
INTERNATIONAL JOURNAL OF c© 2019 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 16, Number 6, Pages 873–890

APPLICATION OF PARALLEL AGGREGATION-BASED

MULTIGRID TO HIGH RESOLUTION SUBSURFACE FLOW

SIMULATIONS

MENGHUO CHEN AND SHUYU SUN∗

Abstract. In this paper we assess the parallel efficiency issues for simulating single phase subsur-

face flow in porous media, where the permeability tensor contains anisotropy rotated with certain

angles or severe discontinuity. Space variables are discretized using multi-points flux approxima-
tions and the pressure equations are solved by aggregation-based algebraic multigrid method. The

involved issues include the domain decomposition of space discretization and coarsening, smooth-

ing, the coarsest grid solving of multigrid solving steps. Numerical experiments exhibit that the
convergence of the multigrid algorithm suffers from the parallel implementation. The linear system

at the coarsest grid is solved and by various iterative methods and the experimental results show

that the parallel efficiency is less attenuated when sparse approximate inverse preconditioning
conjugate gradient is used.

Key words. Parallel computation, porous media flow, multi-points flux approximations, alge-
braic mulitgrid.

1. Introduction

Modeling of subsurface flow processes is important for many applications, for
example, groundwater resource management, CO2 sequestration, and petroleum
production. In all the cases, fluids flow through medium containing pores (voids).
A porous media is most often characterized by porosity and the media’s ability
to transmit fluids is measured by a quantity called permeability. To describe the
physics of the fluid flow, the Darcy’s law is used to establish the partial differen-
tial equations, where the geometrical complexities of porous media is replaced by
one parameter relates to pressure gradient vector and the fluid flux vector. As a
consequence of the different geologic processes over geologic time-scales, however,
there are cases such that the rock formations is geometric complicate in a way the
hydraulic properties of media are mostly heterogeneous and anisotropic, where the
flux vector does not coincide the hydraulic gradient vector.

The appearance of anisotropy in permeability which is not aligned with the direc-
tion of principal axes imposes challenges on the development of reservoir simulator
and the stencil arising from the standard two-point flux approximation (TPFA)
fails to account for the fact that pressure gradient in one direction can cause flow in
other directions as well. This motivates the development of multi-point flux approx-
imation (MPFA) [1, 2], which is designed based on the finite volume formulation.
MPFA introduces the surface midpoints through the interaction region to ensure
the pressure and flux continuities and the flux is calculated using informations in-
volving several points as opposed to only two points. This allows the application of
MPFA methods on general nonorthogonal grids as well as for general orientation of

Received by the editors December 1, 2017 and, in revised form, September 27, 2018.
2000 Mathematics Subject Classification. 66M66, 65Y05.
∗Corresponding author.

873

874 M. CHEN AND S. SUN

the principal directions of the permeability tensor. In the work of Aavatsmark et
al. [1], MPFA is introduced with two subclasses, i.e., MPFA O- and U- methods,
based on the choice of continuity conditions. In [3] Aavatsmark discussed the dis-
cretization and implementation of MPFA-O method with subsurface midpoint as
continuity points on quadrilateral grids. In addition, Edwards and Rogers [2] have
demonstrated the existence of an error produced by the classical five-point stencil
scheme (TPFA) due to the ignorance of the off-diagonal elements in the tensor.
The off-diagonal elements of the tensor equation could not be ignored since these
give a strong impact on the variation of the pressure field. Besides the mentioned
subclasses, there are other types of MPFA such as MPFA L-method [4] and MPFA
Z-method [5].

The linear systems arising from MPFA methods can be solved efficiently by direct
methods (Gauss eliminations) when the number of space cells is small [6, 7]. In
recent years, however, the study of flow phenomena in multiple scales (e.g., from
pore scale to Darcy scale) and in fractured porous media have drawn significant
attention [8, 9, 10, 11]. In these research the mesh with high resolution is needed
in order to resolve wide range of length scale of interest and solving the associated
linear system using direct method is not favourable. As the resulting matrix from
MPFA being sparse, iterative methods turn out to be better options. Among the
iterative methods, multigrid methods are well known for being fastest numerical
methods for solving linear systems arising from discretization of elliptic partial
differential equations (PDEs) [12]. For large classes of problems it can be shown
that the convergence rate of multigrid method will not deteriorate as the mesh size
increases and the total work to solve a linear system with N variables is O(N) if a
fixed level of accuracy is needed [13, 14].

In this paper, we incorporate an aggregation-based algebraic multigrid (AGMG)
method [15] in solving subsurface flow equations. The cases studied include the
TPFA discretized pressure equations in single-phase flow where the permeability
contains discontinuity with large jump and rotated anisotropy. On the other hand,
we consider the linear system arising from MPFA discretization. Furthermore,
the parallelization of the solution algorithm is implemented and carried out in
massively parallel simulations. Various issues and difficulties are addressed and
discussed. The remaining part of the paper is organized as follows. In Section 2
we state the mathematical model of fluid flow in porous media, MPFA method and
experimenting field approach. In Section 3 we discuss several issues for parallelizing
multigrid methods. In Section 4 the setup of numerical experiments and related
facility are discussed. Results of several numerical experiments are presented in
Section 5.

2. Subsurface flow in anisotropic porous media

2.1. Governing equations. The governing equations of fluid flow in porous me-
dia are given by the combination of physical principles: the conservation of mass
and Darcy’s law. The principle of mass conservation assumes the mass inflow and
outflow are equal when fluid flow crosses a certain region. Thus the mass conser-
vation equation is given by

(1)
∂(φρ)

∂t
+∇ · (ρu) = q,

APPLICATION OF PARALLEL AMG TO SUBSURFACE FLOW SIMULATIONS 875

where φ is the porosity, ρ is the density of the fluid. q is the sink or source. ∇·
is the divergence operator and u is the velocity obeying the Darcy’s law, which is
defined as

(2) u = −K

µ
(∇p− ρg∇ẑ).

In equation (2), K is the full permeability tensor, p is the pressure, µ is the fluid
viscosity, g is the gravitational acceleration, ẑ is the depth, and ∇ is the gradient

operator. In the case of 2D space, ∇ =
(

∂
∂x ,

∂
∂y

)T
, K is represented as a second

order tensor by

K =

[
Kxx Kxy

Kyx Kyy

]
.(3)

2.2. Multipoint flux approximation. Consider the four quadrilateral cells with
a common vertex in Figure 1a. Denote the cells by Ei, the cell centers by xk, and
the edge midpoints by x̄k, where i, k = 1, 2, 3, 4. Lines are drawn between the cell
centres and the midpoints of the edges (shown as dashed lines in the figure). These
lines bound an area around each vertex which is called an interaction volume. As
seen from the figure, there are four half cell edges (solid lines) in the interaction
volume. To discretize the PDEs (1) - (2) using MPFA, we first compute the flux of
potential of a phase α through an half cell edge, say, S in an interaction volume:

(4) f = −
∫
S

(K∇Φ) · n̂ dS

where φ is the phase potential (which is pressure in our case), K is the transmissi-
bility tensor (permeability in our example), and n̂ is the unit normal vector to the
surface. Note that for convenience we drop the phase index α from (4). Assume

E1 E2

E3E4

x̄1

x̄2

x̄3

x̄4

S12

S23

S34

S41

x1 x2

x3x4

(a) location of points

f12

f23

f34

f41

E1 E2

E3E4

p̄1

p̄2

p̄3

p̄4

p1 p2

p3p4

(b) pressure and fluxes

Figure 1. Cells and interaction volume.

that the potential is a continuous function. The gradients of the potential ∇Φ are
approximated by the difference between the potential values at the cell centres and
that at the edge centres. Now the potential considered here is pressure and we
denote it by p. To preserve local conservation of fluxes it is required that the flux

876 M. CHEN AND S. SUN

leaving one control volume is equal to that entering the next one. The approximat-
ed value of flux in (4) through half cell edge S12 and through S41 (see Figure 1)
are

f12 ≈ −Kxx
1 (p̄1 − p1)−Kxy

1 (p̄4 − p1)

= −Kxx
2 (p2 − p̄1)−Kxy

2 (p̄2 − p2),

f41 ≈ −Kyy
1 (p̄4 − p1)−Kyx

1 (p̄1 − p1)

= −Kyy
4 (p4 − p̄4)−Kyx

4 (p̄3 − p4),

where Ki, i = 1, 2, 3, 4 is the transmissibility coefficient at the center of the cell,
Ei, pi and p̄i are the pressure at the cell centres and edge midpoints, respectively.
The fluxes f23 and f34 are obtained in a similar fashion. Each flux through the
half cell edge involves two adjacent cells to be considered. From each interaction
region, we would obtain four systems of equations, which can be solved locally for
the transmissibility matrix T, such that

(5) Tp = f .

Consider the steady state mass conservation equation for the flow of an incompress-
ible fluid in porous media with source/sink term q. The equation can be written
simply as

(6) ∇ · u = q.

If the gravity is lumped into the pressure, by Darcy’s law we obtain the velocity as

(7) u = −K

µ
∇p.

Suppose that the pressure field is known, then the velocity field could be obtained
using the Darcy’s law and such u should satisfy Equation (6). However, if the
pressure is not the correct one, the equality does not hold in Equation (6). Define
the residual R as the difference between the true value and the calculated one using
the guessed pressure field (denoted by p̃):

(8) R = q− (∇ · u)p̃,

we will use R to refine the velocity field. Substituting Darcy’s law into the conser-
vation of mass law, one obtains

(9) ∇ · u = ∇ · (−K

µ
∇p).

In matrix form this equation may be represented as

(10) Ap = [∇ · u].

Therefore, for the ith testing pressure field (denoted by p̃i) we have

(11) Api = q− [∇ · u]p̃i .

Now if p̃i is chosen to be 1 in the ith cell (ith entry of vector pi) and zeros elsewhere,
one could obtain the entries of the ith column of the coefficient matrix A and
likewise until the matrix is populated. In addition, the boundary condition has to
be incorporated as shown in [6] using additional pressure field where the pressure
in all the cells is zero. Once A is constructed, we obtain the correct pressure field
through equation (10). Finally the correct velocity based on the correct pressure

APPLICATION OF PARALLEL AMG TO SUBSURFACE FLOW SIMULATIONS 877

can be calculated by algebraic equations arising from the MPFA discretization of
equation (7).

2.3. Experimenting pressure field. To calculate the entries of matrix A in
equation (11), Sun et al. [6] propose equation type approach which generate the
matrix automatically within the solver routine by looping over m× n+ 1 pressure
fields, where m and n are the number of segments in x and y directions in 2D space.
In this approach the computational work is clearly cumbersome. In the work [7],
Negara et al. notice that the cell where the pressure is one affects the flux in only
the neighbouring four cells. This implies that one could design the testing pressure
field in which the cells where the pressure is one alternate every two cells. In other
words, the number of generations of the testing pressure fields can be reduced from
m by n times to only nine times, which clearly reduce significantly the time required
to construct the matrix of coefficients.

The linear system in (10) can be solved by direct methods (Gauss elimination)
for small gird size [6, 7]. For solutions on high resolution meshes, on the other
hand, iterative methods are better alternative as the matrix A in equation (10) is
sparse. Furthermore, computations in iterative methods are less sequential, with
sometimes few global communications. Among iterative methods we choose AGMG
method as our linear system solver for solving the pressure field.

3. Algebraic Mulitgrid and Its Parallelization

1. Pre-smooth x1 = S1(x0, b)

2. Residual b1 = b−Ax1

3. Restriction b̃1 = Rb1
4. Next level Ãx̃2 ≈ b̄1
5. Prolongation x2 = Px̃2

6. Correction x3 = x1 + x2

7. Post-smooth x0 = S2(x3, b)
last

...

3

2

1
123 567

123 567

123 567

123 567

4

Figure 2. Multigrid algorithm (left) and illustration of V-cycle
(right). S1 , S2, P and R are pre-smoothing, post-smoothing re-
stricting and prolongation operators, respectively.

The principle of multigrid methods can be explained as follows: consider the
linear system Au = b on a fine grid, where A represents the matrix and b the
right-hand side vector, and u is the solution vector that one seeks. In iterative
algorithms we let u(i) denote the approximate solution to the linear system at the
ith iteration and decompose the corresponding error e(i) = u(i) − u into its Fourier
components. Classical relaxation schemes, such as weighted Jacobi or Gauss-Seidel
methods, can quickly damp the high frequency components of the error. For this
reason these methods are called smoothers. When the error is dominated by low-
frequency components, however, the further smoothing iterations hardly reduce the
error. To solve this, the multigrid methods use coarse grid correction, that is, the
low-frequency components are projected to a sufficiently small grid (see Fig. 2).
On the coarser level few (one or two) relaxations (step 2) can effectively reduce

878 M. CHEN AND S. SUN

the error because the smoother components projected from the fine level appear
more oscillatory. The smoothing-restriction procedure can be carried out until the
coarsest grid is reached where the corresponding residual equation is inexpensive
to solve directly (step 4). The coarsest grid solution is then interpolated back to
the finer levels where further relaxation sweeps may be applied (step 4).

Typically multigrid algorithms involve two phases of computation. Firstly the
grid hierarchy is determined in the setup phase. The information for determin-
ing the grids on coarser levels can be based on geometric location, features of
PDEs (geometric multigrid) or purely the matrix entries of the linear system (al-
gebraic multigrid). Consequently a grid hierarchy is constructed. In the second
phase cycle strategies (V-, W- or K-cycles [17]) are iterated on the resulted grid
hierarchy until the solution converge, where the major costs are smoothing and
restriction/prolongation.

In AGMG the unknowns (say N unknowns) are subdivided into (say Nc) disjoint
small groups (aggregates) which represent unknowns on next coarser level. In each
aggregate, the prolongation values are assumed to be uniform, that is, functions are
piecewise constant. Piecewise constant prolongation may attenuate the convergence
property of the multigrid and a remedy is proposed in [17], in which K-cycle instead
of V-cycle is used in cycle strategy. In K-cycle the approximate solution x̃2 in Fig.
2 is obtained by one or two multigrid preconditioned Krylov subspace iterations
(preconditioned conjugate gradient or GMRES), where the multigrid preconditioner
is the K-cycle implementation on the next coarser level. For more details about
K-cycle strategy, see [15, 17].

For parallel multigrid the rows (unknowns) of the matrix are distributed in pro-
cesses. Coarsening algorithms perform grid coarsening on local rows and construc-
t the grid hierarchy including connections between rows on different processes.
Matrix-vector multiplications in smoothing use the connection information to ob-
tain the correct results. This implementation raises issues regarding the impacts
on the convergence of the multigrid.

3.1. Parallel Coarsening. The coarsening algorithm accesses the matrix only
row by row. It treats the local matrix as if the non-local variables have been
marked and excluded from the aggregation process at the start of the coarsening.
Hence each task computes locally the coarsening scheme for local variables. This
simple approach for parallel coarsening may create different aggregates from that
of serial coarsening. For example, consider an N by N matrix A of finite difference
discretization of a 2D Model problem with 5-point stencil. Figure 3a and 3b show
the aggregates after the first pass of the coarsening algorithm of the code AGMG
[18]. While the formed aggregates are the same after the first pass, they differ after
the second pass, as can be seen in Figure 3c and 3d. There are aggregates with “bad
quality” which are forced to be formed near the boundaries (internal) between the
subdomains (processors), such as line aggregates which are not appropriate when
there is no anisotropy. These bad aggregates may affect the convergence.

3.2. Parallel Smoothing. The solution phase involves the following steps: s-
moothing, computing residuals and restriction/prolongation. In general, smooth-
ing involves inversion of a matrix albeit a simple one. For weighted Jacobi relax-
ation, the inversion of diagonal entries can be carried out independently for each
row and is easy to solve in parallel. For Gauss-Seidel relaxation, however, the

APPLICATION OF PARALLEL AMG TO SUBSURFACE FLOW SIMULATIONS 879

(a) Serial aggregations;first pass

P1

P2

P4

P3

(b) Parallel aggregations;

first pass

(c) Serial aggregations;

second pass

P1

P2

P4

P3

(d) Parallel aggregations;

second pass

Figure 3. Pairwise aggregation for serial and parallel cases.

backward/forward substitutions needed for inverting triangular matrices are well
known to be inherently sequential. In order to perform backward/forward substitu-
tions in parallel, the processors ignore the matrix entries indicating connections to
neighbouring processors and all processors solve their part of the residual equation
simultaneously. Consequently the global smoother matrix is block diagonal:

B1 0 0 0
0 B2 0 0

0 0
. . . 0

0 0 0 Bp

where Bi is the lower or upper triangular part of the local matrix Ai (

⌈
n
p

⌉
× n),

i = 1, ..., p. The convergence may suffer from this modification of the smoothers.
In order to see its impact on the convergence of multigrid, we perform numeri-
cal experiments which use the code in [18] to solve the 2D Model problem with
Dirichlet boundary condition on a 8000 × 8000 mesh. In the experiments V-cycle
instead of K-cycle strategy is chosen and the multigrid is used as preconditioner for
conjugate gradient (CG). The experimental results are shown in Table 1. As seen
from the table, the number of multigrid V-cycle preconditioned CG iteration in-
creases significantly. This demonstrates the impact of the parallel implementation
for multigrid on the parallel efficiency. On the other hand, if K-cycle is used the
number of multigrid PCG cycles does not change significantly. As we will see later,
however, for some problems even the use of K-cycle can not recover the degraded
convergence caused by parallelization.

3.3. Solving the Coarsest Grid Problem. Solving the coarsest grid problem
in the multigrid cycle may be critical to the performance of the parallel multigrid

880 M. CHEN AND S. SUN

Table 1. Effect of parallelization on the convergence of AGMG,
V-cycle preconditioned CG.

No. of processors # level Time setup + solution No. of multigrid PCG iterations
1 8 53.2+354 56
4 8 13.9+93.1 76
8 8 7.45+58.2 77
16 8 4.16+29.7 78
25 8 2.87+20.9 107
64 8 2.04+8.9 110

method, as mentioned in [19]. Two factors are concerned here: the sparsity of the
coarsest grid matrix and the number of coarsest grid visit. For AGMG grid hier-
archy, we observed that the average number of entries per row at the coarsest level
increases slightly (5 → 6 for 5-point stencil or 9 → 11 for 9-point stencil). This
can attribute to the simple prolongation operator [15]. On other hand the coarsest
grid visit in AGMG is 2l−2 (l represents the number of grid levels) in all problems
studied in this research. Because of the above observations, we use preconditioned
conjugate gradient (PCG), an iterative methods, to solve the coarsest grid prob-
lem in parallel AGMG. Two chosen preconditioners are diagonal preconditioning
(DPCG) and sparse approximate inverse preconditioning (SAIPCG).

3.4. Sparse Approximate Inverse (SAI) and Diagonal preconditioner.
When a preconditioner M is applied in the conjugate gradient (CG) algorithm, one
needs to solve the equation Mzk = rk in each CG iteration, so that the modified
residual zk can be obtained from the residual rk at iteration k. Either we solve
the equation directly, for example by backward or forward substitution if M is
triangular, or if M−1 is available we can compute zk = M−1rk. Many popular
general-purpose preconditioners, such as those based on incomplete factorization,
are fairly robust and result in good convergence rates, but are highly sequential
and it is difficult to implement them efficiently on parallel computers. On the
other hand, sparse approximate inverse [20] approximates the matrix inverse while
retains certain degree of sparsity. This allows us to compute zk = M−1rk in terms
of matrix-vector multiplication, which is easier to be parallelized.

Starting with a symmetric positive definite matrix A, we construct the its approx-
imate inverse as follows: the inverse A−1 of A is approximated by the factorization
GTG, where G is a sparse lower triangular matrix approximating the inverse of the
lower triangular Cholesky factor, L, of A [21]. G is obtained so that ‖I − GL‖F
is minimized, where ‖ · ‖F denotes the Frobenius norm, subject to some sparsity
constraint. Minimizing ‖I − GL‖F can be accomplished without knowing L by
solving the normal equations :

(12) (GLLT)ij = (LT)ij , (i, j) ∈ SL,

where SL is a lower-triangular nonzero pattern for G. Equation (12) can be replaced
by

(13) (ĜA)ij = Iij , (i, j) ∈ SL,

where Ĝ = D−1G and D is the diagonal of L. For simplicity, we use the sparsity
pattern of the lower triangle of A to construct the approximate inverse. The con-
strained minimization problem decouples into n independent linear least squares

APPLICATION OF PARALLEL AMG TO SUBSURFACE FLOW SIMULATIONS 881

problems (one for each row of G). The number of unknowns for each problem is
equal to the number of nonzero allowed in each row of G. This immediately follows
from the identity:

(14) ‖I −GL‖2F =

n∑
i=1

‖I(i, :)−G(i, :)L‖22.

These linear least squares problems can be solved independently for each row G(i, :)
directly or iteratively, therefore the computation can be parallelized.

Besides sparse approximate inverse preconditioner, we also employed the diago-
nal preconditioning for comparison. The diagonal preconditioning CG (DPCG) is
simple and only one matrix-vector multiplication is needed in preconditioning step,
while in SAI preconditioned CG (SAIPCG) the preconditioner has more than one
entry per row. However, SAIPCG generally converges faster than DPCG. In the
following sections, we will compare their performance as the coarsest grid solver.
The CG iterations stop when the relative residual is below the given tolerance.
The number of multigrid levels and the tolerance are tuned so that the optimal
performance is obtained.

4. Numerical Experiments Setup

In this work, we consider examples which are related subsurface flow in porous
media: pressure equations with jump coefficients, equations with rotated anisotropy
where the direction of anisotropy form a certain angle with x-coordinate. It is no-
ticed that the PDEs in these examples contain coefficients with various complexity,
which are different from the Poisson-like equations considered in [25]. The inves-
tigation of the efficiency for massively parallel AGMG therein employed couple
examples which are different by the given right hand side (f in equation 1.2, [25]).

All numerical experiments were carried out on Shaheen I, a 16-rack Blue Gene/P
consisting of 16384 computing nodes. Each node is equipped with four 32-bit, 850
Mhz PowerPC 450 cores and 4GB DDR memory. In aggregate, Shaheen has 65,536
compute cores and 64TB of memory. The Blue Gene/P architecture provides a
three-dimensional point-to-point Blue Gene/P torus network for general-purpose
IPC. Each torus link can transmit up to 425 MB per second in each direction, for
a total of 5.1 GB per second bidirectional bandwidth per node.

4.1. The Tested Linear Systems.

Problem JUMP2D: The first case is the linear system arising from the TPFA
discretization of PDE. Figure 4 shows the geometry of the permeability coefficients
of the test problem JUMP2D on the [0, 1] × [0, 1] domain. The PDE coefficients
contain anisotropies along the horizontal and vertical axes, as well as several orders
of magnitude of jump. Such PDE may occur when one solve the subsurface flow
in fractured porous media. This problem is similar to the problem in [22], where
we consider a larger coefficient jump (3 orders of magnitude) and apply Dirichlet
boundary condition on all four sides of the boundary.

(15) − ∂

∂x
(a
∂p

∂x
)− ∂

∂y
(b
∂p

∂y
) = f in Ω = [0, 1]× [0, 1]

882 M. CHEN AND S. SUN

1
2

1

1
2

1

O
x

y

Figure 4. JUMP2D.

with coefficients given by

(16)

a = 1, b = 1000, f = 0, in (0.65, 0.95)× (0.05, 0.65),
a = 1000, b = 1, f = 0, in (0.25, 0.45)× (0.25, 0.45),
a = 1000, b = 1000, f = 1, in (0.05, 0.25)× (0.65, 0.95),
a = 1, b = 1, f = 0, in elsewhere,

and Dirichlet boundary condition:

(17) p = 0, on ∂Ω.

Problem ROTANISO2D : For the second case we test the linear system arising
from the TPFA discretization of the pressure equation with rotated anisotropy:

−(ε cos2 θ + sin2 θ)
∂2p

∂x2
− 2(1− ε) cos θ sin θ

∂2p

∂y∂x
− (cos2 θ + ε sin2 θ)

∂2p

∂y2
= 1

Ω = [0, 1]× [0, 1](18)

p = 0, on ∂Ω.

where the anisotropy ratio ε is 0.001. The smaller the anisotropy ratio is, the much
stronger anisotropy exerts on the direction of subsurface flow. The anisotropy an-
gles θ considered for comparison are π/12, π/6 and π/4. Problems of this sort can
be a challenge for AGMG. If the direction of anisotropy is not aligned with the grid
lines, the convergence rate of AGMG is severely h (grid space) dependent. The
analysis in [23] exhibits that if the chosen aggregates can align (as much as pos-
sible) with the direction of anisotropy then h and ε-independent convergence can
be obtained with a two-grid method. The work also propose a modified aggrega-
tion strategy to improve the convergence of AGMG and the numerical experiments
demonstrate the improvement in the serial code. For the best result we apply the
proposed aggregation strategy in [23] in this example.

Problem MPFA : The last example tested is the linear system in equation (10),
which arises from the MPFA discretization of the PDEs (1)-(3) on staggered grid.
In other words, the velocity variables are edge-centred and the pressure variables
are cell centred, see Figure 5. For the boundary conditions, we impose velocity
boundary condition of 2 × 10−6 m/s on the left edge of the domain. On the right

APPLICATION OF PARALLEL AMG TO SUBSURFACE FLOW SIMULATIONS 883

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

p

p

p

p

P1 P2

P3 P4
p

p

p

p

P1 P2

P3 P4
p

p

p

p

P1 P2

P3 P4
p

p

p

p

P1 P2

P3 P4

Figure 5. Staggered grid divided by 4 processes.

hand boundary the pressure is set to 1 atmosphere (1.01325 bar). No flow boundary
condition is assumed on the top and bottom of the domain.

As described in section 2.2 - 2.3, the algorithm first calculates the matrix en-
tries of A in equation (10) by solving local problems associated with experimenting
fields, then the resulting linear system is solved by AGMG. The processors com-
municate when updating the edge-center variables. The MPFA discretization on
each processor are simultaneously carried out and the constructed matrix A are
fed to the AGMG solver to obtain the pressure field. Besides the performance of
multigrid solver, we also observe the parallel efficiency of the MPFA discretization.

4.2. Parameters. In this research we investigate the weak scaling efficiency. In
all experiments, the 2D space domain is divided into q× q = q2 = p blocks, where q
is an even power of 2. The number of variables per block (task) is 40000. Each tim-
ing result is the average of multiple experiments. For the coarsest grid solving the
PCG iterations stop when the 2-norm of the relative residual is ≤ 0.90, a heuristic
value we found to be optimal. All the parallel timing results are compared to the
result from using single processor in order to calculate the parallel efficiency. The
coarsest grid problem in the single process case is solved by the direct solver from
LAPACK library.

5. Results and Discussions

I. Problem JUMP2D: Table 2 shows the timing results for the performance of
parallel AGMG, using diagonal preconditioned CG (DPCG) and sparse approxi-
mate inverse preconditioned CG (SAIPCG) as the coarsest grid solver. At the end
of each timing result in the tables, the number of AGMG iterations is parenthesized.

As seen from the table, SAIPCG performs better than DPCG does, although the
difference is not significant. Furthermore, the cost for constructing sparse approxi-
mate inverse is not significant, as the number of normal equations to solve is very
few at the coarsest grid. We also notice that in most of the experiments the total
number of SAIPCG iterations is roughly twice the number of DPCG iterations at

884 M. CHEN AND S. SUN

Table 2. Timing results: JUMP2D.

n ×104 #p # level Time (setup+solve) Time (setup+solve)
(# it) DPCG (# it) SAIPCG

4 1 6 0.42+2.95(21) 0.42+2.95 (21)
8 16 7 0.48+3.17(21) 0.48+3.09 (21)
256 64 8 0.48+3.24(21) 0.49+3.13 (21)
1024 256 8 0.49+3.30 (21) 0.51+3.20 (21)
4096 1024 8 0.48+3.37(22) 0.51+3.30 (21)
16384 4096 8 0.53+3.91(22) 0.55+3.71 (21)
65536 16384 8 0.57+4.29 (22) 0.60+4.10 (21)

Figure 6. Parallel efficiencies for using DPCG and using SAIPCG
as coarsest grid solver. JUMP2D.

the coarsest grid. However, the extra matrix-vector multiplications and the associ-
ated communications in SAIPCG weaken its advantage of faster convergence over
DPCG. The parallel efficiency is around 70% in the worst case (see Figure 6), and
the convergence is almost grid size independent. The results show that the appli-
cation of parallel AGMG on pressure equation with coefficients containing strong
discontinuity looks promising.

II. Problem ROTANISO2D : In this case we carry out experiments for solving
equation (18). Three angles are considered: π/12, π/6 and π/4. As mentioned in
section 4.1, the modified aggregation strategy proposed in [23] is used to reduce the
grid-size dependent convergence.

From Table 3 - 5 we see severe grid size dependency on the convergence. For
θ = π/4 the dependency is relatively mild and the parallel efficiency is roughly
40% for the largest grid. For the scenario θ = π/12 the convergence is too slow for
large grid and the results are not shown here. This problem has been a challenge
for AGMG and the unimpressive performance is expectable. Similar to the case
JUMP2D, SAIPCG performs better than DPCG does as the coarsest grid solver.

APPLICATION OF PARALLEL AMG TO SUBSURFACE FLOW SIMULATIONS 885

Table 3. Timing results: ROTANISO2D, θ = π/12.

n ×104 #p # level Time (setup+solve) Time (setup+solve)
(# it) DPCG (# it) SAIPCG

4 1 6 1.61+12.4(70) 1.61+12.4(70)
8 16 7 1.9+22.5(89) 1.93 + 20.5(88)
256 64 8 1.92+25.6(94) 1.93 +24.3 (93)
1024 256 8 1.94+40.5(147) 1.94+37.1(151)
4096 1024 8 2.16 + 86.1 (292) 2.19+ 64.3 (291)

Table 4. Timing results: ROTANISO2D, θ = π/6.

n ×104 #p # level Time (setup+solve) Time (setup+solve)
(# it) DPCG (# it) SAIPCG

4 1 6 2.01+17.1(82) 2.01+17.1(82)
8 16 7 2.02+20.5(90) 2.03 +19.5(91)
256 64 8 2.07+25.6(104) 2.05+22.6(104)
1024 256 8 2.16+32.4(116) 2.13+30.8(117)
4096 1024 9 2.24+36.4(132) 2.14+33.6(126)
16384 4096 9 2.33+40.3(137) 2.29+38.5(135)
65536 16384 9 2.49+46.4(143) 2.54+44.8(141)

Table 5. Timing results: ROTANISO2D, θ = π/4.

n ×104 #p # level Time (setup+solve) Time (setup+solve)
(# it) DPCG (# it) SAIPCG

4 1 6 1.98+10.1(55) 1.98+10.1(55)
8 16 7 2.03+12.2(60) 2.05+11.5(60)
256 64 8 2.09+16.6 (82) 2.10+15.7(82)
1024 256 8 2.16+19.2(90) 2.18+17.8(90)
4096 1024 9 2.20+22.4 (96) 2.24+20.6(96)
16384 4096 9 2.31+26.6(101) 2.34+24.2(100)
65536 16384 9 2.45+29.2(104) 2.44+26.5(103)

III. Problem MPFA: Similar to problem ROTANISO2D, we consider three
anisotropy angles: π/12, π/6, π/4. The results are shown in Table 6 - 8. In the
tables the execution times for the MPFA discretization mentioned in subsections
2.2 -2.3 are listed in the forth column. Note that for the case θ = π/12, two
smoothing steps at each level are needed so that the number of AGMG iterations
(≤ 150) is acceptable. Furthermore, the original aggregation strategy in [22] is used
here since it provides the optimal aggregates. We also observe that slow coarsening
(coarsening ratio is less than 3) appears when the multigrid level is greater than 7
or 8. In this situation, the saving of computational work gained from the coarser
level does not compensate the increasing number of the visiting for the coarsest
level (in each W-cycle the coarsest level is visited 2l−2 times, where l is the number
of the multigrid levels), therefore we set the maximum number of multigrid levels
as 8 for θ = π/4, π/12, 9 for θ = π/6. This implementation is inspired from the

886 M. CHEN AND S. SUN

Table 6. Timing results: MPFA, θ = π/12.

n ×104 #p # level MPFA discretization Time (setup+solve) Time (setup+solve)
(# it) DPCG (# it) SAIPCG

4 1 6 47.3 0.60+9.95(34) 0.60+9.95(34)
8 16 7 48.7 0.72+15.4(42) 0.73+15.0(42)
256 64 8 48.9 0.75+15.5(44) 0.78+15.2(43)
1024 256 8 49.7 0.74+16.1(46) 0.82+15.3(45)
4096 1024 8 50.9 0.77+16.1(47) 0.85+15.6(47)
16384 4096 8 51.0 0.95+16.2(48) 1.02+15.8(48)
65536 16384 8 51.3 1.03+17.1(48) 1.10+16.3(48)

Figure 7. Multigrid parallel efficiency for solving subsurface flow
in porous media with MPFA discretization, θ = π/12.

Table 7. Timing results: MPFA, θ = π/6.

n ×104 #p # level MPFA discretization Time (setup+solve) Time (setup+solve)
(# it) DPCG (# it) SAIPCG

4 1 6 46.5 0.65+11.9 (48) 0.65+11.9 (48)
8 16 7 49.2 0.69 +14.9 (59) 0.71+14.6 (59)
256 64 8 49.3 0.71 +15.8 (62) 0.68+15.4 (62)
1024 256 8 49.9 0.73+17.6(63) 0.75+16.9 (62)
4096 1024 9 49.8 0.93 +19.0(62) 0.95+18.3 (62)
16384 4096 9 50.1 0.96+19.2 (63) 0.98+19.0 (62)
65536 16384 9 50.1 0.97 + 20.1 (63) 1.03 +19.8 (62)

work in [25], where the slow coarsening was also observed in the tested examples
therein.

In Figure 11 we also show the relation between the convergence rate of AGMG
with the same total levels and the rotation angles of anisotropy. Notice that for this
figure the coarsest grid problem is solved exactly since the accuracy of the solution
from the coarsest grid affects the convergence of the overall AGMG algorithm sig-
nificantly. As seen from the figure, the convergence rate of AGMG for the rotation
angle θ = π/4 is the best in all cases, which is expectable since for θ = π/4 the
(line) aggregates can align with the direction of the anisotropy nicely.

From the tables, parallel AGMG performs best when θ = π/4. In that case
the number of cycles does not grow significantly as the grid size increases. By
investigating the aggregations, we observe that the direction of aggregations are
aligned with the direction of anisotropy at all multigrid levels. For the other two
cases the convergence of AGMG is grid size dependent but the dependency becomes

APPLICATION OF PARALLEL AMG TO SUBSURFACE FLOW SIMULATIONS 887

Figure 8. Multigrid parallel efficiency for solving subsurface flow
in porous media with MPFA discretization, θ = π/6.

Table 8. Timing results: MPFA, θ = π/4.

n ×104 #p # level MPFA discretization Time (setup+solve) Time (setup+solve)
(# it) DPCG (# it) SAIPCG

4 1 6 46.7 0.69+4.20(17) 0.69+4.20 (17)
8 16 7 49.97 0.67 + 4.54(17) 0.7+4.42 (17)
256 64 8 50.1 0.67+4.67(17) 0.65+4.86(17)
1024 256 8 50.5 0.86+5.1(18) 0.80+5.35(18)
4096 1024 8 50.25 0.88+5.65(19) 0.86+5.87(20)
16384 4096 8 50.52 0.96+5.7 (19) 0.97+6.18 (20)
65536 16384 8 50.88 1.02+6.35(20) 0.96+6.60(21)

mild when the grid size exceeds certain scale(≥ 1024 processors). The parallel
efficiency for the multigrid solving step varies from 55% to 92%, see Figures 7 - 9.
It is also observed that SAIPCG is a better coarsest grid solver than DPCG.

The time for parallel MPFA discretization of the PDEs increases slightly as the
number of the processors increases, and the parallel efficiency is above 90%. This is
attribute to the inherent parallelism of MPFA discretization algorithm, in which the
rows of the global transmissibility coefficient matrix A are constructed using only
information from at most eight neighbouring nodes. This localized computation
does not need global communications (global broadcasting). In all three cases the
solution time for solving pressure field is a fraction of the MPFA discretization step,
thus the parallel efficiency of the overall simulation is above 80% for the experiments
in this work, which is quite satisfactory, see Figure 10.

6. Conclusion

The issues regarding the massively parallel AGMG for various examples are
discussed. The impact of parallel aggregation and smoothing on the AGMG con-
vergence is not obvious for the problem JUMP2D which contains discontinuous
coefficient jump with several orders of magnitude. This indicates that the applica-
tion of AGMG on the problem for flow in fractured media is promising. In general,
the ratio of permeability between fractures and rock matrix can be 3 or 4 orders
of magnitude. Furthermore, parallelized computation with good parallel efficien-
cy facilitates the simulation for this sort of problems, which in general need high
resolution meshes.

888 M. CHEN AND S. SUN

Figure 9. Multigrid parallel efficiency for solving subsurface flow
in porous media with MPFA discretization, θ = π/4.

Figure 10. Overall parallel efficiency for solving subsurface flow in
porous media with MPFA discretization.

On the other hand, from the experiments in ROTANISO2D we see severe grid
size dependent convergence. The modified aggregation strategy and K-cycle help
improving AGMG’s performance limitedly. AGMG perform the best when θ = π/4,
in which case the aggregates can align (mostly) with the direction the anisotropy
angle. For this challenging problem it is necessary to modify the aggregation strat-
egy and the smoothers.

For problem MPFA we combine MPFA discretization and AGMG to solve the
problem for Darcy scale subsurface flow in porous media. The grid size dependency
is relatively mild and the efficiency for parallel AGMG solving is acceptable for the
case θ = π/4 (≈ 70%). The parallel efficiency for MPFA discretization is excellent
(> 90%) in all scenarios as the algorithm (experimenting pressure field) is inherently
parallel. In all the problems considered in this work, SAIPCG is a better coarsest
grid solver than DPCG, although the advantage is not very significant.

APPLICATION OF PARALLEL AMG TO SUBSURFACE FLOW SIMULATIONS 889

15 20 25 30 35 40 45

0.5

0.6

0.7

0.8

rotation angles ◦

co
n
ve

rg
en

ce
ra

te

total levels=6
total levels=7
total levels=8

Figure 11. The relation between the average convergence rate of
AGMG with the same total levels.

To the best of author’s knowledge, this is the first attempt to investigate the
efficiency of massively parallel AGMG for solving elliptic PDEs containing coeffi-
cients with various complexity. The current work shed light on the new approaches
to tackle the complicated systems of subsurface fluid flow problem with fractures
and full-tensor permeability. This work can be extended to multiphase flow in a
rock containing fractures of various scales, which is a topic we plan to work on in
near future.

Acknowledgments

The research reported in this publication was supported in part by funding from
King Abdullah University of Science and Technology (KAUST) through the grant
BAS/1/1351-01-01.

References

[1] I. Aavatsmark, T. Barkve, O. Boe and T. Mannseth, Discretization on non-orthogonal,
quadrilateral grids for inhomogeneous anisotropic media. Journal of Computational Physics,
127, pp. 2-14, 1996.

[2] M. G. Edwards and C. F. Rogers, Finite volume discretization with imposed flux continuity

for the general tensor pressure equation. Comput. Geosci., 2(4), pp. 259-290, 1998.
[3] I. Aavatsmark, An introduction to multipoint flux approximations for quadri-lateral grids.

Comput. Geosci., 6, pp. 405 - 432, 2002.
[4] I. Aavatsmark, G. T. Eigestad, B. T. Mallison and J. M. Nordbotten, A compact multipoint

flux approximation method with improved robustness. Numer. Methods for Partial Differen-
tial Equations. 24(5), pp. 1329-1360, 2008.

[5] J. Nordbotten and G. T. Eigestad, Discretization on quadrilateral grids with improved mono-
tonicity properties. J. Comput. Phys., 203(2), pp. 744-760, 2005.

[6] S. Sun, A. Salama and M. F. El-Amin, An equation-type approach for the numerical solution
of the partial differential equations governing transport phenomena in porous media. Procedia

Computer Science, 9, pp. 661-669, 2012.
[7] A. Negara, A. Salama and S. Sun, 3-D Numerical Investigation of Subsurface Flow

in Anisotropic Porous Media using Multipoint Flux Approximation Method. Society of

Petroleum Engineering, SPE 165960, 2013.

890 M. CHEN AND S. SUN

[8] V. Reichenberger, H. Jakobs, P. Bastian and R. Helmig, A mixed-dimensional finite volume

method for multiphase flow in fractured porous media. Adv. Water. Resour., 29, pp. 1030

-1036, 2006.
[9] H. Hoteit and A. Firoozabadi, An efficient model for incompressible two-phase flow in frac-

tured media. Adv. Water. Resour, 31, pp. 891-905, 2008.

[10] M. F. El-Amin, A. Salama and S. Sun, Numerical and dimensional investigation of two-phase
countercurrent imbibition in porous media. J. Comput. Appl. Math., 242, pp. 285-296, 2013.

[11] A. Zidane and A. Firoozabadi, An efficient numerical model for multicomponent compressible

flow in fractured porous media. Adv. Water. Resour., 74, pp. 127-147, 2014.
[12] R. D. Falgout, P. S. Vassilevski On generalizing the algebrac multigrid framework. SIAM J.

Numer. Anal., Vol. 42, No. 4, pp. 1669-1693, 2004.

[13] W. Hackbusch Multigrid Methods and Applications. Berlin: Springer, 1985.
[14] U. Trottenberg, C. Osterlee, A. Schuller, (Eds.), Multigrid, Academic Press, New York, 2000.

[15] Y. Notay, An aggregation-based algebraic multigrid method, ETNA, 37, pp. 123 - 146, 2010.
[16] A. Napov and Y. Notay, Algebraic analysis of aggregation-based multigrid, Lin. Alg. Appl.,

18 (2011), pp. 539-564.

[17] Y. Notay and P. S. Vassilevski , Recursive Krylov-based multigrid cycles, Numer. Linear
Algebra Appl. 2006; 0: 1-20.

[18] Y. Notay, AGMG: Iterative solution with AGgregation-based algebraic MultiGrid,

http://homepages.ulb.ac.be/ ynotay/AGMG.
[19] E. Chow, R. D. Falgout, J. J. Hu, R. S. Tuminaro and U. M. Yang A survey of parallelization

techniques for multigrid solvers, Parallel Processing For Scientific Computing, SIAM, series

on Software, Environments, and Tools, 2006.
[20] M. Benzi, M. Tuma, A comparative study of sparse approximate inverse preconditioners.

Appl. Numer. Math., 30, pp. 305 - 340, 1999.

[21] E. Chow. Parallel Implementation and Performance Characteristics of Least Squares Sparse
Approximate Inverse Preconditioners, Int. J. High-Perform. Comput. Appl., 2000.

[22] A. Napov and Y. Notay, An algebraic multigrid method with guaranteed convergence rate,
SIAM J. Sci. Comput., 34(2), A1079-A1109, 2012.

[23] M. Chen, A. Greenbaum, Analysis of an aggregation-based algebraic two-grid method for a

rotated anisotropic diffusion problem. Numer. Linear Alg. Appl., 22, pp. 681-701, 2015.
[24] J. Linden, G. Lonsdale, H. Ritzdorf, A. Schüller, Scalability aspects of parallel multigrid.

Future Generation Computer Systems 10, pp. 429-439, 1994.

[25] Y. Notay, A massively parallel solver for discrete Poisson-like probelm, J. Comput. Phys.,
281, pp. 237-250, 2015.

School of Computing, University of Leeds, Leeds, LS2 9JT, UK

E-mail : M.H.Chen@leeds.ac.uk

Physical Science and Engineering Division, King Abdullah University of Science and Technol-

ogy, Thuwal 23955, KSA

E-mail : shuyu.sun@kaust.edu.sa

