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A POSTERIORI ERROR ANALYSIS OF AN AUGMENTED

DUAL-MIXED METHOD IN LINEAR ELASTICITY

WITH MIXED BOUNDARY CONDITIONS

TOMÁS P. BARRIOS, EDWIN M. BEHRENS, AND MARÍA GONZÁLEZ

Abstract. We consider an augmented mixed finite element method for the equations of plane
linear elasticity with mixed boundary conditions. The method provides simultaneous approxima-
tions of the displacements, the stress tensor and the rotation. We develop an a posteriori error
analysis based on the Ritz projection of the error and the use of an appropriate auxiliary func-
tion, and derive fully local reliable a posteriori error estimates that are locally efficient up to the
elements that touch the Neumann boundary. We provide numerical experiments that illustrate
the performance of the corresponding adaptive algorithm and support its use in practice.
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1. Introduction

In this work, we consider the problem of plane linear elasticity with mixed bound-
ary conditions. Typically, mixed finite element methods are used in linear elasticity
to avoid the effects of locking while approximating additional unknowns of physical
interest directly. It is well known that stable mixed finite elements for the linear
elasticity problem involve many degrees of freedom. The application of stabilization
techniques, such as augmented formulations, allows to use simpler finite element
subspaces, including convenient equal-order interpolations that are generally un-
stable within the mixed approach.

In this framework, we consider the stabilized mixed finite element method pre-
sented in [7] for the problem of linear elasticity in the plane with homogeneous
Dirichlet and non-homogeneous Neumann mixed boundary conditions. The ap-
proach in [7] relies on the mixed method of Hellinger and Reissner, that is enriched
with suitable residual terms arising from the equilibrium equation, the constitu-
tive law and the relation that defines the rotation in terms of the displacement.
This approach leads to a well-posed, locking-free Galerkin scheme for any choice
of finite element subspaces when homogeneous Dirichlet boundary conditions are
prescribed. The method was successfully extended to the case of non-homogeneous
Dirichlet boundary conditions in [8] (the three-dimensional version can be found in
[9]).

In the case of mixed boundary conditions, which is the most usual in practice,
the Neumann boundary condition is imposed weakly in [7], through the use of a
Lagrange multiplier that can be interpreted as the trace of the displacement on
the Neumann boundary. The resulting variational formulation has a saddle point
structure. Hence, the analysis of the discrete scheme has to be done for any specific
choice of finite element subspaces. In particular, it is possible to use Raviart-
Thomas elements of the lowest order to approximate the stress tensor, continuous
piecewise linear elements to approximate the displacement and piecewise constants
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to approximate the rotation; the Lagrange multiplier on the Neumann boundary
can be approximated by continuous piecewise linear elements on a suitable partition
of that boundary, as we will see later. We should mention that an extension of
the method proposed in [8, 9] to the case of mixed boundary conditions where
the Neumann boundary condition is imposed in a strong sense has been analyzed
recently in [11]. This extension leads to an augmented variational formulation with
a coercive bilinear form and the corresponding Galerkin scheme is well-posed and
free of locking for any choice of finite element subspaces.

Concerning the a posteriori error analysis of the augmented scheme presented
in [7], an a posteriori error estimator of residual type was proposed in [1] in the
case of pure homogeneous Dirichlet boundary conditions. That analysis was ex-
tended to the cases of pure non-homogeneous Dirichlet boundary conditions and
mixed boundary conditions with non-homogeneous Neumann data in [2]. All these
a posteriori error estimators are reliable and efficient, and involve the computa-
tion of at least eleven residuals per element. Moreover, they include normal and
tangential jumps, and its extension to the three-dimensional case does not seem
attractive. Recently, simpler a posteriori error estimators were introduced in [3]
for the augmented schemes introduced in [7, 8, 9] in the case of boundary condi-
tions of Dirichlet type. In the case of homogeneous boundary conditions, the new
a posteriori error estimator introduced in [3] is reliable, locally efficient and only
requires the computation of four residuals per element. Moreover, it is valid for
two and three dimensional problems and for any finite element subspaces. When
non-homogeneous boundary conditions are imposed, two new reliable a posteriori
error estimators, one valid in 2D and 3D, and a second one that is only valid in 2D
are proposed in [3]. The latter is locally efficient in the elements that do not touch
the boundary and requires the computation of four residuals per element in the
interior triangles, five residuals per element in the triangles with exactly one node
on the boundary and six residuals per element in the triangles with a side on the
boundary. Neither of these a posteriori error estimators require the computation
of normal nor tangential jumps, which makes them easy to implement.

Our aim in this paper is to extend the analysis from [3] to the augmented dual-
mixed method introduced in [7] in the case of mixed boundary conditions. With
that purpose, we develop an a posteriori error analysis based on the Ritz projection
of the error and obtain an a posteriori error estimator that is reliable and efficient,
but that contains a non-local term. We then introduce an auxiliary function and
derive fully local a posteriori error estimates that are reliable and locally efficient
up to those elements that touch the Neumann boundary (see Theorem 5 below).
As compared with the a posteriori error estimator introduced in [2] in the case of
mixed boundary conditions, the a posteriori error estimates presented here are less
expensive and easier to implement. Numerical experiments support the use of the
new a posteriori error estimates in practice.

The rest of the paper is organized as follows. In Section 2, we recall the aug-
mented variational formulation proposed in [7] for the linear elasticity problem in
the plane with mixed boundary conditions and describe simple finite element sub-
spaces that lead to a well-posed, locking-free Galerkin scheme. In Section 3, we
develop the a posteriori error analysis and propose the new a posteriori error esti-
mators. Finally, in Section 4 we provide several numerical experiments that support
the use of the new a posteriori error estimates in practice.

We end this section with some notations to be used throughout the paper. Given
a Hilbert spaceH , we denote byH2 (resp., H2×2) the space of vectors (resp., square
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tensors) of order 2 with entries in H . Given τ := (τij) and ζ := (ζij) ∈ R
2×2, we

denote τ t := (τji), tr(τ ) := τ11 + τ22 and τ : ζ :=
∑2

i,j=1 τij ζij . We also use the

standard notations for Sobolev spaces and norms. Finally, C or c (with or without
subscripts) denote generic constants, independent of the discretization parameters,
that may take different values at different occurrences.

2. The augmented mixed finite element method

In this section we recall the augmented mixed finite element method introduced
in [7] to solve the linear elasticity problem in the plane with mixed boundary con-
ditions. Let Ω ⊂ R

2 be a bounded and simply connected domain with a Lipschitz-
continuous boundary Γ, and let ΓD and ΓN be two disjoint open subsets of Γ such
that Γ = Γ̄D ∪ Γ̄N and ΓD has positive measure. We denote by C the elasticity
operator determined by Hooke’s law, that is,

C ζ := λ tr(ζ) I + 2µ ζ , ∀ ζ ∈ [L2(Ω)]2×2 ,

where λ, µ > 0 are the Lamé parameters and I is the identity matrix in R
2×2. It

is easy to see that

C−1 ζ :=
1

2µ
ζ −

λ

4µ (λ+ µ)
tr(ζ) I , ∀ ζ ∈ [L2(Ω)]2×2 .

Now, assume we are given a volume force f ∈ [L2(Ω)]2 and a traction g ∈
[H−1/2(ΓN )]2. We consider the problem: find the displacement u and the stress
tensor σ such that

(1)















−div(σ) = f in Ω,
σ = C ε(u) in Ω,
u = 0 on ΓD,

σn = g on ΓN ,

where ε(u) := 1
2 (∇u+(∇u)t) is the strain tensor of small deformations and n is the

unit outward normal to Γ. The approach in [7] provides simultaneous approxima-
tions of the displacement u, the stress tensor σ, the rotation γ := 1

2 (∇u− (∇u)t)
and the Lagrange multiplier ξ := −u|ΓN .

Let κ1, κ2 and κ3 be positive parameters, independent of λ, and define

H1
ΓD

(Ω) := { v ∈ H1(Ω) : v = 0 on ΓD },

H(div; Ω) := {τ ∈ [L2(Ω)]2×2 : div(τ ) ∈ [L2(Ω)]2 }

and

[L2(Ω)]2×2
skew := {η ∈ [L2(Ω)]2×2 : η + ηt = 0 }.

We recall that [H−1/2(ΓN )]2 is the dual of [H
1/2
00 (ΓN )]2 := {v|ΓN : v ∈ [H1(Ω)]2 , v

= 0 on ΓD} and denote by 〈·, ·〉ΓN the associated duality pairing with respect to the
[L2(ΓN )]2-inner product. We define H := H(div; Ω) × [H1

ΓD
(Ω)]2 × [L2(Ω)]2×2

skew,

Q := [H
1/2
00 (ΓN )]2, and consider the bilinear forms A : H × H → R and B :

H×Q → R, and the linear functionals F : H → R and G : Q → R defined by
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A((σ,u,γ), (τ ,v,η))

:=

∫

Ω

C−1σ : τ +

∫

Ω

u · div(τ ) +

∫

Ω

τ : γ −

∫

Ω

v · div(σ)

−

∫

Ω

σ : η + κ1

∫

Ω

(

ε(u) − C−1 σ
)

:
(

ε(v) + C−1 τ
)

+ κ2

∫

Ω

div(σ) · div(τ )

+ κ3

∫

Ω

(

γ −
1

2
(∇u− (∇u)t)

)

:

(

η +
1

2
(∇v − (∇v)t)

)

,

B((τ ,v,η),χ) := 〈τn,χ〉ΓN ,

F (τ ,v,η) :=

∫

Ω

f · (v − κ2 div(τ ) ) ,

G(χ) := 〈g,χ〉ΓN ,

for any (σ,u,γ) , (τ ,v,η) ∈ H and any χ ∈ Q. We endow H with the norm

‖(τ ,v,η)‖H :=
(

‖τ‖2H(div; Ω) + ‖v‖2[H1(Ω)]2 + ‖η‖2[L2(Ω)]2×2

)1/2
, ∀ (τ ,v,η) ∈ H .

The augmented variational formulation proposed in [7] for problem (1) reads:
find ((σ,u,γ), ξ) ∈ H×Q such that
(2)






A((σ,u,γ), (τ ,v,η)) + B((τ ,v,η), ξ) = F (τ ,v,η), ∀ (τ ,v,η) ∈ H ,

B((σ,u,γ),χ) = G(χ) , ∀χ ∈ Q .

Problem (2) exhibits a saddle-point structure; therefore, its analysis is based on the
Babuška-Brezzi theory [4]. Hereafter, we assume that the stabilization parameters
(κ1, κ2, κ3) satisfy the assumptions of Theorem 3.3 in [7], namely, (κ1, κ2, κ3) is

independent of λ, κ1 ∈ (0, 2µ), κ2 > 0 and κ3 ∈

(

0,
kD

1− kD
κ1

)

, where kD ∈ (0, 1)

is the constant of Korn’s first inequality. We also recall that V := Ker(B) =
{(τ ,v,η) ∈ H : τn = 0 on ΓN}. Then, the bilinear form A(·, ·) is continuous in
H and V-elliptic, that is, there exist positive constants M and α, independent of
λ, such that

|A((σ,u,γ), (τ ,v,η))| ≤ M ‖(σ,u,γ)‖H ‖(τ ,v,η)‖H , ∀ (σ,u,γ), (τ ,v,η) ∈ H ,

and

A((τ ,v,η), (τ ,v,η)) ≥ α ‖(τ ,v,η)‖2H , ∀ (τ ,v,η) ∈ V .

Moreover, the bilinear form B(·, ·) satisfies the following inf-sup condition:

sup
τ∈H̃0

τ 6=0

B((τ ,v,η),χ)

‖τ‖H(div; Ω)
≥ β ‖χ‖Q , ∀χ ∈ Q ,

where β is a positive constant, independent of λ, and H̃0 = {τ ∈ H(div; Ω) : τ =
τ t, div(τ ) = 0 in Ω}. As a consequence, the augmented variational formula-
tion (2) has a unique solution ((σ,u,γ), ξ) ∈ H × Q and there exists a positive
constant C, independent of λ, such that

‖((σ,u,γ), ξ)‖H×Q ≤ C
(

‖f‖[L2(Ω)]2 + ‖g‖[H−1/2(ΓN )]2
)

.
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Now, let h and h̃ be two positive parameters and consider finite dimensional
subspaces Hh ⊂ H and Qh̃ ⊂ Q. Then, the Galerkin scheme associated to problem
(2) reads: find ((σh,uh,γh), ξh̃) ∈ Hh ×Qh̃ such that
(3)










A((σh,uh,γh), (τ h,vh,ηh)) + B((τ h,vh,ηh), ξh̃)
= F (τ h,vh,ηh) ∀ (τh,vh,ηh) ∈ Hh ,

B((σh,uh,γh),χh̃) = G(χh̃) ∀χh̃ ∈ Qh̃ .

The well-posedness of problem (3) has to be proved for each particular choice of
the finite element subspaces Hh ⊂ H and Qh̃ ⊂ Q. In what follows, we assume
that Ω is a polygonal region and let {Th}h>0 be a regular family of triangulations
of Ω̄ such that Ω̄ = ∪{T : T ∈ Th }. Given a triangle T ∈ Th, we denote by
hT its diameter and define the mesh size h := max{ hT : T ∈ Th }. We also
assume that each point in Γ̄D ∩ Γ̄N is a vertex of Th, for all h > 0. In addition,
given an integer ` ≥ 0 and a subset S of R2, we denote by P`(S) the space of
polynomials in two variables defined in S of total degree at most `, and for each
T ∈ Th, we define the local Raviart-Thomas space of order zero, RT 0(T ) :=
span { (1, 0)t, (0, 1)t, (x1, x2)

t } ⊆ [P1(T )]
2, where (x1, x2)

t is a generic vector of

R
2. Then, we take Hh := Hσ

h ×Hu
D,h ×H

γ
h , where the finite element subspaces

Hσ
h , Hu

D,h and H
γ
h are defined as follows:

Hσ
h :=

{

τ h ∈ H(div; Ω) : τ h|T ∈ [RT 0(T )
t]2 , ∀T ∈ Th

}

,

Hu
D,h :=

{

vh ∈ [C(Ω̄)]2 : vh|T ∈ [P1(T )]
2 , ∀T ∈ Th ; vh = 0 on ΓD

}

,

H
γ
h :=

{

ηh ∈ [L2(Ω)]2×2
skew : ηh|T ∈ [P0(T )]

2×2 , ∀T ∈ Th
}

.

On the other hand, let γh̃ = {ẽ1, ẽ2, ..., ẽm} be an independent partition of the

Neumann boundary with h̃ := max {|ẽj | : j = 1, ...,m }. Then, we define

Qh̃ :=
{

χh̃ ∈ [C(Γ̄N )]2 ∩ [H
1/2
00 (ΓN )]2 : χh̃|ẽj ∈ [P1(ẽj)]

2 , ∀ j = 1, ...,m
}

.

From Theorem 4.9 in [7] and Section 2.2 in [2], we know that, if {Th}h>0 and
{γh̃}h̃>0 are uniformly regular on ΓN , then the Galerkin scheme (3) is well-posed

and a Cea estimate can be obtained provided h ≤ C0 h̃. This compatibility con-
dition between the mesh sizes h and h̃ is satisfied by choosing a particular choice
of independent partition γh̃. Indeed, let us denote by ΓN,h := {e1, . . . , en} the
partition of ΓN inherited from the triangulation Th, where adjacent elements are
numbered consecutively. In what follows, we choose γh̃ as the partition of ΓN ob-
tained by joining pairs of adjacent elements in ΓN,h if the number of edges in ΓN,h

is even; if the number of elements in ΓN,h is odd, we leave one element of ΓN,h in
γh̃ and proceed with the remaining elements as before. Adjacent elements in γh̃ are
numbered consecutively too. Let us introduce the discrete spaces

Φh :=
{

φh ∈ H−1/2(ΓN ) : φh|ej ∈ P0(ej) , ∀ j = 1, . . . , n
}

and

Qh̃ :=
{

χh̃ ∈ C(Γ̄N) ∩H
1/2
00 (ΓN ) : χh̃|ẽj ∈ P1(ẽj) , ∀ j = 1, ...,m

}

.

Lemma 1. Assume that γh is of bounded variation (that is, the ratio of lengths of

adjacent elements is bounded). Then, there exist C > 0, independent of h and h̃,
such that

sup
φh∈Φh\{0}

〈φh, χh̃〉ΓN

‖φh‖H−1/2(ΓN )

≥ C‖χh̃‖H1/2
00

(ΓN )
∀ χh̃ ∈ Qh̃ ,
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where 〈·, ·〉ΓN denote de duality paring between H−1/2(ΓN ) and H
1/2
00 (ΓN ) with re-

spect to L2(ΓN )-inner product.

Proof. First, we remark that if γh is of bounded variation, then γh̃ is of bounded
variation as well. Let us assume, for simplicity, that n is even. Then, m = n

2
and the dimension of Qh̃ is m − 1. For each ẽi ∈ γh̃, there exist two elements, li,
ri ∈ γh, such that ẽi = li∪ri. We tagged li and ri as left and right in the numbering
direction of γh̃, so that ri is adjacent to li+1. Then, using that γh̃ is of bounded
variation, it follows that

0 < C1 ≤ ci :=
|ri|

|ẽi|
≤ C2 < 1 , ∀ i = 1, . . . ,m ,

and

0 < C3 ≤
|ẽi|

|ẽi+1|
≤ C4 ∀ i = 1, . . . ,m− 1 .

Now, for each i = 1, . . . ,m− 1, we introduce the constant functions

χi :=







c−1
i in ri
(1− ci+1)

−1 in li+1

0 otherwise

and the discrete space Φ0
h̃
:= span{χ1, χ2, . . . , χm−1} ⊂ Φh . It is not difficult to

see that the constant functions χi are mutually orthogonal, so that the dimension
of Φ0

h̃
is m− 1, that is, is equal to dimension of Qh̃. Then, the proof follows as in

Lemma 5.2 in [10]. �

Remark. To ensure that γh is of bounded variation, it is enough that the trian-
gulation Th is quasiuniform in a neighborhood of ΓN . �

From the previous Lemma, there exists C > 0, independent of h and h̃, such
that the following discrete inf-sup condition is satisfied:

sup
ρh∈[Φh]2\{0}

〈ρh,χh̃〉ΓN

‖ρh‖[H−1/2(ΓN )]2
≥ C‖χh̃‖[H1/2

00
(ΓN )]2

, ∀ χh̃ ∈ Qh̃ .

In this case, the well-posedness and stability of the Galerkin scheme (3) holds if we
assume that the family of triangulations {Th}h>0 is uniformly regular on ΓN (in
order to apply Lemma 4.6 in [7]).

In the following Theorem, we recall the rate of convergence of the Galerkin
scheme (3) for this particular choice of finite element subspaces.

Theorem 2. Let ((σ,u,γ), ξ) ∈ H × Q and ((σh,uh,γh), ξh̃) ∈ Hh × Qh̃ be
the unique solutions to problems (2) and (3), respectively. Assume that σ ∈

[Hr(Ω)]2×2, div(σ) ∈ [Hr(Ω)]2, u ∈ [Hr+1(Ω)]2, γ ∈ [Hr(Ω)]2×2 and ξ ∈ [H
r+1/2
00 (ΓN )]2,

for some r ∈ (0, 1]. Then, there exists C > 0, independent of λ, h and h̃, such that
there holds

‖((σ,u,γ), ξ)− ((σh,uh,γh), ξh̃)‖H×Q ≤ C h̃r ‖ξ‖
[H

r+1/2
00

(ΓN )]2

+C hr
(

‖σ‖[Hr(Ω)]2×2 + ‖div(σ)‖[Hr(Ω)]2 + ‖u‖[Hr+1(Ω)]2 + ‖γ‖[Hr(Ω)]2×2

)

.

Proof. See Theorem 4.10 in [7] and take into account the definition of γh̃. �
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3. A posteriori error analysis

In this section, we follow [3] and develop an a posteriori error analysis for the
discrete scheme (3) using an appropriate Ritz projection of the error. Given a
triangle T ∈ Th, we denote by E(T ) the set of its edges, and denote by Eh(ΓN )
the set of all the edges in Th contained in ΓN . Then, we assume that each side
ei ∈ Eh(ΓN ), i ∈ {1, . . . , n}, is contained in a side ẽj , for some j ∈ {1, . . . ,m}; in

this case, we denote by h̃ei = |ẽj |.
Let ((σ,u,γ), ξ) be the unique solution to problem (2) and assume that the

Galerkin scheme (3) has a unique solution, ((σh,uh,γh), ξh̃), that depends contin-
uously on the data. We define the Ritz projection of the error with respect to the
inner product of H,

〈(σ,u,γ), (τ ,v,η)〉H := (σ, τ )H(div; Ω) + (u,v)[H1(Ω)]2 + (γ,η)[L2(Ω)]2×2 ,

as the unique element (σ̄, ū, γ̄) ∈ H such that for all (τ ,v,η) ∈ H,
(4)
〈(σ̄, ū, γ̄), (τ ,v,η)〉H = A((σ−σh,u−uh,γ−γh), (τ ,v,η))+B((τ ,v,η), ξ−ξh̃) .

We remark that the existence and uniqueness of (σ̄, ū, γ̄) ∈ H is guaranteed by the
Lax-Milgram Lemma.

Using the continuous dependence of the solution on the data, we are able to
bound the error in terms of its Ritz projection and the residual in the Neumann
boundary condition, that is,

(5)

∣

∣

∣

∣((σ − σh,u− uh,γ − γh), ξ − ξh̃)
∣

∣

∣

∣

H×Q
≤

≤ C
(

||(σ̄, ū, γ̄)||H + ||g− σhn||[H−1/2(ΓN )]2

)

.

Assume that g ∈ [L2(ΓN )]2. Then, applying Theorem 2 in [5] (see also [2, (2.16)]),
the residual in the Neumann boundary condition can be bounded in terms of a
L2-norm:

(6) ||g − σhn||
2
[H−1/2(ΓN )]2 ≤ C log(1 + κ)

∑

e∈Eh(ΓN )

h̃e ||g− σhn||
2
[L2(e)]2 ,

where κ := max
{

|ei|
|ej |

: ei is a neighbor of ej

}

. Then, according to (5), to obtain

reliable a posteriori error estimates for the discrete scheme (3), it is enough to
bound from above the Ritz projection of the error. In the next lemma we obtain
an upper bound for ||(σ̄, ū, γ̄)||H in terms of residuals.

Lemma 3. There exists a constant C > 0, independent of h, h̃ and λ, such that

(7)

||(σ̄, ū, γ̄)||H ≤ C
(

||f + div(σh)||[L2(Ω)]2 + ||σh − σt
h||[L2(Ω)]2×2

+
∣

∣

∣

∣uh + ξh̃

∣

∣

∣

∣

[H
1/2
00

(ΓN )]2
+

∣

∣

∣

∣ε(uh)− C−1σh

∣

∣

∣

∣

[L2(Ω)]2×2

+
∣

∣

∣

∣γh − 1
2 (∇uh − (∇uh)

t)
∣

∣

∣

∣

[L2(Ω)]2×2

)

.

Proof. We first use that ((σ,u,γ), ξ) is the unique solution to problem (2) to write

〈(σ̄, ū, γ̄), (τ ,v,η)〉H = F (τ ,v,η)−A((σh,uh,γh), (τ ,v,η))−B((τ ,v,η), ξh̃) ,

for all (τ ,v,η) ∈ H. Equivalently,

(σ̄, τ )H(div; Ω) = F1(τ ) , ∀ τ ∈ H(div; Ω) ,

(ū,v)[H1(Ω)]2 = F2(v) , ∀v ∈ [H1
ΓD

(Ω)]2 ,

(γ̄,η)[L2(Ω)]2×2 = F3(η) , ∀η ∈ [L2(Ω)]2×2
skew ,
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where F1 : H(div; Ω) → R, F2 : [H1
ΓD

(Ω)]2 → R and F3 : [L2(Ω)]2×2
skew → R are the

bounded linear functionals defined by

F1(τ ) := − κ2

∫

Ω

(f + div(σh)) · div(τ ) −

∫

Ω

(C−1σh −∇uh + γh) : τ

− κ1

∫

Ω

C−1(ε(uh)− C−1σh) : τ − 〈τn, ξh̃ + uh〉ΓN ,

F2(v) :=

∫

Ω

(f + div(σh)) · v − κ1

∫

Ω

(

ε(uh)−
1

2
C−1(σh + σt

h)
)

: ∇v

− κ3

∫

Ω

(γh −
1

2
(∇uh − (∇uh)

t)) : ∇v ,

F3(η) :=

∫

Ω

1

2
(σh − σt

h) : η − κ3

∫

Ω

(γh −
1

2
(∇uh − (∇uh)

t)) : η .

Then, the result follows using the Cauchy-Schwarz inequality, the triangle inequal-
ity, the continuity of C−1 and the definition of the H-norm. �

Motivated by the previous results, we define the a posteriori error estimate

η :=
(

∑

T∈Th

η2T +
∣

∣

∣

∣uh + ξh̃

∣

∣

∣

∣

2

[H
1/2
00

(ΓN )]2

)1/2

,

where

η2T := ||f + div(σh)||
2
[L2(T )]2 + ||σh − σt

h||
2
[L2(T )]2×2

+ log(1 + κ)
∑

e∈E(T )∩Eh(ΓN )

h̃e ||g− σhn||
2
[L2(e)]2

+
∣

∣

∣

∣ε(uh)− C−1σh

∣

∣

∣

∣

2

[L2(T )]2×2 +

∣

∣

∣

∣

∣

∣

∣

∣

γh −
1

2
(∇uh − (∇uh)

t)

∣

∣

∣

∣

∣

∣

∣

∣

2

[L2(T )]2×2

.

We recall that any T ∈ Th has at most one of its sides on ΓN . In the next theorem
we establish that the a posteriori error estimator η is reliable and efficient.

Theorem 4. Assume that g ∈ [L2(ΓN )]2. Then, there exist positive constants,

Ceff and Crel, independent of h, h̃ and λ, such that

Ceff η ≤
∣

∣

∣

∣((σ − σh,u− uh,γ − γh), ξ − ξh̃)
∣

∣

∣

∣

H×Q
≤ Crel η .

Proof. The reliability of η (second inequality above) follows from its definition and
inequalities (5)–(7). To prove that η is efficient, we recall that ξ = −u on ΓN and
use the triangle inequality and a trace theorem to get

∣

∣

∣

∣uh + ξh̃

∣

∣

∣

∣

[H
1/2
00

(ΓN )]2
≤ ||uh − u||

[H
1/2
00

(ΓN )]2
+

∣

∣

∣

∣ξh̃ − ξ
∣

∣

∣

∣

[H
1/2
00

(ΓN )]2

≤ C ||uh − u||[H1(Ω)]2 +
∣

∣

∣

∣ξh̃ − ξ
∣

∣

∣

∣

[H
1/2
00

(ΓN )]2
.

On the other hand, from the proof of Lemma 6.5 in [6] (see also [2]), we deduce
that
(8)

∑

e∈E(T )∩Eh(ΓN )

h̃e ||g − σhn||
2
[L2(e)]2 ≤

≤ C
∑

e∈E(T )∩Eh(ΓN )

(

h2
T ||div(σ − σh)||

2
[L2(T )]2 + ||σ − σh||

2
[L2(T )]2

)

The result follows proceeding with the remaining terms as in [1]. �
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Since the a posteriori error estimate η is not fully local, it cannot be used in an
adaptive algorithm. A first attempt to define a reliable and fully local a posteriori
error estimator can be achieved by using an interpolation argument. Indeed, it

suffices to remark that the space [H
1/2
00 (ΓN )]2 is the interpolation space of index

1/2 between [H1
0 (ΓN )]2 and [L2(ΓN )]2. Then, if g ∈ [L2(ΓN )]2, there exists a

constant Crel > 0, independent of h, h̃ and λ, such that

∣

∣

∣

∣((σ − σh,u− uh,γ − γh), ξ − ξh̃)
∣

∣

∣

∣

H×Q
≤ Crel η̂

where

η̂ :=
(

∑

T∈Th

η̂2T

)1/2

, with η̂2T := η2T +
∑

e∈E(T )∩Eh(ΓN )

∣

∣

∣

∣uh + ξh̃

∣

∣

∣

∣

2

[H1(e)]2
.

An alternative approach, based on the introduction of an auxiliary function (see
[5]), allows us to derive a fully local, reliable and quasi-efficient a posteriori error
estimate. Indeed, let ūh be the unique continuous piecewise linear function defined
in Ω̄ such that ūh(x) = uh(x) for all node x of Th in Ω ∪ ΓD and ūh(x) = −ξh̃(x)
for all node x of Th on ΓN . We remark that ūh is defined so that ūh + ξh̃ vanishes
at the nodes of Th on ΓN .

Lemma 5. There exists a constant C > 0, independent of h, h̃ and λ, such that

||(σ̄, ū, γ̄)||H ≤ C
(

||f + div(σh)||[L2(Ω)]2 + ||σh − σt
h||[L2(Ω)]2×2

+
∣

∣

∣

∣ūh + ξh̃

∣

∣

∣

∣

[H
1/2
00

(ΓN )]2
+

∣

∣

∣

∣ε(uh)− C−1σh

∣

∣

∣

∣

[L2(Ω)]2×2

+
∣

∣

∣

∣γh − 1
2 (∇uh − (∇uh)

t)
∣

∣

∣

∣

[L2(Ω)]2×2 + ||uh − ūh||[H1(Ω)]2

)

.

Proof. The proof is analogous to that of Lemma 3, but with

F1(τ ) :=− κ2

∫

Ω

(f + div(σh)) · div(τ ) +

∫

Ω

(uh − ūh) · div(τ )

−

∫

Ω

(C−1σh −∇ūh + γh) : τ

− κ1

∫

Ω

C−1(ε(uh)− C−1σh) : τ − 〈τn, ξh̃ + ūh〉ΓN ∀ τ ∈ H(div; Ω) .

We remark that we bound
∣

∣

∣

∣C−1σh −∇ūh + γh

∣

∣

∣

∣

[L2(Ω)]2×2 ≤
∣

∣

∣

∣ε(uh)− C−1σh

∣

∣

∣

∣

[L2(Ω)]2×2

+
∣

∣

∣

∣γh − 1
2 (∇uh − (∇uh)

t)
∣

∣

∣

∣

[L2(Ω)]2×2 + ||∇(uh − ūh)||[L2(Ω)]2×2 .

�

Now, since ūh + ξh̃ vanishes on the nodes of Th on ΓN , by virtue of Theorem 1
in [5], if |ΓD| ≥ |ẽ1|+ |ẽm|, we have that

(9)
∣

∣

∣

∣ūh + ξh̃

∣

∣

∣

∣

[H
1/2
00

(ΓN )]2
≤ C log(1 + κ)

∑

e∈Eh(ΓN )

he

∣

∣

∣

∣

∣

∣

∣

∣

d

dtT
(ūh + ξh̃)

∣

∣

∣

∣

∣

∣

∣

∣

2

[L2(e)]2
,
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where tT denotes the unit tangential vector along e. This result motivates the

definition of the fully local a posteriori error estimate η̄ :=
(

∑

T∈Th
η̄2T

)1/2

, where

η̄2T := ||f + div(σh)||
2
[L2(T )]2 + ||σh − σt

h||
2
[L2(T )]2×2 + ||uh − ūh||

2
[H1(T )]2

+
∣

∣

∣

∣ε(uh)− C−1σh

∣

∣

∣

∣

2

[L2(T )]2×2 +
∣

∣

∣

∣γh − 1
2 (∇uh − (∇uh)

t)
∣

∣

∣

∣

2

[L2(T )]2×2

+ log(1 + κ)
∑

e∈E(T )∩Eh(ΓN )

(

h̃e ||g − σhn||
2
[L2(e)]2

+ he

∣

∣

∣

∣

∣

∣

d
dtT

(ūh + ξh̃)
∣

∣

∣

∣

∣

∣

2

[L2(e)]2

)

.

Theorem 6. Assume that g ∈ [L2(ΓN )]2 and |ΓD| ≥ |ẽ1|+ |ẽm|. Then there exists

positive constants, Ceff and Crel, independent of h, h̃ and λ, such that
∣

∣

∣

∣((σ − σh,u− uh,γ − γh), ξ − ξh̃)
∣

∣

∣

∣

H×Q
≤ Crel η̄ ,

and

Ceff η̄ ≤
∣

∣

∣

∣((σ − σh,u− uh,γ − γh), ξ − ξh̃)
∣

∣

∣

∣

H×Q

+
(

∑

T∈Th

∂T∩Γ̄N 6=∅

||u− ūh||
2
[H1(T )]2

)1/2

.

Proof. The reliability estimate follows from (5), (6), Lemma 5, (9) and the definition
of η̄. To prove the second inequality, we proceed similarly as in Subsection 2.3.2 in
[2] and obtain that

∑

e∈Eh(ΓN )

he

∣

∣

∣

∣

∣

∣

∣

∣

d

dtT
(ūh + ξh̃)

∣

∣

∣

∣

∣

∣

∣

∣

2

[L2(e)]2
≤ C

(

||uh − u||2[H1(Ω)]2 +
∣

∣

∣

∣ξh̃ − ξ
∣

∣

∣

∣

2

[H
1/2
00

(ΓN )]2

)

.

Then, the proof follows taking into account (8) and proceeding with the remaining
terms as in [1]. �

4. Numerical experiments

In this section we present some numerical results that illustrate the performance
of the augmented mixed finite element scheme (3) for the finite element subspaces
defined in Section 2 and of the adaptive algorithms based on the a posteriori error
estimates η̂ and η̄ derived in Section 3.

We recall that, given the Young modulus E and the Poisson ratio ν of a linear
elastic material, the corresponding Lamé constants can be computed by µ := E

2(1+ν)

and λ := E ν
(1+ν) (1−2 ν) . In the examples below, we take E = 1 and consider the

values ν = 0.4900 and ν = 0.4999, which yield the following values of µ and λ :

ν µ λ
0.4900 0.3356 16.4430
0.4999 0.3334 1666.4444

Given an error indicator ζ :=
(

∑

T∈Th

ζ2T
)1/2

, we consider the following adaptive

algorithm:

(1) Start with a coarse mesh Th.
(2) Solve the Galerkin scheme for the current mesh Th.
(3) Compute ζT for each triangle T ∈ Th.
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(4) Consider stopping criterion and decide to finish or go to the next step.
(5) Use bisection procedure to refine each element T ′ ∈ Th such that

ζT ′ ≥
1

2
max{ζT : T ∈ Th} .

(6) Define the resulting mesh as the new Th and go to step 2.

Let (σ,u,γ, ξ) and (σh,uh,γh, ξh̃) be the unique solutions to problems (2) and
(3), respectively. We define the individual errors e(σ) := ‖σ−σh‖H(div; Ω), e(u) :=
|u−uh|[H1(Ω)]2 , e(γ) := ‖γ−γh‖[L2(Ω)]2×2 and e(ξ) := ‖ξ−ξh̃‖[H1/2

00
(ΓN )]2

, and the

total error

etotal :=
(

e(σ)2 + e(u)2 + e(γ)2 + e(ξ)2
)1/2

.

The effectivity index of a given a posteriori error estimate ζ is then given by I(ζ) :=
etotal/ζ. Besides, we define the experimental convergence rate as

r(e) := − 2
log(etotal/e

′
total)

log(N/N ′)
,

where N and N ′ denote the degrees of freedom (dof) of two consecutive triangula-
tions, and etotal and e′total are the corresponding total errors.

In the table below, we specify the examples to be considered here. We choose
the data f and g so that the exact solution is u(x1, x2). The numerical experiments
showed in this section were carried out in a notebook Intel Core i7-820 with four
dual processors using a Matlab code.

Example Ω u(x1, x2)

1 ]0, 1[2 u1(x1, x2) = u2(x1, x2) = x1 x2 e
x1+x2

2 ]− 1, 1[2 \ [0, 1]2 u1(x1, x2) = u2(x1, x2) = r5/3 sin((2θ − π)/3)

3 ]0, 2[2 \ B[0, 1] u(x1, x2) = 5(1− x2
1 − x2

2)e
−5(1−x2

1−x2
2)

2

(x1,−x2)
t

In order to emphasize the robustness of the a posteriori error estimates η̂ and η̄
with respect to the Poisson ratio, we first consider Example 1 with ΓD :=

(

{0} ×

[0, 1]
)

∪
(

[0, 1]× {0}
)

and ΓN := Γ \ Γ̄D. In Tables I and II we present the dof, the
total errors, the convergence rates, the values of the a posteriori error estimates η̂
and η̄ and the corresponding effectivity indices obtained in a sequence of uniform
meshes with ν = 0.4900 and ν = 0.4999, respectively, taking κ1 = µ, κ2 = 1

2µ and

κ3 = µ
8 . We remark that, independently of how large the errors could become, the

effectivity indices obtained with the two values of ν are very similar (they remain in
a neighborhood of 0.9). These results numerically confirm the robustness of η̂ and
η̄ with respect to the Poisson ratio (and hence, with respect to the Lamé parameter
λ).

On the other hand, the feasible values of the stabilization parameter κ3 depend on
the unknown constant kD from Korn’s first inequality. With the aim of studying the
robustness of the scheme (3) with respect to the parameter κ3, we fixed ν = 0.4900,
κ1 = µ and κ2 = 1

2µ , and run the code for different values of κ3. In Tables I, III, IV

and V, we display the dof, the total errors, the convergence rates, the values of the
a posteriori error estimates and the corresponding effectivity indices for a sequence
of uniform meshes using different values of κ3. We remark that the optimal order of
convergence for the total error is achieved in all cases, confirming the robustness of
the discrete scheme (3) with respect to the parameter κ3. Moreover, the effectivity
indices are in all cases in a neighborhood of 0.9.

In what follows, we fix ν = 0.4900, κ1 = µ, κ2 = 1
2µ and κ3 = µ

8 , and consider

Examples 2 and 3 to illustrate the performance of the adaptive algorithms based
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Table 1. Ex. 1 (ν = 0.4900): Dof, total errors, convergence
rates, a posteriori error estimates and effectivity indices (uniform
refinement).

N etotal r(etotal) η̂ etotal/η̂ η̄ etotal/η̄

50 0.9543E+2 —– 0.1243E+3 0.7677 0.1261E+3 0.7568

182 0.6781E+2 0.5288 0.7457E+2 0.9094 0.7922E+2 0.8560

686 0.3284E+2 1.0932 0.3553E+2 0.9243 0.3686E+2 0.8909

2654 0.1611E+2 1.0530 0.1720E+2 0.9364 0.1749E+2 0.9206

10430 0.8003E+1 1.0220 0.8472E+1 0.9447 0.8541E+1 0.9370

41342 0.3995E+1 1.0092 0.4208E+1 0.9494 0.4225E+1 0.9455

164606 0.1996E+1 1.0041 0.2097E+1 0.9519 0.2102E+1 0.9499

656894 0.9980E+0 1.0019 0.1047E+1 0.9532 0.1048E+1 0.9522

Table 2. Ex. 1 (ν = 0.4999): Dof, total errors, convergence
rates, a posteriori error estimates and effectivity indices (uniform
refinement).

N etotal r(etotal) η̂ etotal/η̂ η̄ etotal/η̄

50 0.9383E+4 —– 0.1222E+5 0.7676 0.1240E+5 0.7568

182 0.6688E+4 0.5243 0.7330E+4 0.9123 0.7783E+4 0.8593

686 0.3243E+4 1.0911 0.3490E+4 0.9290 0.3621E+4 0.8954

2654 0.1591E+4 1.0529 0.1688E+4 0.9423 0.1717E+4 0.9264

10430 0.7904E+3 1.0220 0.8310E+3 0.9511 0.8377E+3 0.9435

41342 0.3945E+3 1.0092 0.4126E+3 0.9562 0.4142E+3 0.9523

164606 0.1971E+3 1.0041 0.2056E+3 0.9589 0.2060E+3 0.9569

656894 0.9855E+2 1.0019 0.1026E+3 0.9603 0.1027E+3 0.9593

Table 3. Ex. 1 (κ3 = µ/2): Dof, total errors, convergence rates,
a posteriori error estimates and effectivity indices (uniform refine-
ment).

N etotal r(etotal) η̂ etotal/η̂ η̄ etotal/η̄

50 0.9530E+2 —– 0.1244E+3 0.7659 0.1261E+3 0.7557

182 0.6773E+2 0.5286 0.7419E+2 0.9129 0.7910E+2 0.8563

686 0.3257E+2 1.1037 0.3525E+2 0.9239 0.3652E+2 0.8918

2654 0.1597E+2 1.0533 0.1713E+2 0.9321 0.1743E+2 0.9160

10430 0.7931E+1 1.0228 0.8452E+1 0.9384 0.8528E+1 0.9300

41342 0.3957E+1 1.0097 0.4199E+1 0.9423 0.4219E+1 0.9378

164606 0.1977E+1 1.0043 0.2093E+1 0.9445 0.2099E+1 0.9422

656894 0.9884E+0 1.0020 0.1045E+1 0.9457 0.1046E+1 0.9445

on the a posteriori error estimates η̂ and η̄. In Example 2, we take ΓD :=
(

{0} ×

[0, 1]
)

∪
(

[0, 1]×{0}
)

. In this example, the solution has a singularity at the boundary
point (0, 0). In fact, the behavior of u in a neighborhood of the origin implies that
div(σ) ∈ [H2/3(Ω)]2 which, according to Theorem 2, yields 2/3 as the expected
convergence rate for the uniform refinement.

In Tables VI through VIII we provide the dof, the individual and total errors, the
experimental convergence rates, the values of the a posteriori error estimates and
the corresponding effectivity indices for the uniform and adaptive refinements as
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Table 4. Ex. 1 (κ3 = µ/16): Dof, total errors, convergence rates,
a posteriori error estimates and effectivity indices (uniform refine-
ment).

N etotal r(etotal) η̂ etotal/η̂ η̄ etotal/η̄

50 0.9546E+2 —– 0.1243E+3 0.7681 0.1261E+3 0.7570

182 0.6828E+2 0.5186 0.7491E+2 0.9116 0.7965E+2 0.8573

686 0.3319E+2 1.0874 0.3579E+2 0.9275 0.3727E+2 0.8905

2654 0.1621E+2 1.0595 0.1727E+2 0.9387 0.1760E+2 0.9207

10430 0.8031E+1 1.0262 0.8485E+1 0.9465 0.8559E+1 0.9383

41342 0.4005E+1 1.0103 0.4211E+1 0.9512 0.4229E+1 0.9472

164606 0.2001E+1 1.0044 0.2098E+1 0.9537 0.2103E+1 0.9517

656894 0.1000E+1 1.0020 0.1048E+1 0.9550 0.1049E+1 0.9540

Table 5. Ex. 1 (κ3 = µ/32): Dof, total errors, convergence rates,
a posteriori error estimates and effectivity indices (uniform refine-
ment).

N etotal r(etotal) η̂ etotal/η̂ η̄ etotal/η̄

50 0.9547E+2 —– 0.1243E+3 0.7683 0.1261E+3 0.7571

182 0.6872E+2 0.5089 0.7536E+2 0.9120 0.8016E+2 0.8573

686 0.3353E+2 1.0819 0.3609E+2 0.9290 0.3771E+2 0.8891

2654 0.1632E+2 1.0640 0.1736E+2 0.9401 0.1776E+2 0.9190

10430 0.8056E+1 1.0320 0.8501E+1 0.9476 0.8585E+1 0.9384

41342 0.4012E+1 1.0122 0.4214E+1 0.9521 0.4233E+1 0.9479

164606 0.2004E+1 1.0049 0.2099E+1 0.9547 0.2104E+1 0.9526

656894 0.1002E+1 1.0021 0.1048E+1 0.9560 0.1049E+1 0.9550

Figure 1. Total error vs. dof for the uniform and adaptive re-
finements (Example 2).

applied to Example 2. We observe from these tables that the errors for the adaptive
procedures decrease much faster than for the uniform one, which is confirmed by the
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experimental convergence rates. This fact can also be observed in Figure 1, where
we display the total error versus the dof for the uniform and adaptive refinements
based on θ, η̂ and η̄, where θ is the a posteriori error estimator proposed in [2].

Table 6. Ex. 2: Dof, individual and total errors, experimental
convergence rates, a posteriori error estimates and effectivity in-
dices (uniform refinement).

N e(σ) e(u) e(γ) e(ξ) etotal
550 0.8720E+1 0.1601E+1 0.2928E+1 0.6892E+0 0.9362E+1

2062 0.5441E+1 0.7396E+0 0.1118E+1 0.2458E+0 0.5609E+1

7966 0.3405E+1 0.3408E+0 0.4245E+0 0.9450E-1 0.3449E+1

31294 0.2136E+1 0.1595E+0 0.1718E+0 0.3975E-1 0.2149E+1

124030 0.1342E+1 0.7640E-1 0.7541E-1 0.1673E-1 0.1346E+1

493822 0.8437E+0 0.3732E-1 0.3528E-1 0.6829E-2 0.8452E+0

N r(etotal) η̂ etotal/η̂ η̄ etotal/η̄

550 —– 0.1012E+2 0.9247 0.1021E+2 0.9169

2062 0.7753 0.5843E+1 0.9600 0.5872E+1 0.9553

7966 0.7194 0.3523E+1 0.9790 0.3532E+1 0.9766

31294 0.6918 0.2174E+1 0.9882 0.2177E+1 0.9870

124030 0.6794 0.1356E+1 0.9930 0.1356E+1 0.9924

493822 0.6735 0.8489E+0 0.9956 0.8491E+0 0.9954

In particular, the experimental convergence rates approach 2/3 for the uniform
refinement procedure (see Table VI) whereas the adaptive procedures based on η̂
and η̄ are able to recover the rate of convergence O(h) for the total error (see
Tables VII and VIII). On the other hand, we remark that the effectivity indices
in the adaptive procedures remain bounded around the values 0.8 − 0.9, which
confirms the reliability and eventual efficiency of η̂ and η̄. In Figure 2, we display
the effectivity index versus the dof for the adaptive refinements based on θ, η̂ and
η̄. We observe there that the effectivity indices of η̂ and η̄ are closer to one than
those of θ.

Table 7. Ex. 2. Adaptive algorithm based on η̂ : Dof, individual
and total errors, experimental convergence rates, a posteriori error
estimates and effectivity indices.

N e(σ) e(u) e(γ) e(ξ) etotal r(etotal) η̂ etotal/η̂
550 0.8720E+1 0.1601E+1 0.2928E+1 0.6892E+0 0.9362E+1 —– 0.1012E+2 0.9247
840 0.6935E+1 0.1445E+1 0.2060E+1 0.6962E+0 0.7410E+1 1.1042 0.7987E+1 0.9278
1598 0.5231E+1 0.1221E+1 0.2000E+1 0.7207E+0 0.5777E+1 0.7742 0.6287E+1 0.9189
2780 0.4066E+1 0.7077E+0 0.1142E+1 0.3989E+0 0.4301E+1 1.0660 0.4555E+1 0.9442
3648 0.3432E+1 0.6965E+0 0.1044E+1 0.3017E+0 0.3666E+1 1.1745 0.3903E+1 0.9393
6194 0.2656E+1 0.6006E+0 0.8164E+0 0.2034E+0 0.2850E+1 0.9516 0.3047E+1 0.9353
10049 0.2074E+1 0.3823E+0 0.6256E+0 0.1354E+0 0.2204E+1 1.0623 0.2354E+1 0.9362
15047 0.1685E+1 0.3005E+0 0.4863E+0 0.9917E-1 0.1782E+1 1.0517 0.1896E+1 0.9402
24239 0.1334E+1 0.2612E+0 0.3654E+0 0.9098E-1 0.1411E+1 0.9812 0.1500E+1 0.9404
38599 0.1051E+1 0.1806E+0 0.3108E+0 0.4806E-1 0.1112E+1 1.0239 0.1188E+1 0.9358
59993 0.8405E+0 0.1402E+0 0.2279E+0 0.3713E-1 0.8829E+0 1.0453 0.9370E+0 0.9423
92419 0.6775E+0 0.1222E+0 0.1848E+0 0.3699E-1 0.7137E+0 0.9843 0.7584E+0 0.9411
139024 0.5488E+0 0.9463E-1 0.1505E+0 0.2516E-1 0.5774E+0 1.0384 0.6141E+0 0.9402
202849 0.4564E+0 0.7395E-1 0.1183E+0 0.1638E-1 0.4776E+0 1.0049 0.5057E+0 0.9443

Finally, in Figures 3 and 4, we display some intermediate meshes obtained for
Example 2 with the adaptive algorithms based on η̂ and η̄, respectively. We remark
that both algorithms are able to localize the singularity of the solution at (0, 0) since
the adapted meshes are highly refined around the origin.
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Figure 2. Effectivity indices vs. dof for adaptive refinements (Ex-
ample 2).

Figure 3. Adapted meshes obtained using η̂ in Example 2 with
3648 dof (left) and 92419 dof (right).

Figure 4. Adapted meshes obtained using η̄ in Example 2 with
2657 dof (left) and 69092 dof (right).
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Table 8. Ex. 2. Adaptive algorithm based on η̄ : Dof, individual
and total errors, experimental convergence rates, a posteriori error
estimates and effectivity indices.

N e(σ) e(u) e(γ) e(ξ) etotal r(etotal) η̄ etotal/η̄
550 0.8720E+1 0.1601E+1 0.2928E+1 0.6892E+0 0.9362E+1 —– 0.1021E+2 0.9169
840 0.6935E+1 0.1445E+1 0.2060E+1 0.6962E+0 0.7410E+1 1.1042 0.8094E+1 0.9155
1700 0.5156E+1 0.1268E+1 0.1857E+1 0.6590E+0 0.5664E+1 0.7626 0.6193E+1 0.9145
2657 0.4112E+1 0.7808E+0 0.1196E+1 0.3527E+0 0.4367E+1 1.1641 0.4707E+1 0.9278
3648 0.3434E+1 0.6903E+0 0.1017E+1 0.3125E+0 0.3661E+1 1.1129 0.3945E+1 0.9279
6195 0.2669E+1 0.5728E+0 0.9052E+0 0.3309E+0 0.2895E+1 0.8868 0.3175E+1 0.9119
10666 0.2045E+1 0.3393E+0 0.5667E+0 0.1133E+0 0.2152E+1 1.0910 0.2303E+1 0.9348
15118 0.1689E+1 0.2989E+0 0.4868E+0 0.1022E+0 0.1786E+1 1.0705 0.1919E+1 0.9305
24628 0.1331E+1 0.2564E+0 0.4095E+0 0.8451E-1 0.1419E+1 0.9423 0.1545E+1 0.9182
34889 0.1114E+1 0.1933E+0 0.3416E+0 0.5347E-1 0.1182E+1 1.0480 0.1282E+1 0.9222
48280 0.9491E+0 0.1590E+0 0.2620E+0 0.4081E-1 0.9982E+0 1.0415 0.1077E+1 0.9266
69092 0.8021E+0 0.1327E+0 0.2214E+0 0.3359E-1 0.8433E+0 0.9409 0.9148E+0 0.9219
116723 0.6210E+0 0.1073E+0 0.1850E+0 0.2809E-1 0.6574E+0 0.9498 0.7408E+0 0.8874
124903 0.6124E+0 0.1040E+0 0.1780E+0 0.2707E-1 0.6468E+0 0.4830 0.7580E+0 0.8532

In Example 3, we take ΓD := {x := (x1, x2)
t ∈ R

2 : x2
1 + x2

2 = 1}. In this
case, the solution shows large stress regions in a neighborhood of the Dirichlet
boundary ΓD. In Tables IX through XI we provide the dof, the individual and
total errors, the experimental convergence rates, the values of the a posteriori error
estimates and the corresponding effectivity indices for the uniform and adaptive
refinements as applied to Example 3. We notice from these Tables that the adaptive
algorithms converge faster than the uniform refinement procedure. This fact can
also be observed from Figure 5 below. On the other hand, we also remark that
the effectivity indices are in all cases in a neighborhood of 0.99, which confirms the
reliability and eventual efficiency of η̂ and η̄. In Figure 6, we display the effectivity
index versus the dof for the adaptive refinements based on θ, η̂ and η̄.

Table 9. Ex. 3: Dof, individual and total errors, experimental
convergence rates, a posteriori error estimates and effectivity in-
dices (uniform refinement).

N e(σ) e(u) e(γ) e(ξ) etotal
1420 0.3345E+3 0.3673E+2 0.2654E+2 0.1895E+2 0.3381E+3

6784 0.1772E+3 0.1325E+2 0.2863E+2 0.8648E+1 0.1802E+3

30583 0.8631E+2 0.4538E+1 0.1098E+2 0.1310E+1 0.8713E+2

130076 0.4261E+2 0.2135E+1 0.4027E+1 0.9800E+0 0.4287E+2

541627 0.2113E+2 0.1520E+1 0.1671E+1 0.1036E+1 0.2127E+2

N r(etotal) η̂ etotal/η̂ η̄ etotal/η̄

1420 —– 0.3388E+3 0.9979 0.3390E+3 0.9972

6784 0.8044 0.1824E+3 0.9880 0.1826E+3 0.9868

30583 0.9653 0.8790E+2 0.9913 0.8795E+2 0.9908

130076 0.9800 0.4306E+2 0.9954 0.4308E+2 0.9951

541627 0.9823 0.2126E+2 1.0008 0.2126E+2 1.0006

Finally, in Figures 7 and 8 we display some intermediate meshes obtained for
Example 3 with the adaptive algorithms based on η̂ and η̄, respectively. We remark
that both algorithms are able to localize the large stress regions of the solution since
the adapted meshes concentrate the refinements around the Dirichlet boundary,
where the large stresses occur.
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Table 10. Ex. 3. Adaptive algorithm based on η̂ : Dof, individual
and total errors, experimental convergence rates, a posteriori error
estimates and effectivity indices.

N e(σ) e(u) e(γ) e(ξ) etotal r(etotal) η̂ etotal/η̂
1420 0.3345E+3 0.3673E+2 0.2654E+2 0.1895E+2 0.3381E+3 —– 0.3388E+3 0.9979
2185 0.1935E+3 0.1491E+2 0.2871E+2 0.6756E+1 0.1963E+3 2.5231 0.1985E+3 0.9890
3714 0.1223E+3 0.9772E+1 0.1821E+2 0.8330E+1 0.1243E+3 1.7212 0.1255E+3 0.9908
6358 0.9079E+2 0.6692E+1 0.1317E+2 0.2539E+1 0.9201E+2 1.1201 0.9295E+2 0.9900
11903 0.6205E+2 0.4095E+1 0.8144E+1 0.1385E+1 0.6273E+2 1.2220 0.6324E+2 0.9919
22789 0.4488E+2 0.2927E+1 0.5626E+1 0.1022E+1 0.4534E+2 0.9999 0.4567E+2 0.9926
43726 0.3119E+2 0.2150E+1 0.3702E+1 0.8996E+0 0.3150E+2 1.1178 0.3167E+2 0.9946

Table 11. Ex. 3. Adaptive algorithm based on η̄ : Dof, individual
and total errors, experimental convergence rates, a posteriori error
estimates and effectivity indices.

N e(σ) e(u) e(γ) e(ξ) etotal r(etotal) η̄ etotal/η̄
1420 0.3345E+3 0.3673E+2 0.2654E+2 0.1895E+2 0.3381E+3 —– 0.3390E+3 0.9972
2185 0.1935E+3 0.1491E+2 0.2871E+2 0.6756E+1 0.1963E+3 2.5231 0.1987E+3 0.9876
3714 0.1223E+3 0.9772E+1 0.1821E+2 0.8330E+1 0.1243E+3 1.7212 0.1258E+3 0.9888
6358 0.9079E+2 0.6692E+1 0.1317E+2 0.2539E+1 0.9201E+2 1.1201 0.9316E+2 0.9877
11903 0.6205E+2 0.4095E+1 0.8144E+1 0.1385E+1 0.6273E+2 1.2220 0.6333E+2 0.9905
22855 0.4481E+2 0.2901E+1 0.5598E+1 0.1013E+1 0.4526E+2 1.0004 0.4565E+2 0.9916
43746 0.3119E+2 0.2148E+1 0.3689E+1 0.8970E+0 0.3149E+2 1.1176 0.3168E+2 0.9940

Figure 5. Total error vs. dof for the uniform and adaptive re-
finements (Example 3).

We end this section with some numerical results concerning the performance
of the augmented mixed finite element scheme (3) and the adaptive algorithms
based on the a posteriori error estimates η̂ and η̄ to approximate the solution of
the classical Cook’s membrane problem. We consider the domain Ω := [0, 48] ×
[0, 60] \ {(x1, x2) ∈ R

2/x2 < 11x1

12 or x2 > x1

3 }, ΓD := {(x1, x2) ∈ Ω̄/ x1 = 0} and

ΓN = ∂Ω \ Γ̄D. We assume the data f = 0 and g(x1, x2) = (0, 1) if (x1, x2) ∈ ΓN

with x1 = 48 and g = (0, 0) on the remaining part of ΓN . The material parameters
are E = 2900 and ν = 0.3. We use the estimates η̂ and η̄ to show the convergence
behavior for the uniform and adaptive refinements (see Figures 9 and 10). We
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Figure 6. Effectivity indices vs. dof for adaptive refinements (Ex-
ample 3).

Figure 7. Adapted meshes obtained using η̂ in Example 3 with
3714 dof (left) and 22789 dof (right).

Figure 8. Adapted meshes obtained using η̄ in Example 3 with
2185 dof (left) and 43746 dof (right).



822 T.P. BARRIOS, E.M. BEHRENS, AND M. GONZÁLEZ

Figure 9. Estimator η̂ vs. dof for adaptive and uniform refine-
ments (Cook’s membrane).

Figure 10. Estimator η̄ vs. dof for adaptive and uniform refine-
ments (Cook’s membrane).

observe from these pictures that the errors of the adaptive procedures decrease
much faster than those obtained by the uniform one.

Some intermediate meshes obtained with the adaptive refinements are shown in
Figures 11 and 12. We remark that the algorithm is able to recognize the large
stress regions of the solution.

In summary, the numerical results provided in this section confirm the reliability
of the a posteriori error estimates η̂ and η̄, and support their eventual efficiency in
practice. The associated adaptive algorithms are able to localize the singularities
and large stress regions of the solution. Hence, they become much more suitable
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Figure 11. Adapted meshes obtained using η̂ in Cook’s mem-
brane with 4890 dof (left) and 25581 dof (right).

Figure 12. Adapted meshes obtained using η̄ in Cook’s mem-
brane with 4890 dof (left) and 25581 dof (right).

than the corresponding uniform refinement procedure when solving problems with
non-smooth solutions.

5. Conclusions

We introduced two new a posteriori error estimators for the augmented mixed
finite element method proposed in [7] for the linear elasticity problem in the plane
with mixed boundary conditions. The first a posteriori error estimator, η̂, is reliable
and requires the computation of 4 residuals per element in the interior triangles and
in the triangles with a side on the Dirichlet boundary; in the triangles with a side on
the Neumann boundary, it requires the computation of 6 residuals per element. The
second a posteriori error estimator, η̄, is reliable and locally efficient in the elements
that does not touch the Neumann boundary. It requires the computation of 5
residuals per element in interior triangles and triangles with a side on the Dirichlet
boundary; in triangles with a side on the Neumann boundary, 7 residuals need
to be computed. As compared with the a posteriori error estimator θ introduced
in [2], which is reliable and efficient, the new a posteriori error estimators are less
expensive and easier to implement (the computation of the error indicator θ involves
13 terms per triangle, including normal and tangential jumps). From a practical
point of view, the performance of the three a posteriori error estimators is very
similar. All estimators recognize the singularities and large stress regions of the
solutions. Effectivity indices of η̂ and η̄ are closer to one than those of θ. In view
of the numerical results, we recommend the use of η̂ or η̄.
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Departamento de Matemáticas, Universidade da Coruña, A Coruña, 15071, Spain and Basque
Center for Applied Mathematics, Bilbao, 48009, Spain

E-mail : maria.gonzalez.taboada@udc.es

URL: http://orcid.org/0000-0002-5576-1582


