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A CONFORMING DISCONTINUOUS GALERKIN FINITE

ELEMENT METHOD

XIU YE AND SHANGYOU ZHANG

Abstract. A new finite element method with discontinuous approximation is introduced for
solving second order elliptic problem. Since this method combines the features of both conform-
ing finite element method and discontinuous Galerkin (DG) method, we call it conforming DG
method. While using DG finite element space, this conforming DG method maintains the features
of the conforming finite element method such as simple formulation and strong enforcement of
boundary condition. Therefore, this finite element method has the flexibility of using discontinu-
ous approximation and simplicity in formulation of the conforming finite element method. Error
estimates of optimal order are established for the corresponding discontinuous finite element ap-
proximation in both a discrete H

1 norm and the L
2 norm. Numerical results are presented to

confirm the theory.

Key words. Weak Galerkin, discontinuous Galerkin, finite element methods, second order elliptic
problem.

1. Introduction

For the sake of clear presentation, we consider Poisson equation with Dirichlet
boundary condition in two dimension as our model problem. This conforming DG
method can be extended to solve other elliptic problems. The Poisson problem
seeks an unknown function u satisfying

−∆u = f, in Ω,(1)

u = g, on ∂Ω,(2)

where Ω is a polytopal domain in R2.
Researchers started to use discontinuous approximation in finite element proce-

dure in the early 1970s [2, 7, 12, 17]. Local discontinuous Galerkin methods were
introduced in [6]. Then a paper [1] in 2002 provides a unified analysis of discontin-
uous Galerkin (DG) finite element methods for Poisson equation. Since then, many
new finite element methods with discontinuous approximations have been developed
such as hybridizable discontinuous Galerkin (HDG) method [5], mimetic finite dif-
ferences method [10], hybrid high-order (HHO) method [11], virtual element (VE)
method [13], weak Galerkin (WG) method [14] and references therein.

The weak form of the problem (1)-(2) is given as follows: find u ∈ H1(Ω) such
that u = g on ∂Ω and

(∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω).(3)

The conforming finite element method for the problem (1)-(2) keeps the same
simple form as in (3). However, when discontinuous approximation is used, finite
element formulations tend to be more complex than (3) to ensure connection of
discontinuous function across element boundary. For example, the following is
the formulation for the symmetric interior penalty discontinuous Galerkin (IPDG)
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method for the Poisson equation (1) with homogeneous boundary condition: find
uh ∈ Vh such that for all vh ∈ Vh,

∑

T∈Th

(∇uh,∇vh)T −
∑

e∈Eh

∫

e

(

{∇uh}[vh] + {∇vh}[uh]− αh−1
e [uh][vh]

)

= (f, vh),

where α is called a penalty parameter that needs to be tuned.
A first order weakly over-penalized symmetric interior penalty method is pro-

posed in [3] aiming for simplifying the above IPDG formulation by eliminating the
two nonsymmetric middle terms: find uh ∈ Vh such that for all vh ∈ Vh,

∑

T∈Th

(∇uh,∇vh)T + α
∑

e∈Eh

h−3
e (Π0[uh], Π0[vh])e = (f, vh),

where Π0 is the L
2 projection to the constant space and α is a positive number. The

price paid for a simpler formulation is a worse condition number for the resulting
system of linear equations.

In this paper, we propose a new conforming DG method using the same finite
element space used in the IPDG method for any polynomial degree k ≥ 1 but
having a simple symmetric and positive definite system: find uh ∈ Vh satisfying
uh = Ihg on ∂Ω and

(4) (∇wuh,∇wvh) = (f, vh) ∀vh ∈ V 0
h ,

where ∇w is called weak gradient introduced in the weak Galerkin finite element
method [14, 15]. It follows from (4) that the conforming DGmethod can be obtained
from the conforming formulation simply by replacing ∇ by ∇w and enforcing the
boundary condition strongly. The simplicity of the conforming DG formulation will
ease the complexity for implementation of DG methods. The computation of weak
gradient ∇wv is totally local. Optimal convergence rates for the conforming DG
approximation are obtained in a discrete H1 norm and in the L2 norm. This new
conforming DG method is tested numerically for k = 1, 2, 3, 4 and 5, and the results
confirm the theory.

2. Finite Element Method

In this section, we will introduce the conforming DG method. For any given
polygon D ⊆ Ω, we use the standard definition of Sobolev spaces Hs(D) with
s ≥ 0. The associated inner product, norm, and semi-norms in Hs(D) are denoted
by (·, ·)s,D, ‖ · ‖s,D, and | · |s,D, respectively. When s = 0, H0(D) coincides with
the space of square integrable functions L2(D). In this case, the subscript s is sup-
pressed from the notation of norm, semi-norm, and inner products. Furthermore,
the subscript D is also suppressed when D = Ω.

Let Th be a triangulation of the domain Ω with mesh size h that consists of
triangles. Denote by Eh the set of all edges in Th, and let E0

h = Eh\∂Ω be the set of
all interior edges.

We define the average and the jump on edges for a scalar-valued function v. For
an interior edge e ∈ E0

h, let T1 and T2 be two triangles sharing e. Let n1 and n2 be
the two unit outward normal vectors on e, associated with T1 and T2, respectively.
Define the average {·} and the jump [·] on e by

(5) {v} =
1

2
(v|T1

+ v|T2
) and [v] = v|T1

n1 + v|T2
n2,

respectively. If e is a boundary edge, then

(6) {v} = v, [v] = vn.
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For simplicity, we adopt the following notations,

(v, w) = (v, w)Th
=

∑

T∈Th

(v, w)T =
∑

T∈Th

∫

T

vwdx,

〈v, w〉∂Th
=

∑

T∈Th

〈v, w〉∂T =
∑

T∈Th

∫

∂T

vwds.

First we define two discontinuous finite element spaces for k ≥ 1,

(7) Vh =
{

v ∈ L2(Ω) : v|T ∈ Pk(T ), T ∈ Th
}

,

and

(8) V 0
h = {v ∈ Vh : v = 0 on ∂Ω} .

Algorithm 2.1. A conforming DG finite element method for the problem (1)-(2)
seeks uh ∈ Vh satisfying uh = Ihg on ∂Ω and

(∇wuh,∇wv)Th
= (f, v) ∀v ∈ V 0

h ,(9)

where Ih is the kth order Lagrange interpolation.

Next we will discuss how to compute weak gradient ∇wuh and ∇wv in (9). The
concept of weak gradient ∇w was first introduced in [14, 15] for weak functions in
WG methods and was modified in [16, 8] for the functions in Vh in (7) as follows.
For a given T ∈ Th and a function v ∈ Vh, the weak gradient ∇wv ∈ RTk(T ) on T

is the unique solution of the following equation,

(10) (∇wv, τ)T = −(v,∇ · τ)T + 〈{v}, τ · n〉∂T , ∀τ ∈ RTk(T ),

where RTk(T ) = [Pk(T )]
2 + xPk(T ) and {v} is defined in (5) and (6). The weak

gradient ∇w is a local operator computed at each element.

3. Well Posedness

We start this section by introducing two semi-norms |||v||| and ‖v‖1,h for any
v ∈ Vh as follows:

|||v|||
2

=
∑

T∈Th

(∇wv,∇wv)T ,(11)

‖v‖21,h =
∑

T∈Th

‖∇v‖2T +
∑

e∈E0

h

h−1
e ‖[v]‖2e.(12)

The following norm equivalence is proved in Lemma 3.2 [9] with v0 = v and
vb = {v} that there exist two constants C1 and C2 independent of h such that

(13) C1‖v‖1,h ≤ |||v||| ≤ C2‖v‖1,h, ∀v ∈ V 0
h .

Lemma 3.1. The semi-norm ||| · ||| defined in (11) is a norm in V 0
h .

Proof. We only need to prove v = 0 if |||v||| = 0 for all v ∈ V 0
h . Let v ∈ V 0

h and
|||v||| = 0. By (13), we have ‖v‖1,h = 0 which implies that ∇v = 0 in each T ∈ Th
and [v] = 0 on e ∈ E0

h. ∇v = 0 on T implies that v is a constant on each T . [v] = 0
on e means that v is continuous. Thus v is a global constant on the whole domain.
With v = 0 on ∂Ω, we conclude v = 0. This completes the proof of the lemma. �

The well posedness of the conforming DG method (9) follows immediately from
the above lemma.
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4. Error Equation

In this section, we will derive an error equation which will be used in the conver-
gence analysis. First we define H(div; Ω) space as the set of vector-valued functions
on Ω which, together with their divergence, are square integrable; i.e.,

H(div; Ω) =
{

v : v ∈ [L2(Ω)]2,∇ · v ∈ L2(Ω)
}

.

Define an interpolation operator Qh for τ ∈ H(div,Ω) (see [4]) such that Qhτ ∈
H(div,Ω), Qhτ ∈ RTk(T ) on each T ∈ Th, and satisfies:

(14) (∇ · τ, v)T = (∇ ·Qhτ, v)T ∀v ∈ Pk(T ).

Lemma 4.1. For any τ ∈ H(div,Ω),

(15) −(∇ · τ, v)Th
= (Qhτ, ∇wv)Th

∀v ∈ V 0
h .

Proof. Since {v} = v = 0 on ∂Ω and Qhτ ∈ H(div,Ω), then

(16) 〈Qhτ · n, {v}〉∂Th
= 0.

It follows from (14), (10) and (16) that

−(∇ · τ, v)Th
= −(∇ ·Qhτ, v)Th

= −(∇ ·Qhτ, v)Th
+ 〈{v},Qhτ · n〉∂Th

= (Qhτ, ∇wv)Th
,

which proves the lemma. �

Define a continuous finite element space Ṽh, a subspace of Vh, by

Ṽh = {v ∈ H1(Ω) : v|T ∈ Pk(T ), ∀T ∈ Th}.(17)

Lemma 4.2. For any v ∈ Ṽh,

∇wv = ∇v.

Proof. By the definition of the weak gradient (10) and integration by parts, we
have for any τ ∈ RTk(T ),

(∇wv, τ)T = −(v,∇ · τ)T + 〈{v}, τ · n〉∂T

= −(v,∇ · τ)T + 〈v, τ · n〉∂T

= (∇v, τ)T ,

which implies

(∇wv −∇v, τ)T = 0, ∀τ ∈ RTk(T ).

Since ∇wv −∇v ∈ RTk(T ), letting τ = ∇wv −∇v in the above equation gives

‖∇wv −∇v‖2T = 0,

which proves the lemma. �

Let eh = Ihu−uh. Obviously, eh ∈ V 0
h . Recall that Ihu is the kth order Lagrange

interpolation of u and then Ihu ∈ Ṽh. By Lemma 4.2, we have

∇wIhu = ∇Ihu.(18)
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Lemma 4.3. Let eh = Ihu− uh be the error of the finite element solution arising
from (9). Then we have

(∇weh, ∇wv)Th
= l(u, v), ∀v ∈ V 0

h ,(19)

where

l(u, v) = (∇Ihu−Qh∇u, ∇wv)Th
.(20)

Proof. Testing the equation (1) by v ∈ V 0
h gives

(21) −(∇ · ∇u, v) = (f, v).

It follows from (15) that

(Qh∇u,∇wv)Th
= (f, v).(22)

Adding (∇wIhu,∇wv)Th
to the both sides of the equation (22) and using (18)

yield

(∇wIhu,∇wv)Th
= (f, v) + (∇Ihu−Qh∇u,∇wv)Th

.(23)

The difference of (23) and (9) gives (19). We have proved the lemma. �

5. Error Estimates

In this section, we shall establish optimal order error estimates for uh in a discrete
H1 norm and the L2 norm.

5.1. An Estimate in a Discrete H1 Norm. We start this subsection by bound-
ing the term l(u, v) defined in (20).

Lemma 5.1. Let u ∈ Hk+1(Ω) and v ∈ V 0
h . Then, the following estimate holds,

|l(u, v)| ≤ Chk|u|k+1|||v|||.(24)

Proof. Using the Cauchy-Schwarz inequality and the definition of Ih and Qh, we
have

l(u, v) = (∇Ihu−Qh(∇u),∇wv)Th

≤
∑

T∈Th

‖∇Ihu−Qh(∇u)‖T ‖∇wv‖T

≤
(

∑

T∈Th

‖∇Ihu−Qh(∇u)‖2T

)1/2( ∑

T∈Th

‖∇wv‖
2
T

)1/2

≤
(

∑

T∈Th

‖∇Ihu−∇u‖2T + ‖∇u−Qh(∇u)‖2T

)1/2

|||v|||

≤ Chk|u|k+1|||v|||,

which proves the lemma. �

Theorem 5.1. Let uh ∈ Vh be the finite element solution of (9). Assume the exact
solution u ∈ Hk+1(Ω). Then, there exists a constant C such that

(25) |||uh − Ihu||| ≤ Chk|u|k+1.
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Proof. Letting v = eh in (19) gives

|||eh|||
2

= l(u, eh).(26)

Using (24), we arrive

|||eh|||
2
≤ Chk|u|k+1|||eh|||,

which completes the proof. �

5.2. An Estimate in the L2 Norm. In this subsection, we will derive the error
estimate for uh in the L2 norm. First we define Ṽ 0

h a subspace of Ṽh in (17) as

Ṽ 0
h = {v ∈ Ṽh : v|∂Ω = 0}.(27)

Let ũh ∈ Ṽh be the conforming finite element solution such that ũh = Ihg on ∂Ω
and satisfies

(∇ũh,∇v) = (f, v) ∀v ∈ Ṽ 0
h .(28)

Since Ṽ 0
h ⊂ V 0

h , by Lemma 4.2, (9) and (28), we have

(∇wuh −∇ũh,∇v) = 0, ∀v ∈ Ṽ 0
h .(29)

Consider the dual problem: seek Φ ∈ H1
0 (Ω) satisfying

−∇ · (∇Φ) = uh − ũh in Ω.(30)

Assume that the following H2-regularity holds

(31) ‖Φ‖2 ≤ C‖uh − ũh‖.

Now we are ready to derive the L2 error estimate.

Theorem 5.2. Let uh ∈ Vh be the finite element solution of (9). Assume that the
exact solution u ∈ Hk+1(Ω) and that (31) holds true. Then, there exists a constant
C such that

(32) ‖u− uh‖ ≤ Chk+1|u|k+1.

Proof. By the triangle inequality, we have

(33) ‖u− uh‖ ≤ ‖u− ũh‖+ ‖uh − ũh‖.

The definition of ũh implies

(34) ‖u− ũh‖ ≤ Chk+1|u|k+1.

Next we will estimate ‖uh−ũh‖. Let Φh ∈ V 0
h be the conforming DG approximation

to the problem (30) satisfying

(35) (∇wΦh,∇wv) = (uh − ũh, v), ∀v ∈ V 0
h .

Letting v = uh − ũh ∈ V 0
h in (35) and using Lemma 4.2 and (29), we have,

‖uh − ũh‖
2 = (∇wΦh,∇w(uh − ũh))Th

= (∇wΦh,∇wuh −∇ũh)Th

= (∇w(Φh − IhΦ),∇wuh −∇ũh)Th
.

By the Cauchy-Schwartz inequality, (25) and (31), then

‖uh − ũh‖
2 ≤ |||Φh − IhΦ||| (|||uh − Ihu|||+ ‖∇(Ihu− ũh)‖)

≤ Ch|Φ|2h
k|u|k+1

≤ Chk+1|u|k+1‖uh − ũh‖,

which implies

(36) ‖uh − ũh‖ ≤ Chk+1|u|k+1.
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Combining (34) and (36) with (33), we have proved the theorem. �

6. Numerical Example

We solve the following Poisson equation on the unit square:

−∆u = 2π2 sinπx sinπy, (x, y) ∈ Ω = (0, 1)2,(37)

with the boundary condition u = 0 on ∂Ω.
In computation, the first grid consists of two unit right triangles cutting from

the unit square by a forward slash. The high level grids are the half-size refinement
of the previous grid. We apply Pk finite element methods Vh and list the error and
the order of convergence in the following table. The numerical results confirm the
convergence theory.

Table 1. Error profiles and convergence rates for (37).

level ‖uh − u‖ rate |||uh − Ihu||| rate

by P1 elements

6 0.7280E-03 2.09 0.7199E-01 0.91

7 0.1751E-03 2.06 0.3718E-01 0.95

8 0.4287E-04 2.03 0.1890E-01 0.98

by P2 elements

6 0.6446E-05 2.94 0.1744E-02 1.95

7 0.8197E-06 2.98 0.4424E-03 1.98

8 0.1033E-06 2.99 0.1113E-03 1.99

by P3 elements

6 0.4457E-07 4.02 0.2293E-04 2.97

7 0.2772E-08 4.01 0.2902E-05 2.98

8 0.1730E-09 4.00 0.3650E-06 2.99

by P4 elements

5 0.2057E-07 5.03 0.4748E-05 3.95

6 0.6344E-09 5.02 0.3009E-06 3.98

7 0.1984E-10 5.00 0.1893E-07 3.99

by P5 elements

4 0.2481E-07 6.04 0.3223E-05 4.94

5 0.3811E-09 6.02 0.1024E-06 4.98

6 0.5938E-11 6.00 0.3225E-08 4.99
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