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Abstract. In this paper, the distributed Lagrange multiplier-fictitious domain (DLM/FD) fi-

nite element method is studied for a type of steady state Stokes interface problems with jump
coefficients, and its well-posedness, stability and optimal convergence properties are analyzed by

proving an inf-sup condition for a nested saddle-point problem that is induced by both Stokes e-

quations and DLM/FD method in regard to Stokes variables (velocity and pressure) and Lagrange
multipliers. Numerical experiments validate the obtained convergence theorem of DLM/FD finite

element method for Stokes interface problems with respect to different jump ratios.
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1. Introduction

Physicists and engineers use two phase flows to model a wide range of natural
phenomena. One such application is a Stokes flow with jump in the viscosity across
an interface. This can lead to kinks in the velocity field or discontinuities in pressure
at the interface. Using standard finite element methods to capture the true nature
of the solution near the interface presents a number of challenges. One method for
handling an interface problem is to create a mesh which conforms to the interface
[19]. If the interface changes with time, the mesh must be redrawn at each time
step to conform with the moving interface. The Arbitrary Lagrangian-Eulerian
method [15, 8] is able to adapt the mesh to small movements or changes in the
interface, but larger movements or deformations of the interface require that the
mesh be redrawn for the whole domain or part of the domain. However, it could
be very complicated, time consuming, and less accurate. Furthermore, the transfer
of solutions from the degenerated mesh to the new mesh may introduce artificial
diffusions, causing loss of accuracy.

Therefore, methods which allow each sub-domain to extend beyond the interface
have become increasingly popular. The extended finite element (XFEM) [9, 18]
method allows for a mesh which does not conform to the interface. In the XFEM,
the interface passes through elements. However, if the ratio of the areas or volumes
on either side of the interface becomes too large in any one element, the system
can become ill-conditioned and lead to breakdown problems with iterative linear
solvers. More recently, the cut finite element method [14, 17] was developed to
overcome this problem with the XFEM.

Fictitious domain methods were first developed to handle partial differential
equations in a complex geometry [16, 24, 25, 20, 21, 23]. The idea behind the
fictitious domain method is to extend the problem from a complicated domain to
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a larger, simpler domain where the problem can be solved more efficiently. When
finite element method is used, this allows for a simpler, more regular mesh. In
addition, the domain in which both the fluid and fictitious fluid are filled and its
mesh are time independent even when the original fluid domain is time dependent.

Lagrange multipliers defined on the actual boundary were later added to im-
plement the genuine boundary conditions [12, 13]. These boundary supported
Lagrange multiplier based methods that were first developed for linear elliptic
problems were later adapted to non-linear time dependent problems such as the
Navier-Stokes equations. The distributed Lagrange multiplier fictitious domain
(DLM/FD) method was developed for flows around rigid bodies and the particulate
flow problem [10, 11]. In [28] the DLM/FD method is applied to fluid/flexible-body
interactions, and a decoupled scheme is developed to solve for the fluid, solid, and
Lagrange multiplier terms separately. While some interesting numerical results are
provided in those papers, no theoretical analysis is given for DLM/FD finite elemen-
t method until recently, this method is analyzed for the elliptic interface problem
[1, 5] and the parabolic interface problem with a moving interface [27], where, the
well-posedness and convergence theorems of the DLM/FD method are proved for
those type of interface problems.

Most recently, the DLM/FD method is applied to fluid structure interaction
(FSI) problems involving an incompressible viscous-hyperelastic solid [4]. Its sta-
tionary case which is defined at each discrete time step is analyzed and an optimal
convergence theorem is obtained. In this setting the solid material exhibits both
solid and fluid-like properties, with its Cauchy stress tensor given by σs = σfs +σss ,
the sum of a fluid-like part and an elastic part. Thus the influence of fictitious fluid
to the structure equation is completely removed from the DLM/FD formulation.
Such a specific choice of structure material significantly simplifies the DLM/FD
formulation, which is, however, not for a general case of FSI problems.

In this paper, we will take DLM/FD method and apply it to the Stokes interface
problem first, where we have a domain Ω which is divided into two sub-domains Ω1

and Ω2 with a jump in the viscosity term across the interface Γ. The idea behind
the fictitious domain method is to create two non-matching meshes. A background
mesh is created over the entire domain Ω. A second mesh is generated in the sub-
domain Ω2 on one side of the interface. The mesh for Ω2 then sits on top of the
background mesh. The fluid in Ω1 is extended into the entire domain Ω and then a
distributed Lagrange multiplier (physically a pseudo body force) is used to enforce
the fictitious fluid to satisfy the constraint of the structure motion in Ω2.

Note that the DLM/FD method for the Stokes interface problem results one
nested saddle-point problem, where the inner saddle-point problem arises from
Stokes equations, and the outer saddle-point problem is induced by the DLM/FD
method itself regarding Lagrange multiplier and Stokes variables. It is challenging
how to accurately analyze the well-posedness, stability and optimal convergence
properties for such a nested saddle-point structure based on the Babuška–Brezzi’s
theory [2, 6]. In this paper, we will develop a new analysis tool to tackle this
problem. In fact, when analyzing the DLM/FD method for the Stokes interface
problem, we require that the viscosity of the fluid in Ω1 be less than the viscosity of
the fictitious fluid in Ω2. We are then able to prove that our DLM/FD formulation is
well posed at both the continuous and discrete levels, and derive an optimal error
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estimate based on the assumed regularity of the true solution. Some numerical
experiments reinforce our theoretical result.

We must stress that the key advantage of DLM/FD method is its ability to
handle time dependent interface problems where the motion of the interface is not
known a priori. The DLM/FD formulation of the steady Stokes interface problem
and corresponding analysis presented in this paper will serve as a basis for tackling
the unsteady Stokes interface problem which we will carry out in our next paper,
and ultimately move towards multi-phase flows and a more generalized FSI model
than is presented in [3, 4].

The structure of the paper is as follows. In Section 2 we give a description of
the problem. In Section 3 we introduce the distributed Lagrange multiplier and
the weak form of the problem. We define the discrete form of the problem by
the mixed finite element method in Section 4, and show the present finite element
discretization problem is well posed, then derive its error estimates. In Section 5 we
present some cases of numerical tests and let the theoretical results be validated.

2. Model description

We define a steady state Stokes interface problem as follows

−∇ · (β1∇u1) +∇p1 = f1, in Ω1,(1)

∇ · u1 = 0, in Ω1,(2)

−∇ · (β2∇u2) +∇p2 = f2, in Ω2,(3)

∇ · u2 = 0, in Ω2,(4)

u1 = u2, on Γ,(5)

(β1∇u1 − p1I)n1 + (β2∇u2 − p2I)n2 = g0 on Γ,(6)

u1 = 0, on ∂Ω1\Γ,(7)

u2 = 0, on ∂Ω2\Γ,(8)

where, the domain Ω = Ω1 ∪ Ω2 ∈ Rd (d = 2, 3), the interface Γ = ∂Ω1 ∩ ∂Ω2,
as shown in Fig. 1. We can also introduce the entire solution (u, p) defined in Ω

Figure 1. A domain decomposition with the interface Γ.

satisfying u|Ω1
= u1, u|Ω2

= u2, p|Ω1
= p1, p|Ω2

= p2, and is associated with
the right hand side f satisfying f |Ω1 = f1, f |Ω2 = f2, and the Dirichlet boundary
condition u = 0 on ∂Ω. In order to make the problem more general, we allow for
a nonzero flux jump g0 across the interface, which occurs when accounting for the
surface tension of the fluids at the interface.
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We introduce the equations of the fictitious Stokes fluid in Ω2 for (ũ2, p̃2) as
follows,

−∇ · (β̃2∇ũ2) +∇p̃2 = f̃2, in Ω2,(9)

∇ · ũ2 = 0, in Ω2,(10)

ũ2 = u2, on Γ,(11)

ũ2 = 0, on ∂Ω2\Γ,(12)

where β̃2 and f̃2 are any sufficiently smooth extensions of β1 and f2 into Ω2,
respectively. Note that in general β̃2 6= β2 and f̃2 6= f2. For the entire domain Ω
we introduce the functions β̃ and f̃ defined by β̃|Ω1

= β1, β̃|Ω2
= β̃2, f̃ |Ω1

= f1,

and f̃ |Ω2 = f̃2.

3. Fictitious domain method and the weak formulations

Introduce the Sobolev spaces

V = (H1
0 (Ω))d, V2 = (H1(Ω2))d, Q = L2

0(Ω).(13)

Let (·, ·)ω stand for L2- product on a n−dimensional (n = 1, 2, 3) domain, ω.
Also introduce the space Λ = V ∗2 , the dual space of V2, and let 〈·, ·〉Ω2

denote the
duality pairing between Λ and V2. In Λ we have the norm

‖λ‖Λ = sup
v2∈V2

〈λ,v2〉Ω2

‖v2‖V2

.(14)

Let ũ, p̃ satisfy ũ|Ω1
= u1, ũ|Ω2

= ũ2, p̃|Ω1
= p1, p̃|Ω2

= p̃2, then ũ|∂Ω = 0,
and ũ|Γ = u1|Γ = u2|Γ. If we add the fictitious Stokes equations (9)-(10) to the
Stokes equations (1)-(2) defined in Ω1, and work on their weak formulations, we
then have

(β̃∇ũ,∇v)Ω − (p̃,∇ · v)Ω

= (β1∇u1,∇v)Ω1
− (p1,∇ · v)Ω1

+ (β̃∇ũ,∇v)Ω2
− (p̃,∇ · v)Ω2

= (−∇ · (β1∇u1) +∇p1,v)Ω1
+
(
−∇ · (β̃∇ũ) +∇p̃,v

)
Ω2

+
(

(β1∇u1 − p1I)n1 + (β̃∇ũ− p̃I)n2,v
)

Γ

= (f1,v)Ω1 + (f̃ ,v)Ω2 +
(

(β1∇u1 − p1I)n1 + (β̃∇ũ− p̃I)n2,v
)

Γ

= (f̃ ,v)Ω +
(

(β1∇u1 − p1I)n1 + (β̃∇ũ− p̃I)n2,v
)

Γ
, ∀v ∈ V ,(15)

(∇ · ũ, q)Ω = (∇ · u1, q)Ω1
+ (∇ · ũ, q)Ω2

= 0, ∀q ∈ Q.(16)

On the other hand, we subtract the fictitious Stokes equations (9)-(10) from the
Stokes equations defined in Ω2 (3)-(4), respectively, and find their weak formulations
defined in Ω2, as(

β2∇u2 − β̃∇ũ|Ω2
,∇v

)
Ω2

− (p2 − p̃,∇ · v)Ω2
= (f2 − f̃ ,v)Ω2

+ (g0,v)Γ

−
(

(β1∇u1 − p1I)n1 + (β̃∇ũ− p̃I)n2,v
)

Γ
,(17)

(∇ · (u2 − ũ|Ω2), q)Ω2 = 0, ∀(v, q) ∈ V2 ×Q2.(18)
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If we add (15)-(16) and (17)-(18) together, then the fictitious Stokes terms are
all canceled, and the original weak formulations of (1)-(8) can be found back as
follows.
Weak Form I. Find (u, p) ∈ V ×Q with u|Ω1

= u1, u|Ω2
= u2, p|Ω1

= p1, p|Ω2
=

p2, such that

(β∇u,∇v)Ω − (p,∇ · v)Ω = (f ,v)Ω + (g0,v)Γ,(19)

(∇ · u, q)Ω = 0, ∀(v, q) ∈ V ×Q.(20)

Now we use a distributed Lagrange multiplier to weakly impose u2 = ũ|Ω2
, i.e.,

〈ξ, ũ|Ω2 − u2〉Ω2
= 0, ∀ξ ∈ Λ.(21)

The first term on the left hand side of (17) can be divided into two parts,(
β2∇u2 − β̃∇ũ|Ω2

,∇v2

)
Ω2

=
(

(β2 − β̃)∇u2,∇v2

)
Ω2

(22)

+
(
β̃(∇u2 −∇ũ|Ω2

),∇v2

)
Ω2

.

For the second part, we have∣∣∣∣(β̃(∇u2 −∇ũ|Ω2),∇v2

)
Ω2

∣∣∣∣ ≤ ‖β̃‖∞‖∇u2 −∇ũ|Ω2‖(L2(Ω2))d‖∇v2‖(L2(Ω2))d

≤ ‖β̃‖∞‖u2 − ũ|Ω2
‖V2
‖∇v2‖(L2(Ω2))d .(23)

Given any w ∈ V2 there is a ξw ∈ Λ such that for all v ∈ V2,

〈ξw,v〉Ω2
= (w,v)Ω2 + (∇w,∇v)Ω2 ,(24)

‖ξw‖Λ = ‖w‖V2
.(25)

From (21) we attain ‖u2 − ũ|Ω2‖V2 = 0, leading to(
β̃(∇u2 −∇ũ|Ω2

),∇v2

)
Ω2

= 0, ∀v2 ∈ V2.(26)

Thus, (
β2∇u2 − β̃∇ũ|Ω2 ,∇v2

)
Ω2

=
(

(β2 − β̃)∇u2,∇v2

)
Ω2

, ∀v2 ∈ V2.(27)

In addition, if we replace the flux jump term,
(

(β1∇u1 − p1I)n1 + (β̃∇ũ− p̃I)n2

,v)Γ that arises in both (15) and (17), by the distributed Lagrange multiplier term
defined in Ω2, then we can define the weak formulation for the distributed Lagrange
multiplier-fictitious domain (DLM/FD) method for (1)-(8) as follows.
Weak Form II (DLM/FD Form). Find (ũ, u2, p̃, λ) ∈ V × V2 ×Q×Λ such
that

(β̃∇ũ,∇v)Ω − (p̃,∇ · v)Ω + 〈λ,v|Ω2
〉Ω2

= (f̃ ,v)Ω, ∀v ∈ V
(28)

(∇ · ũ, q)Ω = 0, ∀q ∈ Q(29) (
(β2 − β̃)∇u2,∇v2

)
Ω2
− 〈λ,v2〉Ω2

=
(
f2 − f̃ |Ω2

,v2

)
Ω2

+ (w,v2)Γ,∀v2 ∈ V2(30)

〈ξ, ũ|Ω2 − u2〉Ω2
= 0, ∀ξ ∈ Λ.(31)
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Theorem 3.1. Given f ∈ (L2(Ω))d with f |Ω1
= f1, f |Ω2

= f2 , and β ∈ L∞(Ω)

with β|Ω1
= β1, β|Ω2

= β2, let f̃ ∈ (L2(Ω))d be any function that satisfies f̃ |Ω1
=

f1, and let β̃ ∈ L∞(Ω) be any function that satisfies β̃|Ω1 = β1.
(i). Suppose (ũ, u2, p̃, λ) ∈ V × V2 × Q × Λ, is a solution of Weak Form II

(28)-(31). Then (ũ, p̃) ∈ V ×Q, is a solution of Weak Form I (19)-(20).
(ii). Conversely, let (u, p) ∈ V ×Q be a solution of Weak Form I (19)-(20), and

let λ ∈ Λ satisfy

〈λ,v2〉Ω2
=
(

(β2 − β̃|Ω2)∇u2,∇v2

)
Ω2

−
(
f2 − f̃ |Ω2

,v2

)
Ω2

− (w,v2)Γ, ∀v2 ∈ V2,(32)

where u2 := u|Ω2
. Then, (ũ := u, u2 := u|Ω2

, p̃ := p,λ) ∈ V × V2 ×Q ×Λ is a
solution of Weak Form II (28)-(31).

Proof. (i). (19) can be proved easily by using (27), taking v ∈ V in (28) with
v|Ω2

= v2, and simply adding (28) and (30) together, where all the Lagrange
multiplier terms are canceled. (20) is obvious.

(ii). We only need to prove (28) and (30) hold, all the others are trivial. By the
definition of the duality pairing 〈·, ·〉Ω2

in Ω2, we know there exists a unique λ ∈ Λ

satisfying (32), which yields (30), and

(
(β2 − β̃)∇u

∣∣
Ω2
,∇v2

)
Ω2

− 〈λ,v2〉Ω2
=

(
f2 − f̃ |Ω2

,v2

)
Ω2

+ (w,v2)Γ, ∀v ∈ V .
(33)

Subtract (33) from (19), (28) is then obtained. �

4. DLM/FD finite element method for Stokes interface problems

4.1. DLM/FD finite element discretization. Let Th(Ω) be a partition of Ω,
independent of the location of the interface Γ, and TH(Ω2) be a partition of Ω2.
Based on these meshes, define the conforming finite element spaces Vh ⊂ V , V2,H ⊂
V2, Qh ⊂ Q, ΛH ⊂ Λ where ΛH = {λ ∈ Λ : ∃u2,H ∈ V2,H , 〈λ,v2〉Ω2

=

(u2,H ,v2)Ω2 ∀v2 ∈ V2}. Note that the duality pairing between ΛH and V2 is
the L2 inner product of elements in V2,H and V2. The DLM/FD finite element
method can be defined as follows: find (uh, u2,H , ph, λH) ∈ Vh×V2,H×Qh×ΛH

such that

(β̃∇uh,∇vh)Ω − (ph,∇ · vh)Ω + 〈λH ,vh〉Ω2
=(f̃ ,vh)Ω, ∀vh ∈ Vh

(34)

(∇ · uh, qh)Ω =0, ∀qh ∈ Qh(35)(
(β2 − β̃)∇u2,H ,∇v2,H

)
Ω2

− 〈λH ,v2,H〉Ω2
=(f2 − f̃ |Ω2

,v2,H)Ω2

+ (w,v2,H)Γ, ∀v2,H ∈ V2,H(36)

〈ξH ,uh − u2,H〉Ω2
=0, ∀ξH ∈ ΛH .(37)

4.2. Well-posedness, stability and convergence. In this section, we study
properties of well-posedness, stability and convergence of the proposed DLM/FD
weak form II (28)-(31) and of its finite element discretization (34)-(37) under the
following assumptions: there exist constants β, β̄ such that

+∞ > β̄ ≥ β2 > β̃ ≥ β > 0, β2 − β̃ ≥ β > 0.(38)
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If we introduce the following bilinear and linear forms

a(ũ,u2;v,v2) = (β̃∇ũ,∇v)Ω +
(

(β2 − β̃)∇u2,∇v2

)
Ω2

,(39)

b(v,v2; q, ξ) = −(q,∇ · v)Ω + 〈ξ,v|Ω2
− v2〉Ω2

,(40)

F (v,v2) = (f̃ ,v)Ω +
(
f2 − f̃ |Ω2

,v2

)
Ω2

+ (w,v2)Γ,(41)

then Weak Form II (28)-(31) can be rewritten as: find (ũ, u2, p̃, λ) ∈ V × V2 ×
Q×Λ such that

L(ũ,u2, p̃,λ;v,v2, q, ξ) = F (v,v2), ∀(v, v2, q, ξ) ∈ V × V2 ×Q×Λ,(42)

where

L(ũ,u2, p̃,λ;v,v2, q, ξ) = a(ũ,u2;v,v2) + b(v,v2; p̃,λ)− b(ũ,u2; q, ξ).

Correspondingly, the DLM/FD finite element method (34)-(37) can also be
rewritten as: find (uh, u2,H , ph, λH) ∈ Vh × V2,H ×Qh ×ΛH such that

L(uh,u2,H , ph,λH ;vh,v2,H , qh, ξH) = F (vh,v2,H),

∀(vh, v2,H , qh, ξH) ∈ Vh × V2,H ×Qh ×ΛH .(43)

We also introduce the norms

‖v,v2‖V ×V2 =
(
‖v‖2V + ‖v2‖2V2

) 1
2 ,(44)

‖q, ξ‖Q×Λ =
(
‖q‖2Q + ‖ξ‖2Λ

) 1
2 ,(45)

|||v,v2, q, ξ||| =
(
‖v‖2V + ‖v2‖2V2

+ ‖q‖2Q + ‖ξ‖2Λ
) 1

2 .(46)

It is known from [1, 6, 7, 22] that

sup
(v,v2)∈V ×V2

〈ξ,v|Ω2 − v2〉Ω2

‖v,v2‖V ×V2

≥ c1‖ξ‖Λ, ∀ξ ∈ Λ,(47)

sup
v∈V

−(q,∇ · v)Ω

‖v‖V
≥ c2‖q‖Q, ∀q ∈ Q.(48)

Here and thereafter, c or C with (or without) subscripts denotes a generic positive
constant whose value may be different at different occurrences and is independent
of mesh sizes h and H.

Lemma 4.1. There exists a constant c3 such that for any (q, ξ) ∈ Q×Λ,

sup
(v,v2)∈V ×V2

b(v,v2; q, ξ)

‖v,v2‖V ×V2

≥ c3‖q, ξ‖Q×Λ.(49)

Proof. Let (w,w2) ∈ V × V2 satisfy

‖w,w2‖V ×V2 = ‖ξ‖Λ with 〈ξ,w|Ω2 −w2〉 ≥ α1‖ξ‖2Λ,

and let u ∈ V satisfy

‖u‖V = ‖q‖Q with − (q,∇ · u)Ω ≥ α2‖q‖2Q.



946 A. LUNDBERG, P. SUN, AND C. WANG

Then using ‖∇ · v‖ ≤
√
d‖v‖V ≤

√
d‖v,v2‖V ×V2

, we have

b(w,w2; q, ξ) = −(q,∇ ·w)Ω + 〈ξ,w|Ω2 −w2〉
≥ α1‖ξ‖2Λ − ‖q‖Q‖∇ ·w‖0,Ω
≥ α1‖ξ‖2Λ −

√
d‖q‖Q‖w,w2‖V ×V2

≥ α1‖ξ‖2Λ −
d

2α1
‖q‖2Q −

α1

2
‖w,w2‖2V ×V2

=
α1

2
‖ξ‖2Λ −

d

2α1
‖q‖2Q, ∀ (q, ξ) ∈ Q×Λ.(50)

Setting u2 = u|Ω2
gives

b(u,u2; q, ξ) = −(q,∇ · u)Ω ≥ α2‖q‖2Q, ∀ (q, ξ) ∈ Q×Λ.(51)

Choosing v = w + ηu,v2 = w2 + ηu2, where η = d
α1α2

, we have

b(v,v2; q, ξ) ≥ α1

2
‖ξ‖2Λ +

d

2α1
‖q‖2Q ≥ c‖q, ξ‖2Q×Λ, ∀ (q, ξ) ∈ Q×Λ.(52)

From the choice of v and v2, and using ‖u2‖V2 ≤ ‖u‖V ,

‖v,v2‖2V ×V2
≤‖w‖2V + 2η‖w‖V ‖u‖V + η2‖u‖2V + ‖w2‖2V2

+ 2η‖w2‖V2
‖u2‖V2

+ η2‖u2‖2V2

≤2‖w‖2V + 2‖w2‖2V2
+ 2η2‖u‖2V + 2η2‖u2‖2V2

≤2‖w‖2V + 2‖w2‖2V2
+ 4η2‖u‖2V

=2‖ξ‖2Λ + 4η2‖q‖2Q
≤c‖q, ξ‖2Q×Λ, ∀ (q, ξ) ∈ Q×Λ.(53)

�

Lemma 4.2. Assume that (38) holds. Then there exists a constant c4 such that
for any (u,u2, p,λ) ∈ V × V2 ×Q×Λ,

sup
(v,v2,q,ξ)∈V ×V2×Q×Λ

L(u,u2, p,λ;v,v2, q, ξ)

|||v,v2, q, ξ|||
≥ c4|||u,u2, p,λ|||.(54)

Proof. It follows from (38) that

L(u,u2, p,λ;u,u2, p,λ)

=(β̃∇u,∇u)Ω + ((β2 − β̃)∇u2,∇u2)Ω2

≥β(‖∇u‖20,Ω + ‖∇u2‖20,Ω2
)

≥C(‖u‖2V + ‖∇u2‖20,Ω2
), ∀ (u,u2, p,λ) ∈ V × V2 ×Q×Λ,(55)

where we have applied the Poincaré inequality, and the constant C depends only
on the domain Ω and value of β.

For u2 ∈ V2, let ξu2
∈ Λ satisfy

〈ξu2
,v2〉Ω2

= (u2,v2)Ω2
for all v2 ∈ V2,
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then

L(u,u2, p,λ; 0, 0, 0, ξu2
) = −〈ξu2

,u|Ω2
− u2〉Ω2

= −(u2,u|Ω2
− u2)Ω2

≥ ‖u2‖20,Ω2
− ‖u2‖0,Ω2‖u|Ω2‖V2

≥ ‖u2‖20,Ω2
− 1

2
‖u2‖20,Ω2

− 1

2
‖u|Ω2‖2V2

≥ 1

2
‖u2‖20,Ω2

− 1

2
‖u‖2V .(56)

Let (w,w2) ∈ V × V2 satisfy ‖w,w2‖V ×V2
= ‖p,λ‖Q×Λ and b(w,w2; p,λ) ≥

c3‖p,λ‖2Q×Λ. Then, we have

L(u,u2, p,λ;w,w2, 0, 0)

=(β̃∇u,∇w)Ω + ((β2 − β̃)∇u2,∇w2)Ω2
+ b(w,w2; p,λ)

≥c3‖p,λ‖2Q×Λ − β̄(‖u‖V ‖w‖V + ‖u2‖V2‖w2‖V2)

≥c3‖p,λ‖2Q×Λ − β̄
(
β̄

2c3

(
‖u‖2V + ‖u2‖2V2

)
+
c3
2β̄

(
‖w‖2V + ‖w2‖2V2

))
=
c3
2
‖p,λ‖2Q×Λ −

β̄2

2c3
‖u,u2‖2V ×V2

.(57)

Let v = 2C−1u + c3β̄
−2w,v2 = 2C−1u2 + c3β̄

−2w2, q = 2C−1p, ξ = 2C−1λ +
2ξu2

. Then we have

L(u,u2, p,λ;v,v2, q, ξ) ≥ 1

2
‖u,u2‖2V ×V2

+
c23

2β̄2
‖p,λ‖2Q×Λ ≥ c∗|||u,u2, p,λ|||2

(58)

where the constant c∗ = min{ 1
2 ,

c23
2β̄2 }, and

|||v,v2, q, ξ|||2 ≤ c(‖u‖2V + 2‖u‖V ‖w‖V + ‖w‖2V + ‖u2‖2V2

+ 2‖u2‖V2‖w2‖V2 + ‖w2‖2V2

+ ‖p‖2Q + ‖λ‖2Λ + 2‖λ‖Λ‖u2‖Λ + ‖ξu2
‖2Λ)

≤ c(2‖u‖2V + 2‖w‖2V + 2‖u2‖2V2
+ 2‖w2‖2V2

+ ‖p‖2Q + 2‖λ‖2Λ + 2‖ξu2
‖2Λ)

≤ c|||u,u2, p,λ|||2.(59)

Then, the aimed result (54) is direct consequence of (58) and (59). �

Lemma 4.3. Assume that (38) holds. Then there exists a constant c5 such that
for any (v,v2, q, ξ) ∈ V × V2 ×Q×Λ,

sup
(u,u2,p,λ)∈V ×V2×Q×Λ

L(u,u2, p,λ;v,v2, q, ξ)

|||u,u2, p,λ|||
≥ c5|||v,v2, q, ξ|||.(60)

The proof of Lemma 4.3 follow the same reasoning as the proof Lemma 4.2 and
has been omitted. It is easy to see that

L(u,u2, p,λ;v,v2, q, ξ) ≤ C|||u,u2, p,λ||||||v,v2, q, ξ|||(61)
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holds for any (u,u2, p,λ) ∈ V × V2 × Q ×Λ and (v,v2, q, ξ) ∈ V × V2 × Q ×Λ.
Then along with Lemma 4.2 and Lemma 4.3, we can obtain the following theorem
by using the arguments in [2].

Theorem 4.4. Suppose that (38) is satisfied. Given f̃ ∈ (L2(Ω))d, f2 ∈ (L2(Ω2))d

and w ∈ (L2(Γ))d there is a unique solution (ũ,u2, p,λ) ∈ V ×V2×Q×Λ to (42),
with

|||ũ,u2, q,λ||| ≤ C(‖f̃‖0,Ω + ‖f2‖0,Ω2 + ‖w‖0,Γ).(62)

With the proper choice of finite element subspaces, existence and uniqueness of
the solution to the discrete problem is proved in a similar manner. We assume that
the spaces Vh,V2,H , Qh, and ΛH satisfy the following inf-sup conditions

sup
(uh,u2,H)∈Vh×V2,H

〈ξH ,uh|Ω2
− u2,H〉Ω2

‖uh,u2,H‖V ×V2

≥ c1‖ξH‖Λ, ∀ξH ∈ ΛH(63)

sup
uh∈Vh

(qh,∇ · uh)Ω

‖uh‖V
≥ c2‖qh‖Q, ∀qh ∈ Qh.(64)

One possible choice of spaces is

Vh = {v ∈ V : v|K ∈ P2(K), ∀K ∈ Th},(65)

V2,H = {v2 ∈ V2 : v2|K ∈ P2(K), ∀K ∈ TH},(66)

Qh = {q ∈ Q ∩ (C0(Ω))d : q|K ∈ P1(K), ∀K ∈ Th},(67)

ΛH = V2,H .(68)

Then, if the mesh sequences are quasi-uniform, the inf-sup conditions (63) and (64)
hold for the Lagrange multiplier term [1, 5] and for the pressure terms [7, 22, 6],
respectively.

By (63), we know there exists (wh,w2,H) ∈ Vh × V2,H which satisfies
‖wh,w2,H‖V ×V2

= ‖ξH‖Λ with
〈
ξh,wh|Ω2,H

− w2,H〉 ≥ c1‖ξH‖2Λ, and by (64)

there exists uh ∈ Vh which satisfies ‖uh‖V = ‖qh‖Q with (qh,∇ · uh)Ω ≥ c2‖qh‖2Q.
The proofs of the following lemmas and theorem then follow the proofs of Lemma
4.1, Lemma 4.2, Lemma 4.3 and Theorem 4.4.

Lemma 4.5. Suppose that (38), (63) and (64) are satisfied. Then there is a con-
stant c such that for all (qh, ξH) ∈ Qh ×ΛH

sup
(uh,u2,H)∈Vh×V2,H

b(uh,u2,H ; qh, ξH)

‖uh,u2,H‖V ×V2

≥ c‖qh, ξH‖Q×Λ.(69)

Lemma 4.6. Suppose that (38), (63) and (64) are satisfied. Then there is a con-
stant c such that for all (vh,v2,H , qh, ξH) ∈ Vh × V2,H ×Qh ×ΛH

sup
(uh,u2,H ,ph,λH)∈Vh×V2,H×Qh×ΛH

L(uh,u2,H , ph,λH ;vh,v2,H , qh, ξH)

|||uh,u2,H , ph,λH |||
≥c|||vh,v2,H , qh, ξH |||.(70)

Lemma 4.7. Suppose that (38), (63) and (64) are satisfied. Then there is a con-
stant c such that for all (uh,u2,H , ph,λH) ∈ Vh × V2,H ×Qh ×ΛH

sup
(vh,v2,H ,qh,ξH)∈Vh×V2,H×Qh×ΛH

L(uh,u2,H , ph,λH ;vh,v2,H , qh, , ξH)

|||vh,v2,H , qh, ξH |||
≥c|||uh,u2,H , ph,λH |||.(71)
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Theorem 4.8. Suppose that (38), (63) and (64) are satisfied. Given f ∈ (L2(Ω))d,
f2 ∈ (L2(Ω2))d and w ∈ (L2(Γ))d there is a unique solution (uh,u2,H , ph,λH) ∈
Vh × V2,H ×Qh ×ΛH to (43), with

|||uh,u2,H , ph,λH ||| ≤ C(‖f‖0,Ω + ‖f2‖0,Ω2
+ ‖w‖0,Γ).(72)

In the sequence, we will give a convergence analysis of the proposed DLM/FD
finite element method.

Theorem 4.9. Let (ũ,u2, p,λ) ∈ V × V2 × Q × Λ be the solution of (42), and
let (uh,u2,H , ph,λH) ∈ Vh × V2,H ×Qh ×ΛH be the solution of (43). Then there
exists a constant C independent of h and H such that

‖ũ− uh‖V + ‖u2 − u2,H‖V2 + ‖p− ph‖Q + ‖λ− λH‖Λ
≤C( inf

vh∈Vh
‖ũ− vh‖V + inf

v2,H∈V2,H

‖u2 − v2,H‖V2

+ inf
qh∈Qh

‖p− qh‖Q + inf
ξH∈ΛH

‖λ− ξH‖Λ).(73)

Proof. Subtracting (43) from (42) for all (vh,v2,H , qh, ξH) ∈ Vh×V2,H ×Qh×ΛH ,
we have

L(ũ− uh,u2 − u2,H , p̃− ph,λ− λH ;vh,v2,H , qh, ξH) = 0.(74)

For any (wh,w2,H , rh, ζH) ∈ Vh×V2,H×Qh×ΛH , denote e = ũ−wh, eh = uh−wh,
e2 = u2 − w2,H , e2,H = u2,H − w2,H , s = p − rh, sh = ph − rh, ε = λ − ζH ,
εH = λH − ζH . Then we have

L(e, e2, s, ε;vh,v2,H , ph, ξH) = L(eh, e2,H , sh, εH ;vh,v2,H , ph, ξH).(75)

From lemma 4.6 and the continuity of L(·, ·, ·, ·; ·, ·, ·, ·),

|||eh, e2,H , sh, εH |||

≤C sup
(vh,v2,H ,qh,ξH)∈Vh×V2,H×Qh×ΛH

L(eh, e2,H , sh, εH ;vh,v2,H , qh, ξH)

|||vh,v2,H , qh, ξH |||

=C sup
(vh,v2,H ,qh,ξH)∈Vh×V2,H×Qh×ΛH

L(e, e2, s, ε;vh,v2,H , qh, ξH)

|||vh,v2,H , qh, ξH |||

≤C sup
(vh,v2,H ,qh,ξH)∈Vh×V2,H×Qh×ΛH

|||e, e2, s, ε||||||vh,v2,H , qh, ξH |||
|||vh,v2,H , qh, ξH |||

=C|||e, e2, s, ε|||.(76)

Thus,

|||ũ− uh,u2 − u2,H , p̃− ph,λ− λH |||
=|||e− eh, e2 − e2,H , s− sh, ε− εH |||
≤|||e, e2, s, ε|||+ |||eh, e2,H , sh, εh|||
≤(1 + C)|||e, e2, s, ε|||
=(1 + C)|||ũ−wh,u2 −w2,H , p̃− rh,λ− ζH |||,(77)

which completes the proof of this theorem. �

In order to get an estimate for infξH∈ΛH ‖λ− ξH‖ we need to have a character-
ization for the Lagrange multiplier λ. First, in (28) we pick any v ∈ V such that



950 A. LUNDBERG, P. SUN, AND C. WANG

v = 0 outside Ω1. Integrating by parts gives

f̃ = −∇ · (β̃∇ũ) +∇p̃, in Ω1.(78)

Similarly, we can pick (v,v2) ∈ V × (H1
0 (Ω2))d such that v|Ω2 = v2 and v = 0

outside Ω2. Adding (28) to (30) and integrating by parts yields

f2 = −∇ · (β2∇u2) +∇p̃, in Ω2.(79)

Now, let v ∈ V0 and take v2 = v|Ω2
in Ω2. Adding (28) to (30) and imposing

both u2 = ũ|Ω2
and ∇u2 = ∇ũ|Ω2

weakly in Ω2 gives us

(β̃∇ũ,∇v)Ω1 − (p̃,∇ · v)Ω1 − (p̃,∇ · v)Ω2 + (β2∇u2,∇v)Ω2

=(f̃ ,v)Ω1
+ (f2,v)Ω2

+ (w,v)Γ,(80)

where the integrals over Ω have been split into Ω1 and Ω2. Integrating by parts,
we have

− (∇ · (β̃∇ũ),v)Ω1
+ (β̃∇ũ n1,v)Γ + (∇p̃,v)Ω1

− (p̃,v · n1)Γ + (∇p̃,v)Ω2

− (p̃,v · n2)Γ − (∇ · (β2∇u2),v)Ω2
+ (β2∇u2 n2,v)Γ = (f̃ ,v)Ω1

+ (f2,v)Ω2
+ (w,v)Γ.

(81)

By applying (78), (79), and n1 = −n2, we obtain

(β̃∇ũ n1,v)Γ + (β2∇u2 n2,v)Γ = (w,v)Γ.(82)

By applying (79) and (82) to (30), then

〈λ,v2〉Ω2
= −

(
β̃∇u2,∇v2

)
Ω2

+ (β2∇u2,v2)Ω2
− (f2,v2)Ω2

+ (f̃ ,v2)Ω2
− (w,v2)Γ

=
(
∇ · ( β̃

β2
β2∇u2),v2

)
Ω2

− (β̃∇u2 n2,v2)Γ

− (∇ · (β2∇u2),v2)Ω2 + (β2∇u2 n2,v2)Γ

− (f2,v2)Ω2
+ (f̃ ,v2)Ω2

− (w,v2)Γ − (∇p̃,v2)Ω2
+ (∇p̃,v2)Ω2

=
( β̃
β2
∇ · (β2∇u2),v2

)
Ω2

− (β̃∇u2 n2,v2)Γ + (β2∇u2 n2,v2)Γ

− (w,v2)Γ − (∇p̃,v2)Ω2
− (∇ · (β2∇u2),v2)Ω2

+ (∇p̃,v2)Ω2

− (f2,v2)Ω2 + (f̃ ,v2)Ω2 +
(
β2∇u2∇

β̃

β2
,v2

)
Ω2

=
( β̃
β2
∇ · (β2∇u2),v2

)
Ω2

− (β̃∇u2 n2,v2)Γ − (β̃∇ũ n1,v2)Γ − (∇p̃,v2)Ω2

+ (f̃ ,v2)Ω2 +
(
β2∇u2∇

β̃

β2
,v2

)
Ω2

= −
( β̃
β2
f2 − f̃ ,v2

)
Ω2

−
(

(1− β̃

β2
)∇p̃,v2

)
Ω2

− (β̃(∇u2 n2 +∇ũ n1),v2)Γ +
(
β2∇u2∇

β̃

β2
,v2

)
Ω2

.(83)



FICTITIOUS DOMAIN METHOD FOR STOKES INTERFACE PROBLEMS 951

We can write λ = λ1 + λ2 + λ3 where

〈λ1,v2〉Ω2
= −

( β̃
β2
f2 − f̃ ,v2

)
Ω2

,(84)

〈λ2,v2〉Ω2
= −(β̃(∇u2 −∇ũ)n2,v2)Γ,(85)

〈λ3,v2〉Ω2
=

(
− (1− β̃

β2
)∇p̃+ β2∇u2∇

β̃

β2
,v2

)
Ω2

.(86)

For the immersed interface, if the interface is of class C3 and the boundary ∂Ω is
of class C2, we have the following regularity result for the Stokes interface problem
[26]

u ∈ (H2(Ω1 ∪ Ω2))d ∩ (Hτ (Ω))d, p ∈ H1(Ω1 ∪ Ω2) ∩ L2(Ω).(87)

where, 1 < τ < 1.5. However, if the interface is only Lipschitz continuous then we
may have the following reduced regularity results

u ∈ (Hr(Ω1 ∪ Ω2))d ∩ (Hτ (Ω))d, p ∈ Hs(Ω1 ∪ Ω2) ∩ L2(Ω).(88)

Since the theory of regularity for the Stokes interface problem is not yet fully
developed, we make the assumption that 1 < r ≤ 2 and 0 < s ≤ 1 in order to
obtain an error convergence rate. The actual values for r and s will depend on the
jump coefficient β as well as the regularity of the interface. The numerical results in
Section 5 show such a reduced regularity for the problems we have chosen. Thanks
to the equivalence between Weak Form I and Weak Form II, we further have

ũ ∈ (Hr(Ω1 ∪ Ω2))d ∩ (Hτ (Ω))d, u2 ∈ (Hr(Ω2))d, p̃ ∈ Hs(Ω1 ∪ Ω2) ∩ L2(Ω).

(89)

Using these regularity results and the results from [1], we can see that there exist

ξ̃1H ∈ ΛH and ξ̃2H ∈ ΛH such that

‖λ1 − ξ̃1H‖Λ ≤ CH‖(β̃/β2)f2 − f‖(L2(Ω2))d ,(90)

‖λ2 − ξ̃2H‖Λ ≤ CHr−1(‖u|Ω1
‖(Hr(Ω1))d + ‖u2‖(Hr(Ω2))d).(91)

To get an error estimate for λ3, let πH be the L2 projection of V2 into V2,H ,
that is,

(πHw2,v2,H)Ω2
= (w2,v2,H)Ω2

, ∀v2,H ∈ V2,H .(92)

Then let ξ̃3H = PHλ3 ∈ ΛH satisfy

〈PHλ3,v2〉Ω2
=

(
πH(−(1− β̃

β2
)∇p̃+ β2∇u2∇

β̃

β2
),v2

)
Ω2

, ∀v2 ∈ V2,(93)
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so we have 〈λ3 − PHλ3,v2,H〉 = 0 for all v2,H ∈ V2,H . Then,

‖λ3 − PHλ3‖Λ = sup
v2∈V2

〈λ3 − PHλ3,v2〉
‖v2‖V2

= sup
v2∈V2

〈λ3 − PHλ3,v2 − πHv2〉
‖v2‖V2

= sup
v2∈V2

〈λ3,v2 − πHv2〉 − (πH(−(1− β̃
β2

)∇p̃+ β2∇u2∇ β̃
β2

),v2 − πHv2)Ω2

‖v2‖V2

= sup
v2∈V2

(−(1− β̃
β2

)∇p̃,v2 − πHv2)Ω2
+ (β2∇u2∇ β̃

β2
,v2 − πHv2)Ω2

‖v2‖V2

.(94)

By applying the Cauchy–Schwartz inequality and the standard L2 error estimate
for πH , we have

(−(1− β

β2
)∇p̃,v2 − πHv2)Ω2

≤ C‖∇p̃‖0,Ω2
‖v2 − πHv2‖0,Ω2

≤ CH‖p̃‖H1(Ω2)‖v2‖V2
,(95)

(β2∇u2∇
β̃

β2
,v2 − πHv2)Ω2 ≤ C‖∇

β̃

β2
‖∞,Ω2‖∇u2‖0,Ω2‖v2 − πHv2‖0,Ω2

≤ CH‖∇ β̃

β2
‖∞,Ω2

‖u2‖V2
‖v2‖V2

.(96)

If |∇(β̃/β2)| is bounded a.e. on Ω2, then there exists a constant C such that

‖λ3 − ξ̃3H‖Λ ≤ CH
(
‖p̃‖Hs(Ω2) + ‖u2‖V2

)
.(97)

By combining the error estimates for λ and using the standard interpolation error
estimates for ũ,u2, and p̃ in (73), we have the following a priori error estimate
theorem.

Theorem 4.10. Let (ũ,u2, p̃,λ) ∈ V × V2 × Q × Λ be the solution of (42), and
let (uh,u2,H , ph,λH) ∈ Vh×V2,H ×Qh×ΛH be the solution of (43). If conditions

(38), (63), and (64) are satisfied, and |∇(β̃/β2)| is bounded a.e. on Ω2, then

‖ũ− uh‖V + ‖u2 − u2,H‖V2 + ‖p̃− ph‖Q + ‖λ− λH‖Λ
≤C(hσ +Hσ)(‖ũ‖(Hτ (Ω))d + ‖u2‖(Hr(Ω2))d

+ ‖p̃‖Hs(Ω1∪Ω2) + ‖(β̃/β2)f2 − f̃‖(L2(Ω2))d),(98)

where the constants τ , r and s are from the reduced regularity (89) and σ = min{τ−
1, r − 1, s}.

Proof. It follows from the standard finite element interpolation error estimates that

inf
vh∈Vh

‖u− vh‖V ≤ Chτ−1‖ũ‖(Hτ (Ω))d(99)

inf
v2,H∈V2,H

‖u2 − v2,H‖V2
≤ Chr−1‖u2‖(Hr(Ω2))d(100)

inf
qh∈Qh

‖p− qh‖Q ≤ Chs‖p̃‖Hs(Ω1∪Ω2)(101)
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(a) (b) (c)

Figure 2. A example of the meshes. (a) Th(Ω), (b) TH(Ω2), (c) Tr(Ω2).

Combining (90), (91) and (97), we see that there exists ξ̃H = ξ̃1H+ξ̃2H+ξ̃3H ∈ ΛH ,
such that

inf
ξH∈ΛH

‖λ− ξH‖Λ ≤
∥∥∥λ− ξ̃H∥∥∥

Λ

≤CHr−1
(
‖(β̃/β2)f2 − f‖(L2(Ω2))d + ‖u‖(Hr(Ω))d

+‖u2‖(Hr(Ω2))d + ‖p̃‖Hs(Ω2)

)
.(102)

Thus, the aimed result (98) is a direct result of Theorem 4.9 and estimates (99),
(100), (101) and (102). �

5. Numerical experiments

In this section, we study the numerical performance of the DLM/FD finite el-
ement method, in which the P 2 finite element is used to discretize uh, u2,H ,λH ,
and the P 1 finite element is used to discretize ph.

Let Ω = (0, 1) × (0, 1), Ω2 is a circle with center (0.3, 0.3) and radius 0.1. The
meshes Th(Ω), TH(Ω2) are constructed independently, as depicted in Fig. 2 (a) and
(b). Since uh and λH are defined on different meshes, that is, Th(Ω) and TH(Ω2), we
employ the subgrid integration technique [27] to compute the Lagrange multiplier
terms that appear in the presented DLM/FD finite element method (34)-(37), such
as 〈λH ,vh〉Ω2

and 〈ξH ,uh〉Ω2
. To that end, a submesh is also constructed based

on Th(Ω), TH(Ω2), see e.g. Fig. 2 (c).

5.1. Example 1. In this example, we first verify the theoretical convergence rates
for the case of smooth exact solutions by appropriately choosing different parame-
ters β̃ = β1, β2 and functions f̃ = f1, f2 such that the exact solution of the Stokes
interface problem (1)-(8) in the entire domain Ω is

u = (sin (x− y) , sin (x− y))
T
, p = ex cos (y) .

Thus, r = 2 and s = 1 in the regularity result (89) for the above chosen solutions.
The numerical results of this example are reported in Tables 1-3 and Figures 3-5,

where the values u and v denote the components of the velocity vector u. From
those tables and figures, we observe the first order convergence rate for errors of
velocity in H1 norm and for errors of pressure in L2 norm, which is consistent with
that predicted by Theorem 4.10 when the exact solutions are smooth. In addition,
the convergence rate of velocity in L2 norm is shown as higher than first order in
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Table 1. Results of Example 1: β1 = 1, β2 = 10, h/H = 4.

h H ||u− uh||1,Ω ||u− uh||0,Ω ||v − vh||1,Ω ||v − vh||0,Ω ||p− ph||0,Ω
1/16 1/ 64 7.5603e-03 3.1589e-04 7.2792e-03 3.0614e-04 9.0696e-02
1/20 1/ 80 6.1280e-03 2.4491e-04 5.9890e-03 2.3886e-04 1.2997e-01
1/24 1/ 96 5.1337e-03 2.0517e-04 5.0780e-03 2.0024e-04 1.4636e-01
1/28 1/112 4.4040e-03 1.7375e-04 4.3398e-03 1.7151e-04 6.5847e-02
1/32 1/128 3.7961e-03 1.5159e-04 3.7528e-03 1.4978e-04 4.2513e-02

rate 0.99 1.05 0.95 1.02 1.13

Table 2. Results of Example 1: β1 = 1, β2 = 100, h/H = 4.

h H ||u− uh||1,Ω ||u− uh||0,Ω ||v − vh||1,Ω ||v − vh||0,Ω ||p− ph||0,Ω
1/16 1/ 64 1.4762e-02 5.7566e-04 1.4250e-02 5.5804e-04 3.3312e-01
1/20 1/ 80 9.5808e-03 3.7983e-04 9.3973e-03 3.7205e-04 2.9158e-01
1/24 1/ 96 1.0001e-02 3.4806e-04 9.7611e-03 3.3693e-04 4.2304e-01
1/28 1/112 7.4827e-03 2.8156e-04 7.4078e-03 2.7800e-04 2.4753e-01
1/32 1/128 6.6793e-03 2.4661e-04 6.5439e-03 2.4306e-04 1.6566e-01

rate 1.07 1.17 1.05 1.15 0.83

Table 3. Results of Example 1: β1 = 1, β2 = 1000, h/H = 4.

h H ||u− uh||1,Ω ||u− uh||0,Ω ||v − vh||1,Ω ||v − vh||0,Ω ||p− ph||0,Ω
1/16 1/ 64 2.0237e-02 7.2171e-04 1.9445e-02 6.7732e-04 3.1828e+00
1/20 1/ 80 1.0129e-02 4.0190e-04 9.9393e-03 3.9396e-04 2.7095e+00
1/24 1/ 96 1.5544e-02 4.0347e-04 1.4321e-02 3.8927e-04 2.2237e+00
1/28 1/112 1.0343e-02 3.2501e-04 1.0011e-02 3.1595e-04 1.9462e+00
1/32 1/128 8.4952e-03 2.7501e-04 8.1013e-03 2.6717e-04 1.6841e+00

rate 1.00 1.26 1.02 1.23 0.93

these tables, which is however not covered by our current theoretical results, will
be explained at below together with Example 2.

5.2. Example 2. In this example, we choose the same geometric settings as that
of Example 1, but f1 = f2 = 1, w = 0 and different parameters β̃, β̃2, thus the exact
solution of this example is not prescribed and non-smooth. Then we take the P 2P 1

mixed finite element solution as the “numerical exact solution” of this example,
which is obtained based on a locally refined and body-fitted mesh with 30329 nodes
and 60304 triangular elements. Obviously, the regularities of such non-smooth
solutions are reduced from the case of smooth solutions, i.e., 1 < r < 2, 0 < s < 1
in (89).

The numerical results of this example are reported in Tables 4-6 and Figures 6-8.
We observe that the convergence rate in H1 errors of velocity ranges between 0.25
and 0.6, which is consistent with the reduced regularity of the exact solution. It is
also seen that the order of convergence shown in Table 5 is even lower than that
shown in Table 6 in which the solution is expected to be less regular as a consequence
of the larger jump ratio between the viscosities. To improve and also to explain this
numerical phenomenon, a finer mesh will help considering that we are comparing
with a “numerical exact solution” in order to obtain a reasonable convergence rate,
which is however limited by our computer resources available. On the other hand,
it is always crucial how to choose an optimal space for the Lagrange multiplier
regarding a different jump ratio when the mesh is non-matching, especially. In this
paper, we define the discrete space of Lagrange multiplier on TH(Ω2) instead of
introducing a new finite element mesh for the Lagrange multiplier in Ω2, which
can produce a satisfied convergence rate to match with our theoretical results but
may not be optimal corresponding to different jump ratios. Thus, our numerical
experiments may show a possibly lower order of convergence for the case with
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Figure 3. Loglog convergence plots of Example 1 (β1 = 1, β2 =
10, h/H = 4).

a smaller jump ratio of viscosities, but the overall numerical convergence results
basically satisfy our theoretical results relative to the regularity constraints of the
original model. We will continue our research on this direction in our future work
to further improve the convergence behavior of the Lagrange multiplier in regard
to different jump ratios of viscosities.
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Figure 4. Loglog convergence plots of Example 1 (β1 = 1, β2 =
100, h/H = 4).

While not covered by the theoretical results given in this paper, it can be shown
using Nitsche’s technique that the convergence rate of velocity in L2 norm is half
an order higher than that in H1 norm, as seen in the numerical results. Whereas,
such higher-order convergence phenomena in L2 norm is not reflected on Example
1, where the convergence rate of velocity in both H1 norm and L2 norm are all first
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Figure 5. Loglog convergence plots of Example 1 (β1 = 1, β2 =
1000, h/H = 4).

order. Additionally, in Example 2 we also notice a significantly higher convergence
rate in pressure than that is predicted by our theory.

Note that in both examples, we always let H < h since this mesh ratio can give
us better accuracy in numerical experiments. It is reasonable because a smaller
mesh size H can define more Lagrange multipliers in Ω2, further, introduce more
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Table 4. Results of Example 2: β1 = 1, β2 = 10, h/H = 4.

h H ||u− uh||1,Ω ||u− uh||0,Ω ||v − vh||1,Ω ||v − vh||0,Ω ||p− ph||0,Ω
1/16 1/ 64 8.5369e-02 1.5585e-03 8.6160e-02 1.5568e-03 4.6481e+00
1/24 1/ 96 5.8084e-02 8.4369e-04 5.8416e-02 8.4364e-04 2.3801e+00
1/32 1/128 6.2376e-02 7.8786e-04 6.2016e-02 7.8807e-04 6.6086e-01
1/40 1/160 5.6614e-02 6.1394e-04 5.6600e-02 6.1400e-04 8.8549e-02

rate 0.41 0.97 0.42 0.96 4.13

Table 5. Results of Example 2: β1 = 1, β2 = 100, h/H = 4.

h H ||u− uh||1,Ω ||u− uh||0,Ω ||v − vh||1,Ω ||v − vh||0,Ω ||p− ph||0,Ω
1/16 1/ 64 2.2787e-01 5.9846e-03 2.2970e-01 5.9832e-03 5.1065e+00
1/24 1/ 96 1.7219e-01 3.7622e-03 1.7438e-01 3.7624e-03 3.1313e-01
1/32 1/128 1.8279e-01 3.4502e-03 1.8187e-01 3.4505e-03 2.1628e-01
1/40 1/160 1.8092e-01 2.9917e-03 1.8095e-01 2.9921e-03 1.8788e-01

rate 0.23 0.73 0.25 0.73 3.59

Table 6. Results of Example 2: β1 = 1, β2 = 1000, h/H = 4.

h H ||u− uh||1,Ω ||u− uh||0,Ω ||v − vh||1,Ω ||v − vh||0,Ω ||p− ph||0,Ω
1/16 1/ 64 3.4946e-01 1.0268e-02 3.5008e-01 1.0270e-02 1.9852e+00
1/24 1/ 96 2.7260e-01 6.5404e-03 2.7456e-01 6.5401e-03 5.5888e-01
1/32 1/128 2.7596e-01 5.7744e-03 2.7400e-01 5.7746e-03 5.4940e-01
1/40 1/160 2.4382e-01 4.2110e-03 2.4380e-01 4.2111e-03 2.4954e-01

rate 0.36 0.92 0.37 0.92 2.08

constraints to the DLM/FD scheme through Lagrange multipliers to guarantee the
equality between the fictitious fluid velocity and structure velocity. The stability
and the convergence of the DLM/FD scheme are then more ensured in contrast
with a coarser mesh in Ω2.

As a complement, considering that the ideal convergence rate of DLM/FD finite
element method is about first order for velocity in H1 norm and pressure in L2 norm
in the case of smooth solution, and one-half order lower in the case of non-smooth
solution, we may also adopt a lower order stable Stokes-pair (such as the MINI
element) instead of the P 2P 1 Taylor-Hood element to obtain the same convergence
result but with less computational cost in our numerical experiments, which will
be carried out in our next numerical study for DLM/FD method on other interface
problems such as FSIs.

6. Conclusion and future work

In this paper we develop a type of DLM/FD finite element method for the Stokes
interface problem, and define a mixed finite element approximation scheme to nu-
merically solve the problem. In analyzing the problem, we look at the case where
a sub-domain is completely immersed inside a larger domain, and the viscosity co-
efficient β1 in the outer domain is less than the viscosity β2 in the inner domain,
as well as the case where the interface between the two fluids stretches across the
whole domain. In either case, there is a jump in the viscosity coefficient across the
interface. With the restriction β1 < β2, we are able to prove that the developed
DLM/FD method is well posed at both the continuous and discrete levels, and the
corresponding finite element method gives an optimal error estimate relative to the
regularity constraints of the original model. Numerical experiments confirm the
obtained theoretical results.
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Figure 6. Loglog convergence plots of Example 2 (β1 = 1, β2 =
10, h/H = 4).

In future work, we will apply the DLM/FD method and analysis developed in
this paper to the time dependent Stokes interface problem, with the goal of moving
towards fluid structure interaction problems.
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Figure 7. Loglog convergence plots of Example 2 (β1 = 1, β2 =
100, h/H = 4).
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