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NONSTANDARD FINITE DIFFERENCE METHOD FOR

NONLINEAR RIESZ SPACE FRACTIONAL

REACTION-DIFFUSION EQUATION

LI CAI, MEIFANG GUO∗, YIQIANG LI∗, WENJUN YING, HAO GAO, AND XIAOYU LUO

Abstract. In this paper, a modified nonstandard finite difference method for the two-dimensional
Riesz space fractional reaction-diffusion equations is developed. The space fractional derivative

is discretized by the shifted Grünwald-Letnikov method and the nonlinear reaction term is ap-

proximated by Taylor formula instead of Micken’s. Multigrid method is introduced to reduce the
computation time of the traditional Gauss-Seidal method. The stability and convergence of the

nonstandard implicit difference scheme are strictly proved. The method is extended to simulate

the fractional FitzHugh-Nagumo model. Numerical results are provided to verify the theoretical
analysis.

Key words. Riesz fractional derivative, nonstandard finite difference method, shifted Grünwald-
Letnikov method.

1. Introduction

Reaction-diffusion models are widely used in patten formulae in biology, chem-
istry, physics and engineering [26]. The computation of electrical wave propagation
in the heart is one of the most important applications of reaction-diffusion models
in physiology [28]. The simplest two-dimensional reaction-diffusion model can be
described by

(1)
∂u

∂t
= ∇ · (K∇u) + f(u),

where K is the diffusion coefficient and f(u) is a nonlinear function representing
the reaction source, u is a normalized transmembrane potential. If f(u) = u(1 −
u)(u− a), Eq. (1) reduces to the Nagumo reaction-diffusion equation [6, 24].

Over the last few decades, fractional calculus has become famous of its ability
to model anomalous diffusion phenomena, which has attracted more and more
attention from researchers in various fields of science and engineering. Compared
with the traditional integer order, fractional-derivative models has the advantages of
describing the memory and hereditary properties of various processes. By applying
the space Riesz fractional operator [8, 22] to the Eq. (1), the fractional system is
given as following

(2)
∂u

∂t
= KRαu+ f(u).

Here Rα = (Rαx , R
α
y ) = (∂α/∂|x|α,∂α/∂|y|α) is the Riesz fractional order operator

Received by the editors October 25, 2018.
2000 Mathematics Subject Classification. 65M06, 65M12.
*Corresponding authors.

925



926 L. CAI, M.F. GUO, Y.Q. LI, W.J. YING, H. GAO, AND X.Y. LUO

with fractional power 1 < α ≤ 2. Due to the extensive applications of fractional-
derivative models, it is becoming increasingly important to find the effective meth-
ods to solve them. The methods include several analytical techniques, such as the
Fourier transform method, the Laplace transform method, and the Green func-
tion method [25]. Some numerical methods are also developed. For example,
Meerschaert [16] obtained the solution of the one-component fractional reaction-
diffusion equation by using a finite difference method; Liu [9, 10] proposed finite
difference method (FDM) and alternating direction implicit (ADI) method for the
two-dimension space fractional reaction-diffusion equation, and verified the stability
as well as convergence; Zeng [31] developed a Crank-Nicolson ADI spectral method
for fractional diffusion equations; Cai [4] proposed a high-resolution semi-discrete
Hermite central-upwind scheme for multidimensional reaction-diffusion equation.

In addition to standard finite difference methods, numerical solution can also be
obtained by applying the nonstandard finite difference method (NSFD) [18], which
has the following advantages. Firstly, the NSFD can be applied to the structurally
unstable planar dynamical system, for example, the Lotka-Volterra equations [17].
Secondly, the NSFD preserves the physical properties of the epidemic model and the
numerical results are qualitatively equivalent to the real dynamics of the epidemic
model [23]. Thirdly, a scheme based on NSFD is shown to be free of numerical
instabilities and contrived behaviours regardless of the step-size used in the numer-
ical simulations [7]. Finally, the NSFD has been applied to the fractional order
ODE [29] and PDE [13], and the results are in good agreement with the already
existing ones.

In this paper, we consider the following 2-D Riesz space fractional reaction-
diffusion equation (2D-RFRDE) on a finite domain Ω = [a, b]× [c, d] as

(3)
∂u

∂t
= kx

∂α1u

∂|x|α1
+ ky

∂α2u

∂|y|α2
+ f(u, x, y, t) (x, y, t) ∈ Ω× (0, T ),

with initial condition:

(4) u(x, y, 0) = φ(x, y) (x, y) ∈ Ω,

and Dirichlet boundary conditions:

(5)
u(a, y, t) = 0, u(b, y, t) = 0,
u(x, c, t) = 0, u(x, d, t) = 0.

Here 1 < α1, α2 ≤ 2, and kx, ky > 0 are diffusion coefficients. The space Riesz

fractional derivative operator ∂α1u
∂|x|α1 in [15] is defined as

(6)
∂α1u

∂|x|α1
= − 1

2 cos(πα1/2)

(
∂α1u

∂+xα1
+

∂α1u

∂−xα1

)
.

Here the left-handed (+) and the right-handed (−) fractional derivative are defined

later. Similarly, we can define the space Riesz fractional derivative ∂α2u
∂|y|α2 of order α2

with respect to y. An improved nonstandard finite difference scheme is constructed
to obtain the numerical solution of Eqs. (3)-(5).

The outline of this paper is showed as follows. In Section 2, we introduce some
notations and lemmas which are needed later on. In Section 3, the nonstandard
finite difference (NSFD) method for the 2D-RFRDE is proposed. The stability
and convergence are discussed in Section 4. Some numerical results are given in
Section 5. we draw the conclusions in Section 6.
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2. Preliminaries

In this section, we introduce some notations and lemmas required later.

2.1. The Shifted Grünwald-Letnikov Derivative. Fractional derivatives com-
monly include the Riemann-Liouville definition, the Grünwald-Letnikov definition
and the Caputo definition. There exists a link between the first two definitions
to differentiation of arbitrary real order. Let us suppose that the function f(x) is
n− 1 continuously differentiable in the interval [a, b], and that f (n)(x) is integrable
in [a, b]. Then for every α (0 ≤ n − 1 < α < n) the Riemann-Liouville derivative
exists and is equivalent to the Grünwald-Letnikov derivative [11,12,25].

The relationship between the Riemann-Liouville and Grünwald-Letnikov defini-
tions is important for the numerical approximation of fractional-order differential
equations and formulation of applied problems. Generally, the Riemann-Liouville
definitions are used in the problem formulation, and then the Grünwald-Letnikov
definitions are applied to obtain the numerical solution [11]. While the Caputo
definition is often used to approximate the time derivative.

The left-handed (+) and the right-handed (−) fractional derivative in Eq. (6)
are the Riemann-Liouville fractional derivatives of order α [25]

(Dα
a+f)(x) =

dαf(x)

d+xα
=

1

Γ (n− α)

dn

dxn

∫ x

a

f(ξ)

(x− ξ)α+1−n dξ,

(Dα
b−f)(x) =

dαf(x)

d−xα
=

(−1)
n

Γ (n− α)

dn

dxn

∫ b

x

f(ξ)

(ξ − x)
α+1−n dξ,

(7)

where n is an integer such that n− 1 < α ≤ n and Γ(·) is the gamma function. If
α = m and m is an integer, then Eq. (7) reduce to the standard integer derivatives

(Dm
a+f)(x) =

dmf(x)

dxm
, (Dm

b−f)(x) = (−1)m
dmf(x)

dxm
=
dmf(x)

d(−x)
m .

The Grünwald-Letnikov definitions for the left-handed and the right-handed frac-
tional derivative are defined by

dαf(x)

d+xα
= lim
M+→∞

1

h+
α

M+∑
k=0

g(k)
α f(x− kh),

dαf(x)

d−xα
= lim
M−→∞

1

h−
α

M−∑
k=0

g(k)
α f(x+ kh),

(8)

where M+, M− are positive integers, h+ = (x − a)/M+ and h− = (b − x)/M−.
In this paper, we introduced the shifted Grünwald-Letnikov schemes [14, 15] to
discretize the space fractional derivative:

dαf(x)

d+xα
= lim
M+→∞

1

h+
α

M++p∑
k=0

g(k)
α f(x− (k − p)h),

dαf(x)

d−xα
= lim
M−→∞

1

h−
α

M−+p∑
k=0

g(k)
α f(x+ (k − p)h),

(9)

where p is a nonnegative integer and can be determined by the Theorem 2.4 in [15].
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The normalized Grünwald weights are given by

g0
α = 1, g(k)

α = (−1)k
(
α
k

)
= −g(k−1)

α

α− k + 1

k
(k = 1, 2, 3, ...).

Lemma 2.1. The coefficients g
(k)
α satisfy that

(1) g0
α = 1, g

(1)
α = −α < 0, and g

(k)
α > 0 (k 6= 1),

(2)
∑∞
k=0 g

(k)
α = 0, and

∑l
k=0 g

(k)
α < 0 (l = 1, 2, ...).

Proof of Lemma 2.1 is similar to [32]. The analytic definitions in Eq. (7) are
often used in the formulation of the fractional PDE (FPDE), while the Grünwald-
Letnikov definitions in Eq. (8) are used to obtain the discrete scheme of the FPDE.
The shifted Grünwald estimation in Eq. (9) generally provides a more accurate
approximation than the standard (unshifted) Grünwald estimate in Eq. (8).

2.2. The Nonstandard Finite Difference Method (NSFDM). These rules
can provide guidance for the construction of nonstandard finite difference models
of differential equations. There are two important points related to the application
of these rules. Firstly, for a given differential equation, the rules generally permit
a number of nonstandard schemes. In other words, at the present time, unique-
ness does not exist in the determination of nonstandard schemes. Secondly, these
schemes give difference equations which are superior to conventional ones for the
purpose of providing numerical solutions.

Consider a first-order scalar equation of dudt = f(u). The corresponding nonstan-
dard scheme is taken to be

(10)
uk+1 − uk
ϕ(τ)

= f(uk, uk+1),

where ϕ is given by

(11) ϕ(τ,R∗) =
1− e−R∗τ

R∗
.

Here τ is the time step, the value of R∗ is determined as follows. Firstly, calculate
the fixed-points of f(ū) = 0, assume it has I−real solutions and denote them by
{ū(i); i = 1, 2, . . . , I}. R∗ is defined by

(12) R∗ = max{|Ri| ; i = 1, 2, . . . , I},

where Ri = f ′(ūi). Note that ϕ(τ,R∗) has the properties

(13) ϕ = τ −R∗τ2 +O(R∗2τ3).

This is in agreement with the Rule 2. In order to satisfy the Rule 3, the nonlinear
term in the right hand side of Eq. (1) must be replaced by nonlocal discrete form,
such as

u2 → uk+1uk, u
3 → uk+1(uk)2.(14)

Another nonlocal discrete approximations for these nonlinear terms were given by
Micken et al. [1, 19, 27]. In this paper, the nonlocal discrete approximation of the
nonlinear term f(u, x, y, t) were obtained using the Taylor formula [30], which has
advantage of specific extension compared with the Mincken’s while satisfying the
Rule 3.
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3. The Discrete Scheme of The 2D-RFRDE

In this section, we present the details of NSFDM. In order to obtain the numerical
discrete scheme, the space domain Ω = [0, Dx] × [0, Dy] and the time interval
[0, T ] are divided as following. For integers m1 and m2, let hx = Dx/m1 and
hy = Dy/m2 be the spatial grid size in the x-direction and y-direction, respectively.
Then xi = ihx (i = 0, 1, ...,m1) and yj = jhy (j = 0, 1, ...,m2). Let τ = T/n be the
time step, then tk = kτ (k = 0, 1, ..., n). Define uki,j as the numerical approximation

to u(xi, yj , tk). The initial conditions are u0
i,j = φ(xi, yj).

To approximate the first order time derivative and satisfy the Rule 2, we have

(15)
du(t)

dt
→ uk+1 − uk

ϕ(τ)
.

Here the denominator function ϕ(τ) can be determined by Eqs. (12) in Section 2.
Here we choose

(16) ϕ(τ) = 1− e−τ .

By using the shifted Grünwald-Letnikov schemes in Section 2 on the finite do-
main Ω with p = 1, the Riesz fractional derivative can be discretized as

∂α1u

∂+xα1
|(xi,yj ,tn) =

1

(hx)
α1

i+1∑
l=0

g(l)
α1
u(xi−l+1,yj , tn) +O(hx),

∂α1u

∂−xα1
|(xi,yj ,tn) =

1

(hx)
α1

m1−i+1∑
l=0

g(l)
α1
u(xi+l−1,yj , tn) +O(hx).

(17)

The similar expressions can be obtained in the y-direction.
Here, the Taylor formula is used to approximate the nonlinear term. Assuming

f(u) ∈ C1(D) (D is a proper close domain), we have the following expression

f(u(xi, yj , tn+1)) = f(u(xi, yj , tn))+

f ′(u(xi, yj , tn))(u(xi, yj , tn+1)− u(xi, yj , tn)) +O(τ2).
(18)

Substituting Eqs. (15)-(18) into Eq. (2), we obtain the discrete form of Eq. (2):

u(xi, yj , tn+1)− u(xi, yj , tn)

ϕ(τ)

= −r1

(
i+1∑
l=0

g(l)
α1
u(xi−l+1, yj , tn+1) +

m1−i+1∑
l=0

g(l)
α1
u(xi+l−1, yj , tn+1)

)

− r2

(
j+1∑
l=0

g(l)
α2
u(xi, yj−l+1, tn+1) +

m2−j+1∑
l=0

g(l)
α2
u(xi, yj+l−1, tn+1)

)
+ f ′(u(xi, yj , tn), xi, yj , tn) [u(xi, yj , tn+1)− u(xi, yj , tn)]

+ f(u(xi, yj , tn), xi, yj , tn) +Ri,j,n+1,

(19)

where cα = 1/[2 cos(πα/2)] < 0, r1 = kxcα1
/(hx)α1 , r2 = kycα2

/(hy)α2 , and
Ri,j,n+1 = O(hx + hy + τ). Hence, we have the nonstandard implicit difference
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scheme

un+1
i,j − ϕ(τ)f ′(uni,j)u

n+1
i,j + ϕ(τ)r1

(
i+1∑
l=0

g(l)
α1
un+1
i−l+1,j +

m1−i+1∑
l=0

g(l)
α1
un+1
i+l−1,j

)

+ ϕ(τ)r2

(
j+1∑
l=0

g(l)
α2
un+1
i,j−l+1 +

m2−j+1∑
l=0

g(l)
α2
un+1
i,j+l−1

)
= uni,j − ϕ(τ)f ′(uni,j)u

n
i,j + ϕ(τ)fni,j ,

(20)

with the initial conditions

u0
i,j = φi,j = φ(xi, yj),

un0,j = unm1,j = uni,0 = uni,m2
= 0.

(21)

Eqs. (20)-(21) can be rewritten in the matrix-vector form

(22) Aun = bn,

where un = (un1,1, u
n
1,2, ..., u

n
1,m2−1, u

n
2,1, ..., u

n
m1−1,m2−1), and bn is a (m1−1)(m2−

1) dimensional column vector. The coefficient matrix A is a (m1 − 1)(m2 − 1) ×
(m1−1)(m2−1) dense matrix because the fractional derivative is nonlocal. In this
paper, the multigrid method [3] is introduced to solve the linear systerm (23) to
reduce the computation time.

4. Stability and Convergence

In this section, we analyze the stability and convergence of the nonstandard
implicit difference scheme, respectively. We strictly prove that the scheme (20)-
(21) is stable and convergent.

Let

L1u
n+1
i,j = un+1

i,j + ϕ(τ)r1

(
i+1∑
l=0

g(l)
α1
un+1
i−l+1,j +

m1−i+1∑
l=0

g(l)
α1
un+1
i+l−1,j

)

+ ϕ(τ)r2

(
j+1∑
l=0

g(l)
α2
un+1
i,j−l+1 +

m2−j+1∑
l=0

g(l)
α2
un+1
i,j+l−1

)
.

Hence, Eq. (20) can be rewritten as

L1u
n+1
i,j −ϕ(τ)f ′(uni,j)u

n+1
i,j =

uni,j − ϕ(τ)f ′(uni,j)u
n
i,j + ϕ(τ)f(uni,j), n = 0, 1, 2, ..., N.

(23)

Let un = [un1,1, u
n
2,1, ..., u

n
m1−1,m2−1]T and ‖un‖∞ =

∣∣uni0,j0∣∣
= max

1≤i≤m1−1,1≤j≤m2−1

∣∣uni,j∣∣, we have the following theorems.

Theorem 4.1 (Stability). Suppose that uni,j is the numerical solution computed by

Eqs. (20)-(21), f(u) ∈ C1(D) with H1 = max
u∈Ω
|f(u)|, H2 = max

u∈Ω
|f ′(u)|, and rβ =

min{r1βx, r2βy}. Assume τ < 1/2(H2 − 2rβ) with 2rβ < H2. The nonstandard
implicit difference scheme defined by (20)-(21) is stable:

‖un‖∞ ≤ C
(∥∥u0

∥∥
∞ + TH1

)
(n = 0, 1, 2, ..., N),

where C is a positive number independent of hx, hy, and τ .
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Proof. From Lemma 2.1,
n∑
l=0

g
(l)
α < 0 and

n∑
l=0

g
(l)
α ≤

m∑
l=0

g
(l)
α (n ≤ m). Since r1, r2 <

0, we have

r1

(
i+1∑
l=0

g(l)
α1

+

m1−i+1∑
l=0

g(l)
α1

)
≥ 2r1

m1∑
l=0

g(l)
α1

= r1βx,

r2

(
j+1∑
l=0

g(l)
α2

+

m2−j+1∑
l=0

g(l)
α2

)
≥ 2r2

m2∑
l=0

g(l)
α2

= r2βy.

By using f(u) ∈ C1(D) with |f(u)| ≤ H1, |f ′(u)| ≤ H2, and rβ = min{r1βx, r2βy},
we deduce ∣∣uni0,j0∣∣+ ϕ(τ) (2rβ −H2)

∣∣uni0,j0∣∣
=
∣∣[1 + ϕ(τ)2rβ]uni0,j0

∣∣− ϕ(τ)H2

∣∣uni0,j0∣∣
≤
∣∣uni0,j0 + ϕ(τ) (2rβ −H2)uni0,j0

∣∣
≤
∣∣uni0,j0 + ϕ(τ)(r1βx + r2βy)uni0,j0 − ϕ(τ)H2u

n
i0,j0

∣∣
≤
∣∣L1u

n
i0,j0 − ϕ(τ)f ′(un−1

i0,j0
)uni0,j0

∣∣
=
∣∣un−1
i0,j0
− ϕ(τ)f ′(un−1

i0,j0
)un−1
i0,j0

+ ϕ(τ)f(un−1
i0,j0

)
∣∣ .

If 2rβ ≥ H2, we can see that∣∣uni0,j0∣∣ ≤ C (∣∣un−1
i0,j0

∣∣+ ϕ(τ)
∣∣f ′(un−1

i0,j0
)un−1
i0,j0

∣∣+ ϕ(τ)
∣∣f(un−1

i0,j0
)
∣∣) .

If 2rβ < H2, the inequality also holds for τ < 1/2(H2− 2rβ) , because of ϕ(τ) < τ .
Hence, we obtain

‖un‖∞ ≤ C
(∣∣un−1

i0,j0

∣∣+ ϕ(τ)
∣∣f ′(un−1

i0,j0
)un−1
i0,j0

∣∣+ ϕ(τ)
∣∣f(un−1

i0,j0
)
∣∣)

≤ C[1 + ϕ(τ)H2]
∥∥un−1

∥∥
∞ + ϕ(τ)H1

≤ C[1 + ϕ(τ)H2]n
∥∥u0

∥∥
∞ + C

n−1∑
k=0

[1 + ϕ(τ)H2]
k
ϕ(τ)H1

≤ Cenϕ(τ)H2
∥∥u0

∥∥
∞ + Cnϕ(τ)H1[1 + ϕ(τ)H2]

n

≤ CeTH2
(∥∥u0

∥∥
∞ + TH1

)
≤ C

(∥∥u0
∥∥
∞ + TH1

)
.

�

The convergence of the nonstandard implicit difference scheme is verified as
follows. We first introduce the theoretical concept about locally Lipschitz continuity
[2].

Theorem 4.2 (Lagrange mean value theorem). Suppose f is a function defined on
a closed interval [a, b] (with a < b), such that the following two conditions hold:

(1) f is a continuous function on the closed interval [a, b],
(2) f is a differentiable function on the open interval (a, b).

Then, there exists ξ in the open interval (a, b) such that

f(b)− f(a) = f ′(ξ)(b− a).

Assume ũni,j = u(xi, yj , tn) is the exact solution of Eq. (20) at mesh point
(xi, yj , tn), and uni,j is the numerical solution of Eqs. (20)-(21). Define ηni,j =
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u(xi, yj , tn) − uni,j and yn = [ηn1,1, η
n
2,1, ..., η

n
m1−1,m2−1]T . Let ‖yn‖∞ =

∣∣ηni0,j0∣∣ =

max
1≤i≤m1−1,1≤j≤m2−1

∣∣ηni,j∣∣, we obtain the following result.

Theorem 4.3 (Convergence). Suppose that f(u) ∈ C1(D) with H1 = max
u∈Ω
|f(u)|,

H2 = max
u∈Ω
|f ′(u)|, and rβ = min{r1βx, r2βy}.

If we further assume τ < 1/2(H2−2rβ) with 2rβ < H2, then there exists positive
constants C1 and C2 independent of hx, hy, and τ , such that∣∣u(xi, yj , tn)− uni,j

∣∣ ≤ C1τe
(1+2τH2) + C2(τ + hx + hy)

for all i, j, n.

Proof. Since ũni,j satisfies

L1ũ
n
i,j − ϕ(τ)f ′(ũn−1

i,j )ũni,j = ũn−1
i,j − ϕ(τ)f ′(ũn−1

i,j )ũn−1
i,j

+ ϕ(τ)f(ũn−1
i,j ) + ϕ(τ)Rni,j , n = 0, 1, 2, ..., N.

And uni,j is the numerical solution of Eq. (23), the numerical error ηni,j satisfies

L1η
n
i,j − ϕ(τ)

[
f ′(ũn−1

i,j )ũni,j − f ′(un−1
i,j )uni,j

]
= ηn−1

i,j − ϕ(τ)
[
f ′(ũn−1

i,j )ũn−1
i,j − f

′(un−1
i,j )un−1

i,j

]
+ ϕ(τ)

[
f(ũn−1

i,j )− f(un−1
i,j )

]
+ ϕ(τ)Rni,j .

(24)

By using the triangle inequality, it yields∣∣f ′(ũn−1
i,j )ũni,j − f ′(un−1

i,j )uni,j
∣∣ ≤ H2

∣∣ηni,j∣∣+ 2H2

∣∣uni,j∣∣ ,∣∣f ′(ũn−1
i,j )ũn−1

i,j − f
′(un−1

i,j )un−1
i,j

∣∣ ≤ 2H2

∣∣un−1
i,j

∣∣+H2

∣∣ηn−1
i,j

∣∣ .
Therefore, the left-side term of Eq. (24) can be written as∣∣L1η

n
i,j − ϕ(τ)

[
f ′(ũn−1

i,j )ũni,j − f ′(un−1
i,j )uni,j

]∣∣
≥
∣∣L1η

n
i,j

∣∣− ϕ(τ)
∣∣[f ′(ũn−1

i,j )ũni,j − f ′(un−1
i,j )uni,j

]∣∣
≥
∣∣ηni,j + ϕ(τ)(r1βx + r2βy)ηni,j

∣∣− ϕ(τ)
[
H2

∣∣ηni,j∣∣+ 2H2

∣∣uni,j∣∣]
≥
∣∣ηni,j + 2ϕ(τ)rβηni,j

∣∣− ϕ(τ)H2

∣∣ηni,j∣∣− 2ϕ(τ)H2

∣∣uni,j∣∣
=
∣∣ηni,j∣∣+ ϕ(τ) (2rβ −H2)

∣∣ηni,j∣∣− 2ϕ(τ)H2

∣∣uni,j∣∣ .
From Theorem 4.2, there exists a λ ∈ D such that the right-side term of Eq. (24)
satisfies ∣∣ηn−1

i,j − ϕ(τ)
[
f ′(ũn−1

i,j )ũn−1
i,j − f

′(un−1
i,j )un−1

i,j

]
+ϕ(τ)

[
f(ũn−1

i,j )− f(un−1
i,j )

]
+ ϕ(τ)Rni,j

∣∣
≤
∣∣ηn−1
i,j

∣∣+ ϕ(τ)
∣∣f ′(ũn−1

i,j )ũn−1
i,j − f

′(un−1
i,j )un−1

i,j

∣∣
+ ϕ(τ)

∣∣f ′(λ)ηn−1
i,j

∣∣+ ϕ(τ)C∗(hx + hy + τ)

≤ [1 + 2ϕ(τ)H2]
∣∣ηn−1
i,j

∣∣+ 2ϕ(τ)H2

∣∣un−1
i,j

∣∣+ ϕ(τ)C∗(hx + hy + τ).

Thus, by induction∣∣ηni,j∣∣+ ϕ(τ) (2rβ −H2)
∣∣ηni,j∣∣− 2ϕ(τ)H2

∣∣uni,j∣∣
≤ [1 + 2ϕ(τ)H2]

∣∣ηn−1
i,j

∣∣+ 2ϕ(τ)H2

∣∣un−1
i,j

∣∣+ ϕ(τ)C∗(hx + hy + τ).

If 2rβ ≥ H2, we have∣∣ηni0,j0 ∣∣ ≤ C [1 + 2ϕ(τ)H2]
∣∣ηn−1
i0,j0

∣∣+2Cϕ(τ)H2

(
‖un‖∞ +

∥∥un−1
∥∥
∞

)
+ ϕ(τ)C∗(hx + hy + τ).
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If 2rβ < H2, the inequality also holds for τ < 1/2(H2 − 2rβ). By applying the
result of Theorem 4.1, we have

‖yn‖∞ ≤ C [1 + 2ϕ(τ)H2]
∥∥yn−1

∥∥
∞ + ϕ(τ)H0 + ϕ(τ)C∗(hx + hy + τ)

≤ C[1 + 2ϕ(τ)H2]n
∥∥y0

∥∥
∞ + Cϕ(τ)H0

n−1∑
k=0

[1 + ϕ(τ)(H2+Lmax)]
k

+

n−1∑
k=0

[1 + 2ϕ(τ)H2]
k
C∗ϕ(τ)(τ + hx + hy).

Here, H0 = 4C2H2

(∥∥u0
∥∥
∞ + TH1

)
. Since y0 = 0 (because the initial conditions

at the grid points match for the exact and the discretized equation), we deduce
that

‖yn‖∞ ≤ Cϕ(τ)H0e
[1+2ϕ(τ)H2] + [1 + 2ϕ(τ)H2]nnτC∗(τ + hx + hy)

≤ CH0τe
[1+2ϕ(τ)H2] + e2nτH2nτC∗(τ + hx + hy)

≤ C1τe
(1+2τH2) + e2TH2TC∗(τ + hx + hy)

= C1τe
(1+2τH2) + C2(τ + hx + hy).

�

Note that lim
τ→0

τe(1+2τH2) = 0. Therefore, it can be concluded that if hx, hy and τ

approach to zero, then uni,j → u(x, y, t). Hence, the convergence of the nonstandard
implicit difference scheme defined by Eqs. (20)-(21) has been proved.

5. Numerical Examples

We now present some numerical examples to verify the efficiency of the nonstan-
dard implicit difference scheme proposed in Section 3.

Example 5.1. Consider the following 2-D fractional reaction-diffusion model with
nonlinear reaction term:

(25)


∂u
∂t = kx

∂α1u
∂|x|α1 + ky

∂α2u
∂|y|α2 + f(u) + f(x, y, t), (x, y, t) ∈ Ω× (0, T ]

u(x, y, 0)=10x2(1− x)
2
y2(1− y)

2
, (x, y) ∈ Ω

u(x, y, t) = 0, (x, y, t) ∈ ∂Ω× (0, T ]

where Ω = [0, 1]× [0, 1], f(u) = −u(1 + u). Here

f(x, y, t) = 100e−2tx4(1− x)4y4(1− y)4

+ 10kxcα1
e−ty2(1− y)2 [g(x, α1) + g(1− x, α1)]

+ 10kycα2e
−tx2(1− x)2 [g(y, α2) + g(1− y, α2)] ,

(26)

with

(27) g(x, α) =
−24

Γ(5− α)
x4−α +

12

Γ(4− α)
x3−α +

−2

Γ(3− α)
x2−α.

The exact solution of Eq. (25) is

u(x, y, t) = 10e−tx2(1− x)2y2(1− y)2.
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Table 1. Errors and space convergence orders of Example 5.1
with α1 = α2 = 1.5, τ = 10−3.

N L2 error Order L∞ error Order

10 1.7932e-03 5.6501e-03
30 6.2142e-04 0.9646 1.8752e-03 1.0040
50 3.5843e-04 1.0772 1.1515e-03 0.9546
80 2.2342e-04 1.0057 7.2909e-04 0.9724

Table 2. Errors and space convergence orders of Example 5.1
with α1 = 1.8, α2 = 1.5, τ = 10−4.

N L2 error Order L∞ error Order

10 2.4694e-03 4.7862e-03
30 6.8568e-04 1.1663 1.7785e-03 0.9011
50 4.1951e-04 0.9618 1.0908e-03 0.9570
80 2.7004e-04 0.9617 6.5517e-04 1.0846

Table 3. Errors and temporal convergence orders of Example 5.1
with α1 = α2 = 1.6, N = 80.

τ L2 error Order L∞ error Order

1/10 1.4374e-03 4.7099e-03
1/30 5.0477e-04 0.9820 1.7446e-03 0.9320
1/50 3.0985e-04 0.9679 1.0677e-03 0.9739
1/80 2.0064e-04 0.9320 6.4992e-04 1.0647

In this paper, the convergence order of norm ‖·‖L2 (or norm ‖·‖L∞) both in
space and time is defined in [31] as

(28) order =

{
log(‖η(ϕ(τ1),N,tn)‖/‖η(ϕ(τ2),N,tn)‖)

log[ϕ(τ1)/ϕ(τ2)] , in time,
log(‖η(ϕ(τ),N1,tn)‖/‖η(ϕ(τ),N2,tn)‖)

log(N1/N2) , in space,

where η(ϕ(τ), N, tn) = u(x, y, nϕ(τ))− unN . Let kx = ky = 1, hx = hy = h = 1/N .
We obtain the numerical solution at T=1 by applying the NSFDM with different
values of α1 and α2. Table 1 and Table 2 summarize the space convergence orders
of Example 5.1 with α1 = α2 = 1.5, τ = 10−3 and α1 = 1.8, α2 = 1.5, τ = 10−4,
respectively. The time convergence order is also given in Table 3 with α1 = α2 = 1.6
and N = 80, which is in line with the theoretical analysis in Theorem 4.3.

Example 5.2. Consider the two-dimension Riesz fractional FitzHugh-Nagumo (FHN)
model

(29)

{
∂u
∂t = kx

∂α1u
∂|x|α1 + ky

∂α2u
∂|y|α2 + u(1− u)(u− a)− v

∂v
∂t = ε(βu− γv − δ), (x, y, t) ∈ Ω× (0, T ]

where Ω = {(x, y) : 0 ≤ x ≤ 2.5, 0 ≤ y ≤ 2.5}, and a = 0.1, ε = 0.01, β = 0.5,
γ = 1, δ = 0. The initial conditions are

u(x, y, 0) =

{
1.0, x < 1.25, y < 1.25
0.0, elsewhere

v(x, y, 0) =

{
0.1, y ≥ 1.25
0.0, elsewhere

(30)
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(a) kx = ky = 10−4 (b) kx = ky = 10−5 (c) kx = 10−4, ky/kx =
0.25

Figure 1. The simulation results of the FHN model with α1 =
α2 = 2 at T = 1000.

Table 4. CPU time of Liu’s method and our method (α1 = α2 =
1.5, kx = ky = 10−4).

CPU time (h) Liu’s method [10] our method
Example 5.1 (N = 20, τ = 10−3, T=1) 4.27 0.01

Example 5.2 (N = 256, τ = 0.1, T=1000) 10.75 0.52

with zero Dirichlet boundary conditions

(31) u(0, y, t) = u(2.5, y, t) = 0, u(x, 0, t) = u(x, 2.5, t) = 0.

Electrophysiological models of the heart describe how electrical currents flow through
the heart effectively. In addition to the Riesz FHN model above, there exists cell
potential model, c.f. [5].

The space domain Ω is discretized into m1 × m2 = 256 × 256 points, time
step τ = 0.1. We compute the fractional partial differential equation by using
the NSFDM and solve the ODE by using the backward difference method. The
simulation results at time T=1000 are shown in Fig. 1 and Fig. 2.

It is easy to derive that the spiral waves travel more slowly as the anisotropic
diffusion ratios decrease from kx = ky = 10−4 to kx = ky = 10−5, which are
shown in Fig. 1(a) and Fig. 1(b). By comparing Fig. 1(a) (α1 = α2 = 2), Fig. 2(a)
(α1 = α2 = 1.7) and Fig. 2(b) (α1 = α2 = 1.5), we can see that the waves propagate
more slowly as the fractional order decreasing when kx = ky = 10−4. Results of
the parameters kx = 10−4, ky/kx = 0.25 with α1 = α2 = 2 and α2 = 2, α1 = 1.65
with kx = ky = 10−4 are shown in Fig. 1(c) and Fig. 2(c), which agree with the
simulation results in [9, 10,31].

Table 4 shows the CPU time for the numerical results of the above-mentioned
problem. Compared with the SFDM with Gauss-Seidal method [10], the computa-
tional time of our NSFDM with Multigrid method is faster.
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(a) α1 = α2 = 1.7 (b) α1 = α2 = 1.5 (c) α1 = 1.65, α2 = 2

Figure 2. The simulation results of the FHN model with kx =
ky = 10−4 at T = 1000.

6. Conclusion

In this paper, a nonstandard finite difference method for solving the 2-D Riesz
space fractional reaction-diffusion equation is proposed. The implicit scheme is
obtained on the basis of shifted Grünwald-Letnikov definition and Taylor formula.
Multigrid method is introduced to solve proposed problems which is faster than the
traditional Gauss-Seidal iterative method. We also prove that if τ < 1/2(H2−2rβ)
with 2rβ < H2, our NSFD scheme is stable and the convergence order is O(hx +
hy + τ). Finally, the method is used to simulate the 2D Riesz fractional FitzHugh-
Nagumo model, and stable spiral figures are obtained. The results are good proofs
of the last advantage of the non-standard finite difference method mentioned in
Section 1.
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