

i

b
+/ 6i(2) " pip1(z) — disa1(y) dydz

|z —y|te

6= >+<2a> <2a>+ al—a)

1
/s | 1+t— 1+oédtds / / ry— 1+adtd8
1
t—s s—1t
— 1-— ———dtd 1-— ———dtd
/0( 5)/0 It — s[i+e S+/0( 3)/0 (2—t—s)ita S)’
for any 1 <7 < T —2 and for any « € (0,2),« # 1. For the case of a = 1,
H; i1 =2-2In2— / / dtds / / dtds
1+t— 3_t—s
—/nu—s{/ - dM&+/(1 @/1—41——fw¢
0 |t — s|? 0 0o (2—t—s)?

Thus we observe that the entries on the superdiagonal are the same. (I

(1 23—« 1 1 3(1—-2272)  2(1-2179)

5.1. A fast solution method. In general, we use iterative methods to solve the
numerical scheme in (34) for each time step. However, the coefficient matrix is dense
for the nonlocal nature of the fractional Laplacian. The computational cost of the
matrix-vector multiplication with the stiffness matrix and the memory requirement
are enormous. From the above theorem, we notice that the coefficient matrix is
well-structured and is a Toeplitz matrix. Thus a fast solution method given in
[4, 14, 17] will be applied. We consider use the conjugate gradient method co-
operating with the fast matrix-vector multiplication to solve the numerical scheme.
Therefore, the computational cost will be decreased from O(I?) to O(Ilogl) for
each iteration, while the memory requirement will be reduced from O(I?) to O(I).
Comparing with the general iterative methods, this fast solution method is efficient
and losses no accuracy.

6. Auxiliary Lemma

We prove one auxiliary lemma in this section. This lemma proves the optimal-
order error bound in (25).
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Lemma 6.1. Assume p € L°°(0,T; H*) N H'(0,T; H®). Let mpp € Sh(a,b) be the
interpolation of p and n = mpp — p. Then the following estimate holds

b b
‘/ T](JC}Z,tn71)§h(x,tn)rh’w(tn,usc,tn)dx—/ n($7tn)€h(l’,tn)d$

a a
40 s
MO < Ot () 125 + E1dAHIER o ()2 + CRZ 0201t

+ CAth? ”pH%N(O,T;HS)'
Proof. We rewrite the left-hand side of (40) as

b

b
/U($7tn)§h($,tn)d1’—/ 77((1);.;,tnfl)fh(‘f?tn)'rh’m(tnf];.T,tn>d$
a b a
(41) — [ 0t = (o)) (o)
a b
—l—At/ n(xh, tn—1)En(x, tn) Vo (z, ty)da.

We bound the second term on the right-hand side in a similar way to (23) by

b
‘At/ n(xy, tn—1)En(x, t) Vo (z, b, )da
@ b
< CAHE () 12 ( / W@ o )da) b

< CAL[ER (s tn)llz In(s tn-1)ll 2
< CAH|E (s tn)l[T2 + CAL B2 5[|p]| 7 (0.7 109 -

Next, we decompose the first term on the right-hand side of (41) as follows

b
( n(xhv n— 1))5},(&? t )d

(42) //t (2, )t &y (a, t)da

+ / (0, tnr) — (@] b)) (2, )

The first term on the right-hand side is bounded by

(2, t)dt En(z, tn)da| < (A)Y2)EC, )z 10l brn s i)

<CAH|&n (s ta) 122 +CH* [PllFr 1,y 18-
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We rewrite the second term on the right-hand side of (42) as
b
| i tas) = (o)) (o)

b b
:/ n(z;‘utn—l)gh(xatn)dl’i/ n(zatn—l)fh(x7tn)dx

b ’ b
@ = [ ete)s @ )G e [ it ) t)ds

*
h

b b
_ / (st ) (& ) dar — / 0, o )En (s ) d

*

oA b )En(F, ) da.

X
ap

Here we use the definition of n and &, i.e., n(x) = &,(z) =0, = ¢ (a,b). Then we
first bound the third term on the right-hand side of (43) as

/abi O(At)(x, tn_1)En(T, tn)dx’

*
h

SC’AtHn(~,tn_1)||Lz( * gh(:z,tnfdxf

Ah
b ~ 1
dz 3
< ) ) 2/0T\ 1 .-
< Catlntetun)lis( | (ot (G0 )
< OB ta 1)l IEnC )2
< O )2 + CAL I ol w0110

The first and the second terms are bounded by

b
[ et 1) — (o)

<c@nbinttn e ([ [ el e ar)’

< CALn(s tno) |2 [16ne (5 tn) | 22

CAt h?s
< e1dAt||Ep o (-, tn) |72 + &THPH%w(O,T;HS)

< erdAtEn o (s ta)ll72 + CAL B2 [Pl 0 11509

where €7 is a positive constant and the constant C' depends on d.
Combining all these estimates we have proved the Lemma (6.1). O

7. Numerical Experiments

In this section, we conduct two numerical examples for the nonlocal advection
diffusion equation (1) by changing the values of d and v to observe the accuracy of
the ELLAM. We also investigate the efficiency of the fast solution method.

Example 7.1. We consider the nonlocal advection diffusion equation (1) with d =
1074,y = 10~%. The spatial interval (a,b) is (—1,2) and the time interval is (0, T] =
(0,1]. We choose the velocity V=1 and the source term f = 0. In addition, we
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TABLE 1. Spatial L2-errors for the Example 7.1 solved by the EL-
LAM scheme and the BE method with several spatial partitions h
and a = 1.5, At = &, 1L

50 5000
At h L?-error(ELLAM) L2-error(BE)
L 2 3.4665E-01 6.1438E-01
274 7.5024E-02 5.6699E-01
275 1.2709E-02 5.5916E-01
276 2.7746E-03 5.5680E-01
27 6.8768E-04 5.5680E-01
=55 277 — 6.8473E-04

choose a general Gaussian pulse as the initial condition, which is given by
1 x?
)= exp(——=
pO( ) \/ﬁ p( 202 )7

where the parameter o is the standard deviation and chosen as o® = 0.0125.

First, we run the numerical experiments by using the ELLAM scheme and the
finite element method with the Backward-Eulerian (BE) method in time discretiza-
tion, and compare the corresponding numerical results. In terms of the practical
application, we choose « € (1,2) in numerical experiments. Since the exact solution
of this problem is difficult to obtain, we use the numerical solution with finer spatial
partition (h = 535z) as the reference solution to obtain the spatial L?-errors in this
paper. Table 1 shows the spatial L?-errors obtained by the two different numerical
methods with several spatial partitions A and o = 1.5, At = 5—10, ﬁ. We observe
that the ELLAM scheme is more accurate than the BE method, because the latter
generates excessive numerical diffusion for large time steps. When we refine the
time step to At = ﬁ and spatial partition to h = 277, the L2-errors obtained by
the BE method become smaller. This comparison illustrates that the ELLAM is
more accurate for larger spatial and time steps. In Table 2, we present the spatial
L?-errors and the corresponding convergence rates for problem (1), which are ob-
tained by the ELLAM scheme with several o and spatial partitions A, and At = %
The convergence rates show that the ELLAM scheme has a second-order accuracy
in space.

Furthermore, we apply Gaussian elimination, conjugate gradient (CG) method
and the fast conjugate gradient (FCG) method to solve the linear algebraic sys-
tem and investigate their performance. Table 3 shows the spatial L?-errors and
corresponding CPU times for several spatial partitions with @ = 1.5, At = ﬁ.
We observe that the CG method performs better than the Gaussian elimination,
while the FCG method performs the best efficiently. In addition, the fast solution

method looses no accuracy.

Example 7.2. We consider the same numerical experiment as that in the Example
7.1. Besides, we change the diffusion coefficients as d =0,y = 107%.
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TABLE 2. Spatial L?-errors and corresponding convergence rates
for the Example 7.1 obtained by the ELLAM scheme with several

fractional orders o and spatial partitions h, and At = %

a=1.2 a=1.5 a=1.8

L?-error  order  L2?-error order  LZ-error  order
274 4.4180E-02 —— 4.3843E-02 —— 4.2547E-02 ——
275 1.0987E-02 2.01 1.0902E-02 2.01 1.0594E-02 2.01
276 27092E-03 2.02 2.6915E-03 2.02 2.6290E-03 2.01
277 6.8020E-04 1.99 6.8017E-04 1.98 6.8017E-04 1.95
2-% 1.7002E-04 2.00 1.7122E-04 1.99 1.7365E-04 1.97

TABLE 3. Spatial L2-errors and the CPU times consumed by
Gaussian elimination, CG method, and FCG method for Exam-

ple 7.1 with different spatial partitions and o = 1.5, At = 5(1)0.

Gauss CG FCG
L2?-error  CPU(s)  L%*error CPU(s) L%error  CPU(s)
275 1.2241E-02 7.83 1.2241E-02 1.10 1.2241E-02 1.27
276 29678E-03  29.3  2.9678E-03  2.58  2.9678E-03  2.19
277 7.2634E-04 2m 27s 7.2634E-04 6.62 7.2634E-04 3.96
278 1.7908E-04 30m 18s 1.7908E-04 185  1.7908E-04  7.25
279 4.8446E-05 4h 24m 4.8446E-05 1m 19s 4.8446E-05 14.6

Similarly, we investigate the accuracy of the ELLAM scheme and the efficiency of
the fast solution method. We also use the numerical solution with the finer spatial
partition (h = 555) as the reference solution. Table 4 shows the spatial L*-errors
obtained by the ELLAM and the BE method for (1) with different spatial partitions
and a = 1.5, At = %7 ﬁ. The contrastive results show that the ELLAM scheme
is more accurate than the BE method for large spatial and time steps. Table 5
shows the spatial L2-errors and the corresponding convergence rates for Example
7.2 solved by the ELLAM scheme for several fractional orders with At = % From
the numerical results, we observe that this scheme has a second-order accuracy
in space numerically. In Table 6, we present the spatial L?-errors and the CPU
times consumed by Gaussian elimination, CG method and the FCG method. The
numerical results illustrate that the CG method co-operating with the fast matrix-

vector multiplication algorithm performs the best and losses no accuracy.
8. Summary

In this paper, we derive a ELLAM scheme to solve a nonlocal advection diffusion
equation. In addition, we make an error estimate for this numerical scheme and
prove it of order O(At + h® + h*T1727¢) where 0 < a < 2, s >0 and 0 < e < 1.
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TABLE 4. Spatial L2-errors for the Example 7.2 solved by the EL-
LAM scheme and the BE method for several spatial partitions h
with o = 1.5, At = &, 2

50 5000
At h L? -error(ELLAM) L?- error(BE)
35 273 3.5339E-01 6.1178E-01
2-4 7.6505E-02 5.6391E-01
275 1.2840E-02 5.5608E-01
26 2.7948E-03 9.5419E-01
27 6.9247E-04 5.5372E-01
L 277 6.7036E-04

5000

TABLE 5. Spatial L?-errors and corresponding convergence rates
for the Example 7.2 obtained by the ELLAM scheme for several
fractional orders o and spatial partitions h with At = L

5*

a=1.2 a=1.5 a=1.8

L?-error order L2?-error order L2-error order

274 4.4555E-02 —— 4.4213E-02 —— 4.2904E-02 ——
275 1.1067E-02 2.01 1.0982E-02 2.01 1.0671E-02 2.01
276 27277E-03 2.02 2.7098E-03 2.02 2.6469E-03 2.01
277 6.8484E-04 1.99 6.8172E-04 1.99 6.8532E-04 1.95
278 1.7084E-04 2.00 1.7503E-04 1.96 1.9801E-04 1.79

TABLE 6. Spatial L2-errors and the CPU times consumed by

Gaussian elimination, CG method, and the FCG method for Ex-

ample 7.2 with different spatial partitions and o = 1.5, At = Wlo'

B Gauss CG FCG
L?-error  CPU(s)  L2%-error  CPU(s)  L%*error  CPU(s)
27°  1.2368E-02 7.44 1.2368E-02 1.07 1.2368E-02 1.25
276 2.9933E-03 29.2 2.9933E-03 2.49 2.9933E-03 2.30
277 7.3212E-04 2m 26s 7.3212E-04 6.57 7.3212E-04 4.25
278 1.8039E-04 30m 2s 1.8039E-04 19.1 1.8039E-04 7.94
279 4.8797E-05 4h 23m 4.8797E-05 1m 42s 4.8797E-05 15.6

169
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Furthermore, we prove that the coefficient matrix of this numerical scheme is a
Toeplitz matrix. Then a CG method co-operating with the fast matrix-vector
multiplication algorithm can be applied to accelerate the computing. We conduct
two numerical examples to observe that the ELLAM scheme has a second-order
accuracy in space numerically and the FCG method is efficient without losing any
accuracy. We conclude this paper by the following remarks: (i) Although the order
of the L2?-error in numerical examples is optimal, it does not reach the optimal-
order in the proof of the error estimate. (ii) In this paper, we assume that the
diffusion coefficient d is positive. Then the error estimate holds. But from the
numerical results, it seems to indicate that the estimate also holds for d = 0. (iii) For
the convection diffusion equations without fractional Laplacian in two dimensions,
the uniform estimates of Eulerian-Lagrangian methods for transient convection-
diffusion equations and an optimal-order error estimate to ELLAM schemes for
transient advection-diffusion equations on unstructured meshes [16, 19] have already
been analyzed.
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