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CONVERGENCE ANALYSIS OF FINITE ELEMENT

APPROXIMATION FOR 3-D MAGNETO-HEATING COUPLING

MODEL

LIXIU WANG, CHANGHUI YAO, AND ZHIMIN ZHANG

Abstract. In this paper, the magneto-heating model is considered, where the nonlinear terms
conclude the coupling magnetic diffusivity, the turbulent convection zone, the flow fields, ohmic
heat, and α-quench. The highlights of this paper is consist of three parts. Firstly, the solvability
of the model is derived from Rothe’s method and Arzela-Ascoli theorem after setting up the
decoupled semi-discrete system. Secondly, the well-posedness for the full-discrete scheme is arrived
and the convergence order O(hmin{s,m} + τ) is obtained, respectively, where the approximation
scheme is based on backward Euler discretization in time and Nédélec-Lagrangian finite elements

in space. At last, a numerical experiment demonstrates the expected convergence.

Key words. Magneto-heating model, finite element methods, nonlinear, solvability, convergent
analysis.

1. Introduction

The phenomenon of magneto-heating has been achieved the main point of inter-
est for many researches[19, 20, 30]. In [19], a magneto-heating model was established
and the authors verified the well-posedness of the weak formulation by using the
so-called regularity technique. In [24], the authors developed a mathematical model
for magnetohydrodynamic flow of biofluids. The main objective was to explore the
developmental performance of peristaltic transport with different zeta potentials
in conjunction with magnetohydrodynamics and electrodynamics. In [13], the au-
thors were committed to studying the convection flow of an electrically conducting
and viscous incompressible fluids through isothermal vertical surfaces with Joule
heating, when there exists a uniform transverse magnetic field fixed relative to the
surface. Bermúdez and his cooperators studied the coupling of the equations of
steady-state magnetohydrodynamics with the power equation when the buoyancy
effect is considered in [3]. They showed two models and proved the existence of weak
solutions. In [6], the authors researched a coupled system of Maxwell’s equations
with nonlinear heat equation while they employed the Rothe’s method to prove the
existence of the weak solutions for this coupled system.

There are many methods to prove the existence of solution for nonlinear equation
[7, 10, 21, 23, 31, 37]. Rothe’s method presents a first good insight into the structure
of the solution of the investigated evolution problem. The method introduced by E.
Rothe in 1930 [15]. It relies on the discretization in time and some energy estimates
[6]. After then it can be further proved that the discrete solution is convergent to
the solution of the original problem. Different from some other abstract methods
for confirming the truth of existence, Rothe’s method has a strong numerical aspect
[15].
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The accurate prediction of magneto-heating phenomena is critical, especially to
the basic understanding of the physical principles of controlling the electrodynam-
ics and thermal behavior of the materials in these processing systems [17]. For
these purposes, to look for a way to solve such a numerical problem is urgently
needed, particularly with the strongly nonlinear conditions. Studies on the finite
difference methods and finite volume methods had been applied to the magneto-
thermal problems [11, 12, 28, 29]. Meanwhile, finite element method is another
important approach for simulating these models due to its superior ability in han-
dling problems that involve complex geometries [1, 2, 33]. It is specially powerful
for nonlinear models. In [27], the author studied a nonlinear eddy current model
and designed a nonlinear time semi-discrete numerical scheme. Then the Minty-
Browder Theorem and a generalization of the div-curl lemma from the steady-state
to the transient case were adopted to prove the convergence. As a result, the error
estimates were achieved in time. In [5], for stellar magnetic activities, the authors
proved the well-posedness of the dynamo system governed by a set of nonlinear
PDEs with discontinuous physical coefficients in spherical geometry. Furthermore,
they presented a full-discrete finite element approximation to the dynamo system
and explored its convergence and stability. In [16], the main purpose was to prove
an improved error estimate with O(τ + hmin{1,α})(α > 0) for both time and space
discretization than that in [9] for Maxwell’s equations with a power-law nonlinear
conductivity.

In this paper, compared with models mentioned above, the most significant
differences of our model which is proposed in [34] can be summed into three points:

• The model is coupled with the turbulent convection zone and the flow fields.
• The nonlinear term concludes α-quench [5, 25].
• The coefficient of magnetic diffusion is temperature-dependent.

In order to get the existence of the weak solutions, we employ the Rothe’s method.
Firstly, the monotone theory is utilized to verify the unique solutions of time-
discrete weak formulations. Then, by using the weak convergence theorem and
Arzela-Ascoli theorem, we obtain that the time-discrete solutions of the magneto-
heating coupling model converge to the solutions of the weak formulations. Next, we
set up the full-discrete decoupled schemes by backward Euler discretization in time
and Nédélec-Lagrangian elements in space. Furthermore, after the preparatory
work, we obtain the convergence with the rates O(hmin{s,m} + τ), where an a-
prior L∞ assumption of numerical solution is derived. At last, a simple numerical
example is designed.

An outline of this paper is as follows. In section 2, we present the detailed
information for the model and denotes some notations which will be used frequently
in the rest of the paper. In Section 3, we employ time discretization based on
Rothe’s method to verify the solvability of the weak solutions for the problem (see
Theorem 3.1). In Section 4, we construct the full-discrete scheme. Then based on
interpolation theorem and the approximation properties between interpolations and
finite element solutions, we obtain the error estimates (see Theorem 4.1), where an
a-prior L∞ assumption has to be inserted since the numerical scheme is the explicit
decoupled. In Section 5, a numerical experiment is presented to verify theoretical
results. Finally, some concluding remarks are given in the last section.
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2. The magneto-heating coupling model and some notations

2.1. The model problem. A 3-D model is described by the governing equations
[34]

Bt+∇× (λ(θ)∇×B) = Rα∇×
(

f(x, t)B

1 + γ|B|2
)

+∇× (U ×B) , (0, T ]× Ω,(1)

θt−∇ · (κ∇θ) = σ(θ)

(

|∇ ×B|2 −∇×B · (U ×B)

−Rα∇×B ·
(

f(x, t)B

1 + γ|B|2
))

, (0, T ]× Ω,(2)

where Ω is a bounded, convex, connected and Lipschtiz domain in R3. B and θ
mean the magnetic field and temperature, respectively. f(x, t) and U are a model-
oriented function and velocity of the fluid, respectively. Rα is a dynamo parameter.
λ is the effective magnetic diffusivity which is also effected by the temperature. κ,

γ are the thermal conductivity and a constant parameter, respectively. Rαf(x,t)
1+γ|B|2 is

called α-quench in [5, 25]. In some industrial experiments, the electric conductivity

σ strongly depends on the temperature field such that σ =
b1(x)

(b2(x) + b3(x)θ)p
with

p > 1 and σ = c1(x)e
−c2(x)θ(see [8, 35]), where b1(x), b2(x), b3(x), c1(x) and c2(x)

are positive functions of space variables.
The equation (1) is equipped with the boundary condition

n×B = 0, on ∂Ω,(3)

and the initial data

B(x, 0) = B0(x),(4)

where n is the unit outward normal to ∂Ω, B0(x) is a given function. The equation
(2) is equipped with the boundary condition

θ = θ0, on (0, T ]× Γ1,(5)

−κ
∂θ

∂n
= 0, on (0, T ]× Γ2,(6)

and the initial data

θ(x, 0) = θ0(x),(7)

where ∂Ω = Γ1 ∪ Γ2. Furthermore, in the initial condition, θ0 ∈ L∞(Ω) is the
background temperature.

Moreover, we assume

θ0 ≥ θmin, |σ(x)| ≤ σM ,(8)

where θmin, σM are positive constants. We also assume that there exist constants
λm, λM , κm, κM , fM , and uM such that

0 < λm ≤ λ(x) ≤ λM , |f(x, t)|, |ft(x, t)| ≤ fM ,

0 < κm ≤ κ ≤ κM , |U(x, t)|, |Ut(x, t)| ≤ uM ,(9)

and λ, σ are two global Lipschitz continuous functions. For convenience, we define

q(ξ) := σ(θ) = σ(ξ + θ0), ν(ξ) := λ(θ) = λ(ξ + θ0),

K(B) := |∇ ×B|2 −∇×B · (U ×B)−Rα∇×B ·
(

f(x, t)B

1 + γ|B|2
)

,
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QT = (0, T ]× Ω.

2.2. Notations. Firstly, we introduce some function spaces and notations which
will be used throughout the paper. Here W α,p(Ω) = (Wα,p(Ω))3 means the stan-
dard Sobolev vector-valued functions space with norm ‖ · ‖α,p in three dimension.
When p = 2, we denote the space W α,2(Ω) = Hα(Ω) = (Hα(Ω))3 with norm ‖·‖α.
When α = 0, the space H0(Ω) coincides with L2(Ω) = (L2(Ω))3 equipped with
norm ‖ · ‖0. For simplify, we sometimes note the norm for ‖ · ‖ in the absence of
confusion. For a time-dependent function u(x, t), the Bochner space is involved
[14]

Lq(0, T ;Hα(Ω)) =
{

u : (0, T ) → Hα(Ω); ‖u‖Lq(0,T ;Hα(Ω)) < ∞
}

,

where

‖u‖Lq(0,T ;Hα(Ω)) =















(

∫ T

0

‖u(·, t)‖qαdt
)1/q

, 1 ≤ q < ∞,

max
0≤t≤T

‖u(·, t)‖α, q = ∞.

Now we show some other commonly notations:

H(curl; Ω) :=
{

u ∈ L2(Ω) : ∇× u ∈ L2(Ω)
}

,

V := H0(curl; Ω) = {u ∈ H(curl; Ω) : n× u = 0 on ∂Ω} .
We also need define the functional space for the heat equation

Y := H1
0 (Ω) =

{

v ∈ H1(Ω), v|Γ1
= 0
}

.

We introduce the cut-off function Cr to deal with the nonlinear term of (2)

Cr(x) =







r if x > r,
x if |x| ≤ r,
−r if x < −r,

where r is a positive constant. Then we can get the truncated form of equation (2)

θt −∇ · (κ∇θ) = Cr(σ(θ)K(B)), (0, T ]× Ω.(10)

From now on, we analysis the truncated system.
Throughout this paper, we shall frequently use C and Cr to denote a generic

constant, while Cr depends on the cutoff constant r.

3. Solvability of the solutions for the model

The coupling system (1), (3)-(7), (10) can be equivalent to the following varia-
tional problem: For the given initial data B0, θ0, ξ0 = 0 and for any t ∈ (0, T ], find
B ∈ V and ξ ∈ Y such that

(Bt,Φ) + (ν(ξ)∇×B,∇×Φ) = Rα

(

f(x, t)B

1 + γ|B|2 ,∇×Φ

)

+ (U ×B,∇×Φ) , ∀ Φ ∈ V,(11)

(ξt,Υ) + (κ∇ξ,∇Υ) = (Cr(q(ξ)K(B)),Υ) − (κ∇θ0,∇Υ) , ∀ Υ ∈ Y.(12)

In this section, we use the Rothe’s method to prove the solvability of the problem
(11)-(12). We take a fixed time step τ and split the time interval into n parts, i.e.
T = nτ , where n is a positive integer. Denote

tk = τk, wk = w(tk), δτw
k =

wk − wk−1

τ
,



CONVERGENCE ANALYSIS FOR MAGNETO-HEATING COUPLING MODEL 5

then we have a time discretized form of weak formulations (11)-(12) as follows

(

δτB
k,Φ

)

+
(

ν
(

ξk−1
)

∇×Bk,∇×Φ
)

= Rα

(

f(x, tk)B
k

1 + γ|Bk|2 ,∇×Φ

)

+
(

Uk ×Bk,∇×Φ
)

, ∀ Φ ∈ V,(13)
(

δτ ξ
k,Υ

)

+
(

κ∇ξk,∇Υ
)

=
(

Cr(q(ξk−1)K(Bk)),Υ
)

− (κ∇θ0,∇Υ) , ∀ Υ ∈ Y.(14)

Lemma 3.1. For any k = 1, · · ·, n, there exists a unique Bk ∈ V, ξk ∈ Y to solve
(13)-(14).

Proof. Firstly, we define the operator Mλ : V → V ∗, where V ∗ means its dual
space.

〈Mλ(B),Φ〉 = 1

τ
(B,Φ) + (ν∇×B,∇×Φ)−Rα

(

f(x, t)B

1 + γ|B|2 ,∇×Φ

)

− (U ×B,∇×Φ) .

Next, we verify that the operator is bounded, monotone, coercive and hemi-
continuous. In particular, the hemicontinuity is obviously established.

We first show the boundedness as follows

〈Mλ(B),Φ〉 ≤ 1

τ
‖B‖‖Φ‖+ λM‖∇×B‖‖∇×Φ‖+RαfM‖B‖‖∇×Φ‖

+ uM‖B‖‖∇×Φ‖ ≤ C‖B‖V ‖Φ‖V ,(15)

whereC = max{1/τ, λM , RαfM , uM}. Then we have ‖Mλ(B)‖V ∗ ≤ C‖B‖V , ∀B ∈
V .

Now, we verify the monotonicity, for any B1,B2 ∈ V ,

〈Mλ(B1)−Mλ(B2),B1 −B2〉 =
1

τ
(B1 −B2,B1 −B2) + (ν (∇×B1 −∇×B2) ,

∇×B1 −∇×B2)−Rα

(

f(x, t)B1

1 + γ|B1|2
− f(x, t)B2

1 + γ|B2|2
,∇×B1 −∇×B2

)

− (U ×B1 −U ×B2,∇×B1 −∇×B2)

=
4
∑

i=1

Ii.

Then, by Cauchy’s inequality, Young’s inequality and Lemma 2.3 in [34], we have

|I1| =
1

τ
‖B1 −B2‖2,

|I2| ≥ λm‖∇×B1 −∇×B2‖2,

|I3| ≤ 9

4
RαfM‖B1 −B2‖‖∇×B1 −∇×B2‖

≤ 9

4
RαfM

(

1

4ε1
‖B1 −B2‖2 + ε1‖∇×B1 −∇×B2‖2

)

,

|I4| ≤ uM‖B1 −B2‖‖∇×B1 −∇×B2‖

≤ uM

(

1

4ε2
‖B1 −B2‖2 + ε2‖∇×B1 −∇×B2‖2

)

.

By choosing the proper parameters τ, ε1, ε2 > 0 such that

C1 =
1

τ
− 9RαfM

16ε1
− uM

4ε2
> 0, C2 = λm − 9ε1

4
RαfM − uM ε2 > 0,
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we have

〈Mλ(B1)−Mλ(B2),B1 −B2〉
≥ min{C1, C2}

(

‖B1 −B2‖2 + ‖∇×B1 −∇×B2‖2
)

≥ 0.

Next we show the coercive of the operator Mλ.

〈Mλ(B),B〉 ≥ 1

τ
‖B‖2 + λm‖∇×B‖2 −

(

RαfM
4ε3

‖B‖2 + ε3RαfM‖∇ ×B‖2
)

−
(

uM

4ε4
‖B‖2 + ε4uM‖∇×B‖2

)

≥ C3‖B‖2V ,

by choosing the parameters τ, ε3, ε4 > 0 such that

C3 = min

{

1

τ
− RαfM

4ε3
− uM

4ε4
, λm − ε3RαfM − ε4uM

}

> 0.

As mentioned above, we have proved these properties. Assume that k is given
and Bk−1, ξk−1 are known, for any Φ ∈ V , then the operator equation

〈

Mλ(B
k),Φ

〉

=
1

τ

(

Bk−1,Φ
)

(16)

has a solution Bk ∈ V [36]. From Theorem 6.1 [32] and Lemma 6.1.1 [26], we can
obtain that the solution of the equation (13) is unique. The existence and unique-
ness of the solution of the equation (14) is trivial based on Lax-Milgram lemma
since it is a linear problem after we know Bk and ξk−1.

Now, we show some boundedness for Bk in the next lemma.

Lemma 3.2. Suppose that Bk is the solution of (13)-(14). Then there holds

max
1≤k≤n

‖Bk‖2 + τλm

n
∑

k=1

‖∇×Bk‖2 ≤ C‖B0‖2,(17)

n
∑

k=1

τ‖δτBk‖2H−1(curl;Ω) ≤ C,(18)

where C is a positive constant and independent of τ . H−1(curl; Ω) is the dual space
of H0(curl; Ω).

The bounded estimates for ξk are presented in the next lemma.

Lemma 3.3. There exists a positive constant Cr , which depends on the parameter
r of the cut-off function Cr and independent of τ , such that

max
1≤k≤n

‖ξk‖2 +
n
∑

k=1

κτ‖∇ξk‖2 ≤ Cr,(19)

n
∑

k=1

‖δτξk‖2τ +
κm

2

[

‖∇ξn‖2 +
n
∑

k=1

τ‖∇ξk −∇ξk−1‖2
]

≤ Cr + κM‖∇ξ0‖2,(20)

max
1≤k≤n

‖δτξk‖H−1(Ω) ≤ Cr,(21)

where H−1(Ω) is the dual space of H1
0 (Ω).
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The proof of Lemma 3.2 and Lemma 3.3 is trivial, so we omit it.
Before we show the first main theorem in this section, we need to construct the

piecewise-constant and piecewise-linear functions in time, i.e., ∀t ∈ (tk−1, tk],

B̄n(0) = B(0), ξ̄n(0) = ξ0,

B̄n(t) = Bk, ξ̄n(t) = ξk,

Bn(t) = Bk−1 + (t− tk−1)δτB
k, ξn(t) = ξk−1 + (t− tk−1)δτ ξ

k,

ν̄n(0) = ν(ξ0), q̄n(0) = q(ξ0),

ν̄n(t) = ν(ξk), q̄n(t) = q(ξk),

f̄n(t) = f(tk), Ūn(t) = U(tk).

Now using the above notations, the equations (13)-(14) can be rewritten as

(∂tB
n,Φ) +

(

ν̄n (t− τ)∇× B̄n,∇×Φ
)

= Rα

(

f̄nB̄n

1 + γ|B̄n|2 ,∇×Φ

)

+
(

Ūn × B̄n,∇×Φ
)

, ∀ Φ ∈ V,(22)

(∂tξ
n,Υ) +

(

κ∇ξ̄n,∇Υ
)

=
(

Cr
(

q̄n (t− τ)K
(

B̄n
))

,Υ
)

− (κ∇θ0,∇Υ) , ∀ Υ ∈ Y.(23)

Theorem 3.1. Assume that f is Lipschitz continuous in time, then there exist B
and ξ to solve (13) - (14).

Proof. The proof is divided into three parts.
(I) Owing to Lemma 3.3, we have

∫ t

0

‖∂tξn‖2dt+ max
t∈[0,T ]

‖ξ̄n‖2H1(Ω) ≤ Cr.

Then there exists a ξ ∈ C
(

[0, T ];L2 (Ω)
)

∩L∞
(

[0, T ] ;H1 (Ω)
)

with ∂tξ ∈ L2
(

(0, T ) ;

L2 (Ω)
)

such that [15]

ξn → ξ in C
(

[0, T ];L2 (Ω)
)

and ξ̄n → ξ in L2
(

(0, T ) ;L2 (Ω)
)

,(24)

ξ̄n(t) ⇀ ξ(t) in H1
0 (Ω), ∀t ∈ [0, T ].(25)

Based on (24) and (25), we arrive at ξn → ξ and ξ̄n → ξ a.e. in QT . From the
Lipschitz continuity of ν, q, we have

ν(ξn) → ν(ξ), ν(ξ̄n) → ν(ξ) a.e. in QT ,

q(ξn) → q(ξ), q(ξ̄n) → q(ξ) a.e. in QT .

Now we show that ν̄n(t− τ), ν̄n(t) and q̄n(t− τ), q̄n(t) have the same limit in
L2((0, T );L2(Ω)), respectively. For ν̄n(t− τ) and ν̄n(t), from (20), we have

∫ T

0

‖ν̄n(t− τ) − ν̄n(t)‖2dt =
n
∑

k=1

‖ν(ξk−1)− ν(ξk)‖2τ

≤ C

n
∑

k=1

‖ξk−1 − ξk‖2τ ≤ Cτ2
n
∑

k=1

‖δξk‖2τ ≤ Crτ
2,

which leads to

lim
n→∞

∫ T

0

‖ν̄n(t− τ)− ν̄n(t)‖2dt = 0.
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Then by using triangle inequality, we can reach

lim
n→∞

∫ T

0

‖ν̄n(t− τ)− ν(ξ(t))‖2dt = 0.

Similarly, we have

lim
n→∞

∫ T

0

‖q̄n(t− τ)− q(ξ(t))‖2dt = 0.

Therefore, there holds

ν̄n(t) → ν(ξ), ν̄n(t− τ) → ν(ξ),

q̄n(t) → q(ξ), q̄n(t− τ) → q(ξ), in L2((0, T );L2(Ω)).(26)

(II)According to Lemma 3.2, we get
∣

∣(B̄n −Bn,Φ)
∣

∣ ≤ τ |(∂tBn,Φ)| ≤ τ‖∂tBn‖H−1(curl;Ω)‖Φ‖H(curl;Ω),

which means

‖B̄n −Bn‖L2((0,T );H−1(curl;Ω)) ≤ τ

∫ T

0

‖∂tBn‖2H−1(curl;Ω)dt

≤ Cτ → 0, n → ∞.(27)

From
∫ T

0

‖Bn‖2dt =
n
∑

k=1

∫ tk

tk−1

‖Bk−1 + (t− tk−1)δB
k‖2dt

≤
n
∑

k=1

(‖Bk−1‖2 + ‖Bk −Bk−1‖2)τ

≤ ‖B0‖2 + C

n
∑

k=1

‖Bk‖2τ ≤ C,

∫ T

0

‖B̄n‖2dt =
n
∑

k=1

‖Bk‖2τ ≤ C,

and Lemma 3.2, we have
∫ T

0

(‖B̄n‖2 + ‖∇ × B̄n‖2)dt ≤ C,

∫ T

0

(‖Bn‖2 + ‖∂tBn‖2H−1(curl;Ω))dt ≤ C.

Moreover, L2
(

(0, T ) ;L2 (Ω)
)

is reflexive Banach space, which implies that there

exists subsequences of B̄n,Bn (we also denote B̄n,Bn) and B1,B such that B̄n ⇀
B1, Bn ⇀ B, where ′ ⇀′ means the weak convergence. We also have [6, 27]

lim
n→∞

∫ T

0

(

B̄n,ΞBn
)

dt =

∫ T

0

(B1,ΞB) dt, ∀ Ξ ∈ C∞
0

(

Ω̄
)

.

Next, we will illustrate that B̄n ⇀ B. For any p ∈ L2((0, T );L2(Ω)), we define

0 ≤ lim
n→∞

∫ T

0

(

B̄n − p,Ξ
(

B̄n − p
))

dt := lim
n→∞

4
∑

k=1

(−1)i+1IIi,(28)
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where Ξ ∈ C∞
0 (Ω̄) is nonnegative, and

II1 =

∫ T

0

(

B̄n,ΞB̄n
)

dt =

∫ T

0

(

B̄n,Ξ
(

B̄n −Bn
))

dt+

∫ T

0

(

B̄n,ΞBn
)

dt.

Based on Lemma 3.2 and (27), we have
∫ T

0

(

B̄n,Ξ
(

B̄n −Bn
))

dt ≤ C‖B̄n‖L2(0,T ;H(curl;Ω))‖B̄n −Bn‖L2(0,T ;H−1(curl;Ω))

≤ C‖B̄n −Bn‖L2(0,T ;H−1(curl;Ω)) → 0, if n → ∞,

which means

lim
n→∞

II1 =

∫ T

0

(B1,ΞB)dt.

The space L2((0, T );C∞(Ω)) is dense in L2((0, T );L2(Ω)). Then for any ε > 0,
there exists pε ∈ L2((0, T );C∞(Ω)) such that ‖p− pε‖L2((0,T );L2(Ω)) ≤ ε. Hence,

II2 =

∫ T

0

(

p,ΞB̄n
)

dt

=

∫ T

0

(

pε,Ξ
(

B̄n −Bn
))

dt+

∫ T

0

(

p− pε,Ξ
(

B̄n −Bn
))

dt+

∫ T

0

(p,ΞBn) dt

:=

3
∑

i=1

Ii,

where

|I1| ≤ C‖pε‖L2((0,T );H(curl;Ω))‖B̄n −Bn‖L2((0,T );H−1(curl;Ω))

≤ Cε‖B̄n −Bn‖L2((0,T );H−1(curl;Ω)) → 0, n → ∞,

|I2| ≤ C‖p− pε‖L2((0,T );L2(Ω))‖B̄n −Bn‖L2((0,T );L2(Ω)) ≤ Cε → 0, ε → 0.

Therefore, we have

lim
n→∞

II2 =

∫ T

0

(p,ΞB)dt, lim
n→∞

II3 =

∫ T

0

(p,Ξp)dt,

lim
n→∞

II4 = lim
n→∞

∫ T

0

(B̄n,Ξp)dt =

∫ T

0

(B1,Ξp)dt.

We can see that

lim
n→∞

∫ T

0

(

B̄n − p,Ξ
(

B̄n − p
))

dt =

∫ T

0

(B1 − p,Ξ (B − p)) ≥ 0.

Now, setting ε > 0 and p = B + εv,v ∈ L2((0, T );L2(Ω)), we have

lim
ε→0

∫ T

0

(B1 −B,Ξv) ≤ 0.

Replacing v with −v implies

lim
ε→0

∫ T

0

(B1 −B,Ξv) ≥ 0.

Therefore, we obtain

lim
ε→0

∫ T

0

(B1 −B,Ξv) = 0, ∀v ∈ L2((0, T );L2(Ω)).
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Hence, B1 = B a.e. in QT , i.e.,

B̄n ⇀ B, in L2((0, T );L2(Ω)).(29)

Let p = B in (28), we have

0 = lim
n→∞

∫ T

0

(B̄n−B,Ξ(B̄n−B))dt ≥ lim
n→∞

∫ T

0

(Ξ, |B̄n−B|2) ≥ 0, ∀Ξ ∈ C∞
0 (Ω̄),

which means

B̄n → B, in L2((0, T );L2(Ω)).(30)

Setting Φ ∈ H0(curl; Ω), then we get

lim
n→∞

∫ T

0

(

∇× B̄n,Φ
)

dt = lim
n→∞

∫ T

0

(

B̄n,∇×Φ
)

dt

=

∫ T

0

(B,∇×Φ) dt =

∫ T

0

(∇×B,Φ) dt.(31)

It’s known that L2((0, T );H(curl; Ω)) is reflexive, and based on Lemma 3.2, there
exists a z ∈ L2((0, T );H(curl; Ω)) such that

∫ t

0

(∂tB
n,Φ) ds →

∫ t

0

(z,Φ) ds, n → ∞,

and

(Bn(t),Φ)− (Bn(0),Φ) =

∫ t

0

(∂tB
n,Φ) ds ≤

∫ t

0

‖∂tBn‖H−1(curl;Ω)‖Φ‖H(curl;Ω)ds

≤ C‖Φ‖H(curl;Ω).

Therefore, we have

(Bn(t),Φ) ≤ C‖Φ‖H(curl;Ω) + ‖B0‖H−1(curl;Ω)‖Φ‖H(curl;Ω) ≤ C‖Φ‖H(curl;Ω),

which leads to

‖Bn(t)‖H−1(curl;Ω) ≤ C.

For any t1, t2, there holds

|(Bn(t1)−Bn(t2),Φ)| ≤
∣

∣

∣

∣

∫ t2

t1

(∂tB
n,Φ)ds

∣

∣

∣

∣

≤
∫ t2

t1

‖∂tBn‖H−1(curl;Ω)‖Φ‖H(curl;Ω)ds

≤
√

∫ t2

t1

12ds

√

∫ t2

t1

‖∂tBn‖2H−1(curl;Ω)ds‖Φ‖H(curl;Ω)

≤ C
√

|t1 − t2|‖Φ‖H(curl;Ω),

which implies

‖Bn(t1)−Bn(t2)‖H−1(curl;Ω) ≤ C
√

|t1 − t2|.
Using the modification of Arzela-Ascoli theorem [6, 15] yields

lim
n→∞

(Bn,Φ) = (B,Φ), ∀Φ ∈ H0(curl; Ω), t ∈ [0, T ].

Then, we can obtain z = ∂tB a.e. in QT by
∫ t

0

(∂tB,Φ)ds = (B(t)−B0,Φ) = lim
n→∞

(Bn(t)−Bn(0),Φ)
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= lim
n→∞

∫ t

0

(∂tB
n,Φ)ds =

∫ t

0

(z,Φ)ds.(32)

Owing to the Lipschitz continuity of f and U , we have

‖f(t1)− f(t2)‖ ≤ C|t1 − t2|, ∀t1, t2 ∈ [0, T ],

which implies
∫ T

0

‖f̄n − f‖2dt =
n
∑

k=1

∫ tk

tk−1

‖f(tk)− f(t)‖2dt ≤ Cτ2, n → ∞.(33)

Similarly, we have
∫ T

0

‖Ūn − U‖2dt =
n
∑

k=1

∫ tk

tk−1

‖U(tk)− U(t)‖2dt ≤ Cτ2, n → ∞.(34)

Now, we have to verify ∇ × B̄n → ∇ × B in L2((0, T );L2(Ω)). From (30),
by choosing t ∈ [0, T ], such that B̄n(t) → B(t) in L2(Ω), and assuming that
t ∈ (tj−1, tj ], we have the following inequalities

0 ≤ λm

∫ t

0

∫

Ω

(∇× B̄n −∇×B)2dxds

≤
∫ t

0

∫

Ω

ν̄n(t− τ)(∇× B̄n −∇×B)2dxds

=

∫ t

0

(ν̄n(t− τ)∇× B̄n,∇× B̄n)ds+

∫ t

0

(ν̄n(t− τ)∇×B,∇×B)ds

− 2

∫ t

0

(ν̄n(t− τ)∇× B̄n,∇×B)ds

=

3
∑

i=1

Πi.

From (22), we have

Π1 =

∫ t

0

Rα

(

f̄nB̄n

1 + γ|B̄n|2 ,∇× B̄n

)

ds+

∫ t

0

(

Ūn × B̄n,∇× B̄n
)

ds

−
∫ t

0

(

∂tB
n, B̄n

)

ds

= −
∫ tj

0

(

∂tB
n, B̄n

)

ds+

∫ tj

t

(∂tB
n, B̄n)ds

+

∫ t

0

Rα

(

f̄nB̄n

1 + γ|B̄n|2 ,∇× B̄n

)

ds+

∫ t

0

(

Ūn × B̄n,∇× B̄n
)

ds

= −
j
∑

k=1

∫

Ω

(

Bk −Bk−1
)

Bkdx+

∫ tj

t

(

∂tB
n, B̄n

)

ds

+

∫ t

0

Rα

(

f̄nB̄n

1 + γ|B̄n|2 ,∇× B̄n

)

ds+

∫ t

0

(

Ūn × B̄n,∇× B̄n
)

ds

≤ −
∫

Ω

Bj2 −B0
2

2
dx+

∫ tj

t

(

∂tB
n, B̄n

)

ds+

∫ t

0

Rα

(

f̄nB̄n

1 + γ|B̄n|2 ,∇× B̄n

)

ds

+

∫ t

0

(

Ūn × B̄n,∇× B̄n
)

ds
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= −
∫

Ω

B̄n(t)2 −B2
0

2
dx+

∫ tj

t

(∂tB
n, B̄n)ds+

∫ t

0

Rα

(

f̄nB̄n

1 + γ|B̄n|2 ,∇× B̄n

)

ds

+

∫ t

0

(

Ūn × B̄n,∇× B̄n
)

ds.

According to (26), (30), (31), (33), and (34), we have

lim
n→∞

Π1 ≤ −
∫

Ω

B(t)2 −B2
0

2
dx+

∫ t

0

Rα

(

fB

1 + γ|B|2 ,∇×B

)

ds

+

∫ t

0

(U ×B,∇×B) ds

= −
∫ t

0

∫

Ω

1

2

dB2

ds
dxds +

∫ t

0

Rα

(

fB

1 + γ|B|2 ,∇×B

)

ds

+

∫ t

0

(U ×B,∇×B)ds

= −
∫ t

0

(∂sB,B)ds+

∫ t

0

Rα

(

fB

1 + γ|B|2 ,∇×B

)

ds

+

∫ t

0

(U ×B,∇×B) ds

=

∫ t

0

(ν(ξ)∇×B,∇×B) ds.

Based on (26) and (31), we get

lim
n→∞

Π2 =

∫ t

0

(ν̄n(t− τ)∇×B,∇×B) ds =

∫ t

0

(ν (ξ)∇×B,∇×B) ds,

lim
n→∞

Π3 = −2

∫ t

0

(

ν̄n (t− τ)∇× B̄n,∇×B
)

ds

= −2

∫ t

0

(ν(ξ)∇×B,∇×B) ds.

Therefore, we have

0 ≤ λm

∫ t

0

∫

Ω

(∇× B̄n −∇×B)2dxds ≤ 0.

The above inequality is valid for any t ∈ [0, T ]. Therefore we have

∇× B̄n → ∇×B in L2((0, T );L2(Ω)).(35)

(III) Let Φ ∈ C∞
0 (Ω̄) in (22), then integrating it in [0, ϑ) where ϑ ∈ [0, T ] yields

∫ ϑ

0

(∂tB
n,Φ) dt+

∫ ϑ

0

(

ν̄n(t− τ)∇× B̄n,∇×Φ
)

dt

=

∫ ϑ

0

Rα

(

f̄nB̄n

1 + γ|B̄n|2 ,∇×Φ

)

dt+

∫ ϑ

0

(

Ūn × B̄n,∇×Φ
)

dt.

Using (26), (31), (32), (33), and (34), we can obtain the limit for n → ∞
∫ ϑ

0

(∂tB,Φ)dt+

∫ ϑ

0

(ν∇×B,∇×Φ)dt =

∫ ϑ

0

Rα

(

fB

1 + γ|B|2 ,∇×Φ

)

dt

+

∫ ϑ

0

(U ×B,∇×Φ)dt.
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Using the fact that C∞
0 (Ω̄) is dense in H0(curl; Ω) and differentiating with respect

to time variable, we know that B and ξ satisfy (11).
Now, we integrate (23) in time

(ξ̄n(s),Υ)− (ξn(0),Υ) + (ξn(s)− ξ̄n(s),Υ) +

∫ s

0

(κ∇ξ̄n,∇Υ)dt

=

∫ s

0

(Cr(q̄n(t− τ)K(B̄n)),Υ)dt−
∫ s

0

(κ∇θ0,∇Υ)dt.(36)

Due to |(ξn(s)− ξ̄n(s),Υ)| ≤ τ |(∂tξn,Υ)| ≤ τ‖∂tξn‖‖Υ‖ and Lemma 3.3, we have

lim
n→∞

(ξn(s)− ξ̄n(s),Υ) = 0, for any s ∈ [0, T ].

Based on (24), (25), (30), and (35), and the limit for n → ∞ in (36), we obtain

(ξ(s),Υ)−(ξ(0),Υ)+

∫ s

0

(κ∇ξ,∇Υ)dt=

∫ s

0

(Cr(q(ξ)K(B)),Υ)dt−
∫ s

0

(κ∇θ0,∇Υ)dt.

Then differentiating in time, B and ξ solve (12).

4. Convergence analysis of the full-discrete scheme finite element meth-

ods

Let Th be a partition of the domain Ω consisting of cube in 3D. For every element
K ∈ Th, hK denotes the diameter of a generic element K ∈ Th, h = maxK∈Th

hK

denotes the mesh size. Now, the Nédélec’s element space Vh [22] and Lagrange
finite element space Wh are shown as follows

Vh = {vh ∈ H(curl; Ω) : vh|K ∈ Qp−1,p,p ×Qp,p−1,p ×Qp,p,p−1, ∀K ∈ Th} ,

V0
h = {vh ∈ Vh, n× vh = 0 on ∂Ω} ,

Wh =
{

wh ∈ H1(Ω) : wh|K ∈ Qp,p,p

}

,

W 0
h = {wh ∈ Wh, wh|Γ1

= 0} .
Here and hereafter Qi,j,m means the space of polynomials whose degrees are less

than or equal to i, j,m in variables x, y, z, respectively. Hence, the full-discrete
variational formulations can be simulated: Find Bk

h ∈ V 0
h , ξkh ∈ W 0

h such that

(δτB
k
h,Φh) + (ν(ξk−1

h )∇×Bk
h,∇×Φh) = Rα

(

fkBk
h

1 + γ|Bk−1
h |2

,∇×Φh

)

+ (Uk ×Bk
h,∇×Φh), ∀ Φh ∈ V 0

h ,

(37)

(δτξ
k
h,Υh)+(κ∇ξkh,∇Υh)=

(

Cr
(

q(ξk−1
h )K

(

Bk
h

))

,Υh

)

−(κ∇θ0,∇Υh) , ∀ Υh ∈ W 0
h ,

(38)

with the initial conditions

B0
h(x) = ΠcB0(x), ξ0h(x) = Πhξ0(x),(39)

where fk = f(x, kτ), Uk = U(x, kτ), Πc is the so-called Nédélec interpolation
operator [14], and Πh is the standard Lagrange interpolation operator.

The existence and uniqueness of (Bk
h, ξ

k
h) in (37)-(38) is obvious since it has

became a linear decoupled problem.
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Similar to the estimates (17) and (19), we have the next lemma.

Lemma 4.1. Assume that
(

Bk
h, ξ

k
h

)

is the solution of the discrete system (37)-(38)

for each fixed k (1 ≤ k ≤ n), then the sequences {Bk
h}nk=1 and {ξkh}nk=1 have the

following stability estimates

max
1≤k≤n

∥

∥Bk
h

∥

∥

2
+

n
∑

k=1

τλm

∥

∥∇×Bk
h

∥

∥

2 ≤ C
∥

∥B0
h

∥

∥

2
,(40)

max
1≤k≤n

∥

∥ξkh
∥

∥

2
+

n
∑

k=1

τκ
∥

∥∇ξkh
∥

∥

2 ≤ C(
∥

∥ξ0h
∥

∥

2
+ ‖∇θ0‖2).(41)

Now, we only consider the part that the cut-off function satisfies Cr(x) = x.
First, we state the second main result about the error estimate after combining the
following Lemma 4.2 and Lemma 4.3.

Theorem 4.1. Let (Bk, ξk) and (Bk
h, ξ

k
h) be the solutions of (11)-(12) and (37)-

(38), respectively. Assume that Bt, ∇×Bt, B,∇×B ∈ L∞(0, T ;Hs(Ω)), ξ, ξt ∈
L∞(0, T ;Hm+1(Ω)), where 1 ≤ m ≤ p,

1

2
+ δ ≤ s ≤ p, 0 < δ <

1

2
, we have

max
1≤k≤n

∥

∥Bk −Bk
h

∥

∥

2

L2(Ω)
+ max

1≤k≤n

∥

∥ξk − ξkh
∥

∥

2

L2(Ω))
+λm

∥

∥∇× (Bk −Bk
h)
∥

∥

2

L2(0,T ;L2(Ω))

+ κ
∥

∥∇ξk −∇ξkh
∥

∥

2

L2(0,T ;L2(Ω))
≤ C

(

h2min{s,m} + τ2
)

Λ (B, ξ) ,

(42)

where C is a positive constant independent of the mesh size h and time step τ .
And Λ(B, ξ) is defined by (45).

Firstly, we give the interpolation theorem on the space Vh and the interpolation
results for ξ can be find in [4, chap 4].

Lemma 4.2. ([18]) Assume that 0 < δ <
1

2
and Th is a regular family of hexahedral

meshes on Ω with faces aligning with the coordinate axes. If B,∇×B ∈ Hs(Ω),
1

2
+ δ ≤ s ≤ p, then there exsits a constant C > 0 independent of h and B such

that

‖B −ΠcB‖0 + ‖∇× (B −ΠcB)‖0 ≤ Chs
(

‖B‖
Hs(Ω) + ‖∇×B‖

Hs(Ω)

)

.(43)

Secondly, we prove the approximation properties between the interpolations and
finite element solutions.

Lemma 4.3. Under the assumption of Theorem 4.1, we have

max
1≤k≤n

∥

∥ηk
h

∥

∥

2

L2(Ω)
+ max

1≤k≤n

∥

∥ζkh
∥

∥

2

L2(Ω))
+ λm

m
∑

k=1

τ
∥

∥∇× ηk
h

∥

∥

2

L2(Ω)

+ κ
m
∑

k=1

τ
∥

∥∇ζkh
∥

∥

2

L2(Ω)
≤ C

(

h2min{s,m} + τ2
)

Λ (B, ξ) ,(44)

where ηk
h = Bk

h −ΠcB
k, ζkh = ξkh −Πhξ

k, and

Λ(B, ξ) = ‖Bt‖2L∞(0,T ;Hs(Ω)) + ‖∇×Bt‖2L∞(0,T ;L2(Ω)) + ‖B‖2L∞(0,T ;Hs(Ω))

+ ‖∇×B‖2L∞(0,T ;Hs(Ω)) + (‖ξt‖2L∞(0,T ;L2(Ω)) + ‖ξ‖2L∞(0,T ;Hm+1(Ω)))
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· ‖∇ ×B‖2L∞(0,T ;L2(Ω)) + ‖ξt‖2L∞(0,T ;Hm+1(Ω)) + ‖ξ‖2L∞(0,T ;Hm+1(Ω))

+ ‖ξt‖2L∞(0,T ;L2(Ω))‖∇×B‖2L∞(0,T ;L2(Ω))(‖∇ ×B‖2L∞(0,T ;L2(Ω))

+ ‖ξ‖2L∞(0,T ;L2(Ω))‖∇×B‖2L∞(0,T ;L2(Ω))(‖∇×B‖2L∞(0,T ;L2(Ω))

+ ‖B‖2L∞(0,T ;L2(Ω))) + ‖∇×Bt‖2L∞(0,T ;L2(Ω))(‖∇×B‖2L∞(0,T ;L2(Ω))

+ ‖B‖2L∞(0,T ;L2(Ω))) + ‖∇×B‖2L∞(0,T ;L2(Ω))(‖Bt‖2L∞(0,T ;L2(Ω))

+ ‖B‖2L∞(0,T ;L2(Ω))).(45)

Proof. Let Φ = ηk
h ∈ V 0

h in (11), then integrating over [tk−1, tk] and subtracting it
from (37), it yields

τ
(

δτη
k
h,η

k
h

)

+ τ
(

ν
(

ξk−1
h

)

∇× ηk
h,∇× ηk

h

)

= τ
(

δτ
(

Bk −ΠcB
k
)

,ηk
h

)

+ τ

(

1

τ

∫ tk

tk−1

ν(ξ)∇×Bdt− ν(ξk−1
h )∇× ΠcB

k,

∇× ηk
h

)

+Rατ

(

f(x, kτ)Bk
h

1 + γ|Bh
k−1|2

− 1

τ

∫ tk

tk−1

f(x, t)B

1 + γ|B|2 dt,∇× ηk
h

)

+ τ

(

Uk ×Bk
h − 1

τ

∫ tk

tk−1

U ×Bdt,∇× ηk
h

)

=

4
∑

i=1

Erri.(46)

Based on interpolation theorem, we have

Err1 = τ(δτ (B
k −ΠcB

k),ηk
h) ≤ Cτhs‖Bt‖L∞(0,T ;Hs(Ω))‖ηk

h‖0.(47)

Thanks to the Lipschitz continuity of ν and Taylor expansion, we arrive at

Err2 =

(

∫ tk

tk−1

(ν(ξ) − ν(ξk−1
h ))∇×Bdt,∇× ηk

h

)

+

(

∫ tk

tk−1

ν(ξk−1
h )(∇×B −∇×ΠcB

k)dt,∇× ηk
h

)

≤ C
(

τ2‖ξt‖L∞(0,T ;L2(Ω)) + τhm+1‖ξ‖L∞(0,T ;Hm+1(Ω)) + τ‖ζk−1
h ‖0

)

·‖ ∇ ×B‖L∞(0,T ;L2(Ω))‖∇× ηk
h‖0 + CλM (τ2‖∇×Bt‖L∞(0,T ;L2(Ω))

+ τhs(‖B‖L∞(0,T ;Hs(Ω)) + ‖∇×B‖L∞(0,T ;Hs(Ω))))‖∇× ηk
h‖0.(48)

Furthermore, there holds

Err3 = Rα

(
∫ tk

tk−1

fk

1 + γ|Bk−1
h |2

(Bk
h −ΠcB

k +ΠcB
k −B)dt

+

∫ tk

tk−1

(1 + γ|B|2)(fk − f) + γf(|B|2 − |Bk−1
h |2)

(1 + γ|Bk−1
h |2)(1 + γ|B|2)

Bdt,∇× ηk
h

)

.(49)
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In order to obtain the estimation of Err3, we have
∣

∣

∣

∣

∫ tk

tk−1

(1 + γ|B|2)(fk − f)

(1 + γ|Bk−1
h |2)(1 + γ|B|2)

Bdt

∣

∣

∣

∣

≤
∫ tk

tk−1

|fk − f ||B|dt ≤
(∫ tk

tk−1

|fk − f |2dt
)

1
2
(∫ tk

tk−1

|B|2dt
)

1
2

≤ fMτ2‖B‖L∞(0,T ),(50)

∣

∣

∣

∣

∫ tk

tk−1

γf(|B|2 − |Bk−1
h |2)

(1 + γ|Bk−1
h |2)(1 + γ|B|2)

Bdt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ tk

tk−1

γf(|B| − |Bk−1
h |)(|B|+ |Bk−1

h |)
(1 + γ|Bk−1

h |2)(1 + γ|B|2)
Bdt

∣

∣

∣

∣

≤ 2

∫ tk

tk−1

|f | |B −Bk−1 +Bk−1 −ΠcB
k−1 +ΠcB

k−1 −Bk−1
h |dt

≤ 2fM
(

τ2‖Bt(t)‖L∞(0,T ) + τ |Bk−1 −ΠcB
k−1|+ τ |ηk−1

h |
)

,(51)

and
∫ tk

tk−1

fk

1 + γ|Bk−1
h |2

(Bk
h −ΠcB

k +ΠcB
k −B)dt

≤ fM
(

τ |ηk
h|+ τ |ΠcB

k −Bk|+ τ2‖Bt(t)‖L∞(0,T )

)

.(52)

Then, substituting (50)-(52) into (49), we have

Err3 ≤ 2fMRα(τ‖ΠcB
k −Bk‖0 + τ‖ΠcB

k−1 −Bk−1‖0 + τ2‖Bt‖L∞(0,T ;L2(Ω))

+ τ2‖B‖L∞(0,T ;L2(Ω)))‖∇× ηk
h‖0 +

2τf2
MR2

α

λm
‖ηk

h‖20 +
τλm

8
‖∇× ηk

h‖20

+
4τf2

MR2
α

λm
‖ηk−1

h ‖20 +
τλm

8
‖∇× ηk

h‖20.(53)

As for Err4, we know that

Err4 =

(∫ tk

tk−1

Uk ×Bk
h −Uk ×B +Uk ×B −U ×Bdt,∇× ηk

h

)

.(54)

Divided (54) into two parts, we get
∣

∣

∣

∣

∫ tk

tk−1

Uk ×Bk
h −Uk ×Bdt

∣

∣

∣

∣

≤ uMτ
(

|ηk
h|+ |ΠcB

k −Bk|+ τ‖Bt(t)‖L∞(0,T )

)

,(55)

∣

∣

∣

∣

∫ tk

tk−1

Uk ×B −U ×Bdt

∣

∣

∣

∣

≤
∫ tk

tk−1

|Uk −U ||B|dt

≤
(∫ tk

tk−1

τ2|∂tUk|2dt
)

1
2√

τ‖B(t)‖L∞(0,T ).(56)
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Combining (55) with (56), we have

Err4 ≤ uM

(

τ2‖B‖L∞(0,T ;L2(Ω)) + τ2‖Bt‖L∞(0,T ;L2(Ω))

+ τ‖ΠcB
k −Bk‖0

)

‖∇× ηk
h‖0 +

2u2
Mτ

λm
‖ηk

h‖20 +
τλm

8
‖∇× ηk

h‖20.

Let Υ = ζkh ∈ W 0
h in (12), then integrating over [tk−1, tk] and subtracting it from

(38), we obtain

τ
(

δτζ
k
h , ζ

k
h

)

+τ
(

κ∇ζkh ,∇ζkh
)

=τ
(

δτ (ξ
k −Πξk), ζkh

)

+τ

(

κ∇
(

1

τ

∫ tk

tk−1

ξdt−Πξk
)

,∇ζkh

)

+ τ

(

1

τ

∫ tk

tk−1

Cr(q(ξk−1
h )K(Bk

h))− q(ξ)K(B)dt, ζkh

)

=
7
∑

i=5

Erri.(57)

In order to ensure the boundedness of ξ in L∞-norm, we need the following
assumption.
A priori L∞ assumption up to time step ti, i ≤ k − 1. Assume that an L∞

bound for the exact solution and its interpolation satisfies
∥

∥ξi
∥

∥

L∞(Ω)
≤ C∗,

∥

∥Πhξ
i
∥

∥

L∞(Ω)
≤ C∗,(58)

where C∗ is a positive constant. Note that the second inequality comes from the
following estimate

∥

∥ξi −Πhξ
i
∥

∥

L∞(Ω)
≤ Chm+1|lnh|.(59)

We also assume that the numerical error function for ξ has an L∞ bound at time
step ti

∥

∥ei
∥

∥

L∞(Ω)
:=
∥

∥Πhξ
i − ξih

∥

∥

L∞(Ω)
≤ 1,(60)

so that an L∞ bound for the numerical solution ξih is available, i.e.,
∥

∥ξih
∥

∥

L∞(Ω)
=
∥

∥Πhξ
i − ei

∥

∥

L∞(Ω)
=
∥

∥Πhξ
i
∥

∥

L∞(Ω)
+
∥

∥ei
∥

∥

L∞(Ω)
≤ C̃0,(61)

where C̃0 = C∗ + 1. This assumption will be recovered in later analysis.
Similar to the derivations of (47) and (48), we get

Err5 = τ
(

δτ (ξ
k −Πξk), ζkh

)

≤ Cτhm+1 ‖ξt‖L∞(0,T ;Hm+1(Ω))

∥

∥ζkh
∥

∥

0
,(62)

and

Err6 = τ

(

κ∇
(

1

τ

∫ tk

tk−1

ξdt− ξk
)

,∇ζkh

)

+ τ
(

κ∇(ξk −Πξk),∇ζkh
)

≤ κ
(

τ2‖ξt‖L∞(0,T ;H1(Ω)) + τhm‖ξ‖L∞(0,T ;Hm+1(Ω))

)

‖∇ζkh‖0.(63)

For Err7, we have

Err7 =

(∫ tk

tk−1

(

q (ξ)−q
(

ξk−1
h

))

K(B)dt

+

∫ tk

tk−1

q
(

ξk−1
h

) (

K (B)−K
(

Bk
h

))

dt, ζkh

)
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:= (I1 + I2, ζ
k
h).

Meanwhile, the estimates for I1 and I2 are deduced as follows

I1 ≤
∣

∣

∣

∣

M

∫ tk

tk−1

(ξk−1
h − ξ)K(B)dt

∣

∣

∣

∣

≤ C
(

τ‖ζk−1
h ‖+ τ |Πξk−1 − ξk−1|+ τ2‖ξt‖L∞(0,T )

)

(

‖∇×B‖2L∞(0,T )

+ ‖∇ ×B‖L∞(0,T )‖B‖L∞(0,T )

)

,

and

I2 =

∣

∣

∣

∣

∫ tk

tk−1

q(ξk−1
h )(K(B)−K(Bk) +K(Bk)−K(Bk

h))dt

∣

∣

∣

∣

≤ σMτ
∣

∣K(Bk
h)−K(Bk)

∣

∣+ σM

∣

∣

∣

∣

∫ tk

tk−1

K(Bk)−K(B)dt

∣

∣

∣

∣

.

To estimate I2, we have
∣

∣K(Bk
h)−K(Bk)

∣

∣≤
∣

∣∇×Bk
h−∇×Bk

∣

∣

(∣

∣∇×Bk
h

∣

∣+
∣

∣∇×Bk
∣

∣

)

+
∣

∣Uk ×Bk∇×Bk

− Uk ×Bk∇×Bk
h +Uk ×Bk∇×Bk

h −Uk ×Bk
h∇×Bk

h

∣

∣

+Rα

∣

∣

∣

∣

∇×Bk
(f(x, kτ)Bk

1 + γ|Bk|2
)

−∇×Bk
h

(f(x, kτ)Bk

1 + γ|Bk|2
)

+∇×Bk
h

(f(x, kτ)Bk

1 + γ|Bk|2
)

−∇×Bk
h

(f(x, kτ)Bk
h

1 + γ|Bk
h|2
)

∣

∣

∣

∣

≤ C
( ∣

∣∇×
(

Bk
h −Bk

)∣

∣+ (uM +RαfM )
∣

∣∇×
(

Bk
h −Bk

)∣

∣

+ (uM + RαfM )
∣

∣Bk
h −Bk

∣

∣

)

,

and

σM

∣

∣

∣

∣

∫ tk

tk−1

K(Bk)−K(B)dt

∣

∣

∣

∣

= σM

∣

∣

∣

∣

∫ tk

tk−1

(|∇ ×Bk|2 − |∇ ×B|2)− (∇×Bk · (U ×Bk)−∇×B · (U ×B))

−
(

Rα∇×Bk ·
(f(x, kτ)Bk

1 + γ|Bk|2
)

−Rα∇×B ·
( f(x, t)B

1 + γ|B|2
)

)

dt

∣

∣

∣

∣

:= σM (i1 + i2 + i3).

Here, we reach the following inequalities

|i1| ≤
∣

∣

∣

∣

∫ tk

tk−1

(∇×Bk −∇×B)∇×Bk + (∇×Bk −∇×B)∇×Bdt

∣

∣

∣

∣

≤ τ2‖∇×Bt‖L∞(0,T )‖∇×B‖L∞(0,T ),

|i2| ≤ uMτ2‖∇×Bt‖L∞(0,T )‖B‖L∞(0,T ) + uMτ2‖Bt‖L∞(0,T )‖∇×B‖L∞(0,T ),

|i3| ≤ Cτ2‖∇×Bt‖L∞(0,T )‖B‖L∞(0,T ) + τ2‖∇×B‖L∞(0,T )‖Bt‖L∞(0,T )

+ Cτ2‖ft‖L∞(0,T )‖B‖L∞(0,T )‖∇×B‖L∞(0,T ).
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By Lemma 4.2, Young’s inequality, summing both sides of (46) and (57) together
over k = 1, 2, ···, n, using the fact nτ ≤ T and the estimates results Erri, i = 1, ···, 7,
choosing 0 < τ < Cmin

{

(4‖∇×B‖2L∞(0,T ;L2(Ω)))
−1(Tσ2

M , 2Tσ2
Mu2

M , 2Tσ2
MR2

αf
2
M ,

‖∇×B‖2L∞(0,T ;L2(Ω))+‖B‖2L∞(0,T ;L2(Ω)))
−1,

λm

3
(4f2

MR2
α, 2u

2
M )−1

}

, and employing

the discrete Grönwall inequality, we finish the estimates (44).
Recovery of the priori bound. Define Ψ to be the solution for the elliptic

equation

−4Ψ = ξkh −Πξk.

with Dirichlet boundary condition Ψ|∂Ω = 0. Using the Aubin-Nitsche technique
and (44), we can get

∥

∥ξkh −Πξk
∥

∥

0
≤ C(hmin{m,s}+1 + τ).(64)

With the help of the inverse inequality and an application of the L2 error estimate
(64), the following estimate is available, for d ≤ 3:

∥

∥ξkh −Πξk
∥

∥

L∞
≤

C
∥

∥ξkh −Πξk
∥

∥

0

hd/2
≤ C

(

τ + hmin{m,s}+1
)

hd/2
,

under the requirement τ = O(h
d
2
+ε) for any 0 < ε < 1 . Then we complete the

recovery.

5. Numerical test

In this section, we main to verify our theoretical analysis about the convergence,
i.e., Theorem 4.1. For simplicity, we assume that Ω = [0, 1]3 and fix the time step

τ = 10−5 on uniform mesh. Moreover, we choose λ(θ) = θ2

1+θ2 , σ(θ) = e−θ, κ = 1,

f(x, t) = 1, U = [1, 1, 1]T . The analytical solutions of (1)-(2) are given as follows

B(x, t) =





Bx

By

Bz



 = e−t cos t





cosπx sin πy sinπz
1
3 sinπx cos πy sinπz

− 4
3 sinπx sinπy cosπz



 ,

θ(x, t) = et(x−1)x(y−1)y(z−1)z2

.

Cubic meshes are used in this part contains i × j × k elements, where (i, j, k)
indicates the number of divisions in x, y, and z directions, respectively. The results
in Table 1 show that the optimal rates of convergence are achieved, which are
consistent with Theorem 4.1. We denote three errors by Err1 = ‖B − Bh‖0,
Err2 = ‖∇× (B −Bh)‖0, and Err3 = ‖θ − θh‖0. Then we have following results.

Table 1. Convergence of B and θ after 100 time steps.

meshes Err1 rates Err2 rates Err3 rates
10× 10× 10 5.4445e-02 - 4.1842e-01 - 6.8549e-05 -
15× 15× 15 3.6296e-02 1.0001 2.7914e-01 0.9982 3.0812e-05 1.9722
20× 20× 20 2.7222e-02 1.0000 2.0941e-01 0.9991 1.7397e-05 1.9868
25× 25× 25 2.1777e-02 1.0000 1.6755e-01 0.9995 1.1157e-05 1.9909
30× 30× 30 1.8148e-02 1.0000 1.3963e-01 0.9997 7.7599e-06 1.9915
35× 35× 35 1.5556e-02 1.0000 1.1969e-01 0.9998 5.7093e-06 1.9907
40× 40× 40 1.3611e-02 1.0000 1.0473e-01 0.9998 4.3776e-06 1.9890
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Figure 1. The true solution (up) and the numerical solution
(down) of three components of B with τ = 10−5 after 100 time
steps.

Figure 2. The true solution (up) and the numerical solution
(down) of three components of ∇×B with τ = 10−5 after 100
time steps.

To show our numerical results more intuitively, we list the numerical solutions
and the exact solutions of B and curlB by fixing x = 0.722 and taking mesh
40 × 40 × 40 in Fig. 1, Fig. 2 . From the Fig. 1 and Fig. 2, we observe that our
scheme approximates the exact solutions very well.

6. Conclusions

In this work, we firstly investigate the solvability of the weak formulations of
the Magneto-heating problem. This is realized by monotone theory, Arzela-Ascoli
theorem and weak convergence analysis under the framework of Rother’s method.
Furthermore, we also explore the framework of error estimate for the Magneto-
heating coupling nonlinear system, which is approached by the boundedness of the
α-quench, the L∞-norm estimate of ξkh, and the Aubin-Nitsche technique. We point
that the method can be extended to the higher order time discrete schemes directly
to reduce the time step restriction.
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[15] J. Kačur. Method of Rothe in Evolution Equations. Equadiff6, 1985.
[16] T. Kang, Y. Wang, L. Wu, and K. Kim. An improved error estimate for

Maxwell’s equations with a power-law nonlinear conductivity. Applied Mathe-
matics Letters, 45:93–97, 2015.



22 REFERENCES

[17] J. M. Khodadadi. Coupled finite/boundary element solution of magnetother-
mal problems. International Journal of Numerical Methods for Heat & Fluid
Flow, 8(8):321–349, 1998.

[18] J. Li and Y. Huang. Time-Domain Finite Element Methods for Maxwell’s
Equations in Metamaterials. Springer Berlin Heidelberg, 2013.

[19] X. Li, S. Mao, K. Yang, and W. Zheng. On the magneto-heat coupling model
for large power transformers. Communications in Computational Physics,
22(3):683–711, 2017.

[20] A. C. Metaxas. 96/02754-foundations of electroheat. a unified approach. Fuel
& Energy Abstracts, 37(3):193, 1996.
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