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AN EFFICIENT MULTIGRID METHOD FOR GROUND STATE

SOLUTION OF BOSE-EINSTEIN CONDENSATES

NING ZHANG, FEI XU, AND HEHU XIE

Abstract. An efficient multigrid method is proposed to compute the ground state solution of
Bose-Einstein condensations by the finite element method based on the combination of the multi-
grid method for nonlinear eigenvalue problem and an efficient implementation for the nonlinear
iteration. The proposed numerical method not only has the optimal convergence rate, but also has

the asymptotically optimal computational efficiency which is independent from the nonlinearity
of the problem. The independence from the nonlinearity means that the asymptotic estimate of
the computational work can reach almost the same as that of solving the corresponding linear
boundary value problem by the multigrid method. Some numerical experiments are provided to

validate the efficiency of the proposed method.
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1. Introduction

It is well known that Bose-Einstein condensation (BEC), which is a gas of bosons
that are in the same quantum state, is an important and active field [2, 3, 4, 12, 19]
in physics. The properties of the condensate at zero or very low temperature [13, 21]
can be described by the well-known Gross-Pitaevskii equation (GPE) [15] which is
a time-independent nonlinear Schrödinger equation [20].

Since this paper considers the numerical method for the nonlinear eigenvalue
problem, we are concerned with the following non-dimensionalized GPE problem:
Find λ ∈ R and a function u such that

(1)

 −∆u+Wu+ ζ|u|2u = λu, in Ω,
u = 0, on ∂Ω,∫

Ω
|u|2dΩ = 1,

where Ω ⊂ Rd (d = 1, 2, 3) denotes the computing domain which has the cone
property [1], ζ is some positive constant and W (x) = γ1x

2
1 + . . . + γdx

2
d ≥ 0 with

γ1, . . . , γd > 0 [5, 29]. It is well known that the ground state solution for (1) is
unique.

The convergence of the finite element method for GPEs is first proved in [29]
and [8] gives prior error estimates which will be used in the analysis of our method.
There also exist two-grid finite element methods for GPE in [9, 10, 17]. Recently, a
type of multigrid method for eigenvalue problems has been proposed in [22, 24, 25,
26, 27]. Especially, [27] gives a multigrid method for GPE (1) and the corresponding
error estimates. This type of multigrid method is designed based on the multilevel
correction method in [22], and a sequence of nested finite element spaces with
different levels of accuracy which can be built in the same way as the multilevel
method for boundary value problems [28]. The corresponding error estimates have
already been obtained in [27]. Furthermore, the estimate of computational work
has also been given in [27]. The computational work of the multigrid in [27] is linear
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scale but depends on the nonlinearity (i.e. the value of ζ) in some sense. The aim of
this paper is to improve the efficiency further with a special implementing method
for the multigrid iteration by using the tensor tool [14] for the GPE. With the tensor
tool, the nonlinear iteration can be implemented only in the coarsest mesh and needs
very small computational work. By using the proposed implementing technique,
the multigrid method can really arrive the asymptotically optimal computational
complexity which is almost independent of the nonlinearity of the GPE.

An outline of the paper goes as follows. In Section 2, we introduce finite element
method for the ground state solution of BEC, i.e. non-dimensionalized GPE (1).
A type of one correction step is given in Sections 3. In Section 4, we propose
an efficient implementing technique for the nonlinear eigenvalue problem included
in the one correction step. A type of multigrid algorithm for solving the non-
dimensionalized GPE by the finite element method will be stated in Section 5.
Three numerical examples are provided in Section 6 to validate the efficiency of the
proposed numerical method in this paper. Some concluding remarks are given in
the last section.

2. Finite element method for GPE problem

This section is devoted to introducing some notation and finite element method
for the GPE (1). The letter C (with or without subscripts) denotes a generic positive
constant which may be different at its different occurrences. For convenience, the
symbols ., & and ≈ will be used in this paper. That x1 . y1, x2 & y2 and x3 ≈ y3,
mean that x1 ≤ C1y1, x2 ≥ c2y2 and c3x3 ≤ y3 ≤ C3x3 for some constants C1, c2, c3
and C3 that are independent of mesh sizes (see, e.g., [28]). The standard notation
for the Sobolev spaces W s,p(Ω) and their associated norms ∥ · ∥s,p,Ω and seminorms
| · |s,p,Ω (see, e.g., [1]) will be used. For p = 2, we denote Hs(Ω) = W s,2(Ω) and
H1

0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}, where v|∂Ω = 0 is in the sense of trace and
∥ · ∥s,Ω = ∥ · ∥s,2,Ω. In this paper, we set V = H1

0 (Ω) and use ∥ · ∥s to denote ∥ · ∥s,Ω
for simplicity.

For the aim of finite element discretization, we define the corresponding weak
form for (1) as follows: Find (λ, u) ∈ R× V such that b(u, u) = 1 and

(2) a(u, v) = λb(u, v), ∀v ∈ V,

where

a(u, v) :=

∫
Ω

(
∇u∇v +Wuv + ζ|u|2uv

)
dΩ, b(u, v) :=

∫
Ω

uvdΩ.

Now, let us define the finite element method [7, 11] for the problem (2). First we
generate a shape-regular decomposition of the computing domain Ω ⊂ Rd (d = 2, 3)
into triangles or rectangles for d = 2 (tetrahedrons or hexahedrons for d = 3). The
diameter of a cell K ∈ Th is denoted by hK and define h as h := maxK∈Th

hK . Then
the corresponding linear finite element space Vh ⊂ V can be built on the mesh Th.
We assume that Vh ⊂ V is a family of finite-dimensional spaces that satisfy the
following assumption:

(3) lim
h→0

inf
vh∈Vh

∥w − vh∥1 = 0, ∀w ∈ V.

The standard finite element method for (2) is to solve the following eigenvalue
problem: Find (λ̄h, ūh) ∈ R× Vh such that b(ūh, ūh) = 1 and

(4) a(ūh, vh) = λ̄hb(ūh, vh), ∀vh ∈ Vh.
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Then we define

(5) δh(u) := inf
vh∈Vh

∥u− vh∥1.

For understanding the multigrid method in this paper, we state the error estimates
of the finite element method for GPE (1).

Lemma 2.1. ([8, Theorem 1],[29]) There exists h0 > 0, such that for all 0 <
h < h0, the smallest eigenpair approximation (λ̄h, ūh) of (4) has following error
estimates:

∥u− ūh∥1 . δh(u),(6)

∥u− ūh∥0 . ηa(Vh)∥u− ūh∥1 . ηa(Vh)δh(u),(7)

|λ− λ̄h| . ∥u− ūh∥21 + ∥u− ūh∥0 . ηa(Vh)δh(u),(8)

where ηa(Vh) is defined as follows:

ηa(Vh) = ∥u− ūh∥1 + sup
f∈L2(Ω),∥f∥0=1

inf
vh∈Vh

∥Tf − vh∥1(9)

with the operator T being defined as follows: Find Tf ∈ u⊥ such that

a(Tf, v) + 2(ζ|u|2(Tf), v)− (λ(Tf), v) = (f, v), ∀v ∈ u⊥,

where u⊥ =
{
v ∈ H1

0 (Ω)|
∫
Ω
uvdΩ = 0

}
.

3. One correction step

In this section, we recall the one correction step from [27] to improve the accuracy
of the given eigenpair approximation. This correction step contains solving an
auxiliary linear boundary value problem with multigrid method in the finer finite
element space and a GPE on a very low dimensional finite element space which will
be discussed in the next section.

In order to define the one correction step, we introduce a very coarse mesh TH
and the low dimensional linear finite element space VH defined on the mesh TH .
Assume we have obtained an eigenpair approximation (λhk

, uhk
) ∈ R × Vhk

and
the coarse space VH is a subset of Vhk

. Let Vhk+1
⊂ V be a finer finite element

space such that Vhk
⊂ Vhk+1

. Based on this finer finite element space, we define
the following one correction step.

Algorithm 3.1. One Correction Step

(1) Define the following auxiliary boundary value problem: Find ûhk+1
∈ Vhk+1

such that

(∇ûhk+1
,∇vhk+1

) + (Wûhk+1
, vhk+1

) + (ζ|uhk
|2ûhk+1

, vhk+1
)

= λhk
b(uhk

, vhk+1
), ∀vhk+1

∈ Vhk+1
.(10)

Solve this equation with multigrid method [6, 7, 16, 23, 28] to obtain an
approximation ũhk+1

∈ Vhk+1
with the error estimate ∥ũhk+1

− ûhk+1
∥1 .

ςhk+1
. Here ςhk+1

is used to denote the accuracy for the multigrid iteration.
(2) Define a new finite element space VH,hk+1

= VH+span{ũhk+1
} and solve the

following nonlinear eigenvalue problem: Find (λhk+1
, uhk+1

) ∈ R× VH,hk+1

such that b(uhk+1
, uhk+1

) = 1 and

a(uhk+1
, vH,hk+1

) = λhk+1
b(uhk+1

, vH,hk+1
), ∀vH,hk+1

∈ VH,hk+1
.(11)

Summarize above two steps into

(λhk+1
, uhk+1

) = Correction(VH , λhk
, uhk

, Vhk+1
, ςhk+1

).
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Similarly, we also state the following error estimates from [27] for the one cor-
rection step defined in Algorithm 3.1.

Theorem 3.1. ([27, Theorem 3.1]) Assume hk < h0 (as in Lemma 2.1). Then
after one correction step, the resultant approximation (λhk+1

, uhk+1
) ∈ R × Vhk+1

has the following error estimates:

∥ūhk+1
− uhk+1

∥1 . εhk+1
(u),(12)

∥ūhk+1
− uhk+1

∥0 . ηa(VH)∥u− uhk+1
∥1,(13)

|λ̄hk+1
− λhk+1

| . ηa(VH)εhk+1
(u),(14)

where εhk+1
(u) := ηa(Vhk

)δhk
(u) + ∥ūhk

− uhk
∥0 + |λ̄hk

− λhk
|+ ςhk+1

.

4. Efficient implementation

In this section, we show an efficient implementing method for Step 2 of Algorithm
3.1, i.e., solving the nonlinear eigenvalue problem (11). For simplicity of notation,
we use h to denote hk+1. Then Vh, ũh and VH,h = VH + span{ũh} denote Vhk+1

,
ũhk+1

and VH,hk+1
= VH + span{ũhk+1

}, respectively, in this section. Here we also
define NH := dimVH and Nh := dimVh. Let {ϕk,H}1≤k≤NH

denotes the Lagrange
basis function for the coarse finite element space VH .

For simplicity, the fixed point (self-consistent field) iteration method with dump-
ing technique is adopted to solve the nonlinear eigenvalue problem (11). In each
nonlinear iteration, the main content is to assemble the matrices for problem (11)
which is defined on the special space VH,h. The function in VH,h can be denoted
by uH,h = uH + αũh. Solving problem (11) is to obtain the function uH ∈ Vh

and the value α ∈ R. Let uH =
∑NH

k=1 ukϕk,H and define the vector uH as
uH = [u1, · · · , uNH ]T .

Based on the structure of the space VH,h, the matrix version of the eigenvalue
problem (11) can be written as follows

(15)

(
AH bHh

bTHh ξ

)(
uH

α

)
= λh

(
MH cHh

cTHh γ

)(
uH

α

)
,

where uH ∈ RNH and α ∈ R.
It is obvious that the matrix MH , the vector cHh and the scalar γ will not change

during the nonlinear iteration process as long as we have obtained the function ũh.
But the matrix AH , the vector bHh and the scalar ξ will change during the nonlinear
iteration process. It is required to consider the efficient implementation to update
the the matrix AH , the vector bHh and the scalar ξ since there is a function ũh

which is defined on the fine mesh Th. The aim of this section is to propose an
efficient method to update the matrix AH , the vector bHh and the scalar ξ without
computation on the fine mesh Th during the nonlinear iteration process. Assume we
have a given initial value (uH , α) ∈ VH×R. Now, in order to carry out the nonlinear
iteration for eigenvalue problem (15), we come to consider the computation for the
matrix AH , vector bHh and the scalar ξ.

From the definitions of the space VH,h and the eigenvalue problem (11), the
matrix AH has the following expansion

(AH)i,j =

∫
Ω

∇ϕi,H∇ϕj,HdΩ+

∫
Ω

wϕi,Hϕj,HdΩ+

∫
Ω

ζ(uH + αũh)
2ϕi,Hϕj,HdΩ

:= (AH,1)i,j + (AH,2)i,j ,(16)
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where

(AH,1)i,j =

∫
Ω

∇ϕi,H∇ϕj,HdΩ+

∫
Ω

wϕi,Hϕj,HdΩ(17)

and

(AH,2)i,j =

∫
Ω

ζ(uH + αũh)
2ϕi,Hϕj,HdΩ

=

∫
Ω

ζ
(
(uH)2 + 2αuH ũh + α2(ũh)

2
)
ϕi,Hϕj,HdΩ

=

∫
Ω

ζ(uH)2ϕi,Hϕj,HdΩ+ 2α

∫
Ω

ζũhuHϕi,Hϕj,HdΩ

+α2

∫
Ω

ζ(ũh)
2ϕi,Hϕj,HdΩ

:= (AH,2,1)i,j + 2α(AH,2,2)i,j + α2(AH,2,3)i,j .(18)

It is obvious that the computational work for the matrix

(AH,2,1)i,j =

∫
Ω

ζ(uH)2ϕi,Hϕj,HdΩ(19)

is O(NH). The matrices AH,1, and AH,2,3 which is defined by

(AH,2,3)i,j =

∫
Ω

ζ(ũh)
2ϕi,Hϕj,HdΩ(20)

will not change during the nonlinear iteration process.
The matrix AH,2,2 has the following expansion

(AH,2,2)i,j =

NH∑
k=1

uk

∫
Ω

ζũhϕk,Hϕi,Hϕj,HdΩ.(21)

The expansion (21) gives a hint to define a tensor TH as follows

(TH)i,j,k =

∫
Ω

ζũhϕk,Hϕi,Hϕj,HdΩ.(22)

Then the matrix AH,2,2 has the following computational scheme

AH,2,2 = TH · uH ,(23)

where TH · uH denotes the multiplication of the tensor TH and the vector uH

corresponding to the last index k. From (22), it is easy to know that the dimension
of the tensor TH is RNH×NH×NH and the number of nonzero elements is O(NH).
Thus TH is a sparse tensor and the computational work for the operation (23) is
O(NH).

Now, let us consider the computation for the vector bHh. From the definition of
the space VH,h and the problem (11), the vector bHh has the following expansion

(bHh)i =

∫
Ω

∇ũh∇ϕi,HdΩ+

∫
Ω

wũhϕi,HdΩ+

∫
Ω

ζ(uH + αũh)
2ũhϕi,HdΩ

:= (bHh,1)i + (bHh,2)i,(24)

where

(bHh,1)i =

∫
Ω

∇ũh∇ϕi,HdΩ+

∫
Ω

wũhϕi,HdΩ,(25)
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and

(bHh,2)i =

∫
Ω

ζ(uH + αũh)
2ũhϕi,HdΩ

=

∫
Ω

ζ
(
(uH)2 + 2αũhuH + α2(ũh)

2
)
ũhϕi,HdΩ

=

∫
Ω

ζ(uH)2ũhϕi,HdΩ+ 2α

∫
Ω

ζ(ũh)
2uHϕi,HdΩ+ α2

∫
Ω

ζ(ũh)
3ϕi,HdΩ

:= (bHh,2,1)i + 2α(bHh,2,2)i + α2(bHh,2,3)i.(26)

It is obvious that the vector bHh,1 will not change during the nonlinear iteration
process. Thus, we only need to consider the computation for the vector bHh,2.

First, the computation for the vector bHh,2,1 can be implemented as follows

(bHh,2,1)i =

∫
Ω

( NH∑
j=1

ujϕj,H

)2
ũhϕi,HdΩ

=

NH∑
j=1

NH∑
k=1

ujuk

∫
Ω

ũhϕj,Hϕk,Hϕi,HdΩ.(27)

Based on the tensor TH , the vector bHh,2,1 can be calculated by the tensor multi-
plication

bHh,2,1 = (TH · uH) · uH = AH,2,2uH ,(28)

where (TH · uH) · uH denotes the multiplication of the tensor TH with the vector
uH corresponding to the last two indices k and j. Similarly, the computational
work for the operation (28) is also O(NH).

Then the computation for bHh,2,2 can be done as follows

(bHh,2,2)i =

NH∑
j=1

uj

∫
Ω

ζ(ũh)
2ϕj,Hϕi,HdΩ = (AH,2,3uH)i.(29)

Finally, the vector bHh,2,3 which is defined as

(bHh,2,3)i =

∫
Ω

ζ(ũh)
3ϕi,HdΩ,(30)

will not change neither during the nonlinear iteration process.
Now, let us come to consider the computation for the value ξ. It is obvious that

ξ has the following expansion

ξ =

∫
Ω

|∇ũh|2dΩ+

∫
Ω

w(ũh)
2dΩ+

∫
Ω

ζ(uH + αũh)
2(ũh)

2dΩ

=

∫
Ω

(
|∇ũh|2 + w(ũh)

2
)
dΩ+

∫
Ω

ζ
(
(uH)2 + 2αuH ũh + α2(ũh)

2
)
(ũh)

2dΩ

:= d1 + d2,(31)

where

d1 =

∫
Ω

(
|∇ũh|2 + w(ũh)

2
)
dΩ,(32)
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and

d2 =

NH∑
i=1

NH∑
j=1

uiuj

∫
Ω

ζ(ũh)
2ϕi,Hϕj,HdΩ+ 2α

NH∑
i=1

ui

∫
Ω

ζ(ũh)
3ϕi,HdΩ

+α2

∫
Ω

ζ(ũh)
4dΩ

= uT
HAH,2,3uH + 2αuT

HbHh,2,3 + α2ξh,(33)

with the scalar ξh being defined as follows

ξh =

∫
Ω

ζ(ũh)
4dΩ.(34)

Based on above discussion and preparation, we define the following algorithm
for solving the nonlinear eigenvalue problem (11) in Step 2 of Algorithm 3.1.

Algorithm 4.1. Nonlinear iteration method for eigenvalue problem (11)

(1) Preparation for the nonlinear iteration: Compute the tensor TH as in (22),
the matrices AH,1 and AH,2,3 as in (17) and (20), vectors bHh,1 and bHh,2,3

as in (25) and (30), scalars d1 and ξh as in (32) and (34).
(2) Nonlinear iteration:

(a) Produce the matrix AH,2,1 and AH,2,2 as in (19) and (23). Then com-
pute the matrix AH = AH,1 +AH,2,1 + 2αAH,2,2 + α2AH,2,3.

(b) Produce bHh,2,1 and bHh,2,2 as in (28) and (29). Then compute the
vector bHh = bHh,1 + bHh,2,1 + 2αbHh,2,2 + α2bHh,2,3.

(c) Compute the scalar d2 as in (33). Then compute the scalar ξ = d1+d2.
(d) Solve the eigenvalue problem (15) by some eigensolver to get a new

eigenfunction (uH , α) and the corresponding eigenvalue λh.
(e) If the accuracy for nonlinear iteration is satisfied, stop the nonlinear

iteration. Otherwise, continue the nonlinear iteration.

(3) Output the eigenfunction uh = uH + αũh =
∑NH

i=1 uiϕi,H + αũh and the
eigenvalue λh.

Remark 4.1. It is obvious that assembling the Tensor, matrices, vectors and scalar
in Step 1 of Algorithm 4.1 needs computational work O(Nh). But, the computational
work for each nonlinear iteration step (Step 2) of Algorithm 4.1 is only O(MH),
where MH denotes the computational work for solving the eigenvalue problem (15)
and it holds that MH ≥ NH . Assume there needs ϖ nonlinear iteration times.
Then the computational work for Algorithm 4.1 is only O(Nh +ϖMH).

5. Multigrid method for GPE

Based on the preparation in previous sections, we introduce a type of multigrid
method based on the One Correction Step defined in Algorithms 3.1 and the im-
plementing technique defined in Algorithm 4.1. This type of multigrid method can
obtain the same optimal error estimate as that for solving the GPE directly on the
finest finite element space.

In order to develop multigrid scheme, we define a sequence of triangulations Thk

of Ω as follows. Suppose Th1 is produced from TH by some regular refinements and
let Thk

be obtained from Thk−1
via a regular refinement such that

(35) hk ≈ 1

β
hk−1, k = 2, . . . , n,
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where β denotes the refinement index. Based on this sequence of meshes, we con-
struct the corresponding linear finite element spaces Vh1 , . . . , Vhn such that

VH = Vh0 ⊆ Vh1 ⊂ Vh2 ⊂ . . . ⊂ Vhn ⊂ V.(36)

In this paper, we assume the following relations of approximation errors hold

ηa(Vhk
) ≈ 1

β
ηa(Vhk−1

), δhk
(u) ≈ 1

β
δhk−1

(u), k = 2, . . . , n.(37)

Algorithm 5.1. Multigrid Scheme for GPE

(1) Construct a sequence of nested finite element spaces VH , Vh1 , Vh2 , . . . , Vhn

such that (36) and (37) hold.
(2) Solve the GPE on the initial finite element space Vh1 : Find (λh1 , uh1) ∈

R× Vh1 such that b(uh1 , uh1) = 1 and

a(uh1 , vh1) = λh1b(uh1 , vh1), ∀vh1 ∈ Vh1 .

(3) Do k = 1, . . . , n− 1
Obtain a new eigenpair approximation (λhk+1

, uhk+1
) ∈ R × Vhk+1

with
the one correction step being defined by Algorithm 3.1 and the nonlinear
iteration being defined by Algorithm 4.1

(λhk+1
, uhk+1

) = Correction(VH , λhk
, uhk

, Vhk+1
, ςhk+1

).

End Do

Finally, we obtain an eigenpair approximation (λhn , uhn) ∈ R× Vhn .

The error estimates for Algorithm 5.1 can be stated as follows.

Theorem 5.1. ([27, Theorem 4.1,Corollary 4.1]) Assume h1 < h0 (as in Lem-
ma 2.1) and the error ςhk+1

of the linear solving by the multigrid method in the
correction step on the (k + 1)-th level mesh satisfies ςhk+1

≤ ηa(Vhk
)δhk

(u) for
k = 1, . . . , n−1. After implementing Algorithm 5.1, the resultant eigenpair approx-
imation (λhn , uhn) has following error estimates

∥ūhn − uhn∥1 . β2ηa(Vhn)δhn(u),(38)

∥ūhn
− uhn

∥0 . ηa(Vhn
)δhn

(u),(39)

|λ̄hn − λhn | . ηa(Vhn)δhn(u),(40)

under the condition Cβ2ηa(VH) < 1 for the concerned constant C.
Furthermore, we have following optimal error estimates

∥u− uhn∥1 . δhn(u),(41)

∥u− uhn∥0 . ηa(Vhn)δhn(u),(42)

|λ− λhn | . ηa(Vhn)δhn(u).(43)

Now, we come to estimate the computational work for the multigrid scheme
defined by Algorithm 5.1 with the nonlinear iteration method defined by Algorithm
4.1. Since the linear boundary value problem (10) in Algorithm 3.1 is solved by
multigrid method, the computational work is asymptotically optimal.

First, we define the dimension of each level linear finite element space as

Nk := dimVhk
, k = 1, . . . , n.

Then we have

Nk ≈
( 1
β

)d(n−k)

Nn, k = 1, . . . , n.(44)
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Different from the method in [27], the computational work for the second step
in Algorithm 3.1 with the nonlinear iteration method in Algorithm 4.1 is O(Nk +
ϖMH) in each level space Vhk

.

Theorem 5.2. Assume solving the linear eigenvalue problem (15) in the coarse
spaces VH,hk

(k = 1, . . . , n) and Vh1 need work O(MH) and O(Mh1), respectively,
and the work of the multigrid method for solving the source problem in Vhk

is O(Nk)
for k = 2, 3, . . . , n. Let ϖ denote the nonlinear iteration times when we solve the
nonlinear eigenvalue problem (11). Then the work involved in Algorithm 5.1 has
the following estimate:

Total work = O
(
Nn +ϖMH logNn +ϖMh1

)
.(45)

Proof. Let Wk denote the work in the k-th finite element space Vhk
. Then with the

correction definition in Algorithms 3.1, 4.1 and Remark 4.1, we have

Wk = O (Nk +ϖMH) .(46)

Iterating (46) and using the fact (44), we obtain

Total work =
n∑

k=1

Wk = O

(
ϖMh1 +

n∑
k=2

(
Nk +ϖMH

))

= O
( n∑

k=2

Nk + (n− 1)ϖMH +ϖMh1

)
= O

(
n∑

k=2

( 1
β

)d(n−k)

Nn +ϖMH logNn +ϖMh1

)
= O

(
Nn +ϖMH logNn +ϖMh1

)
.(47)

This is the desired result (45) and we complete the proof. �

Remark 5.1. The estimate of the computational work (45) is an essential improve-
ment from the estimate in [27]. With the help of the implementing technique defined
in Algorithm 4.1, the nonlinear iteration times affect the final computational work
by ϖMH and ϖMh1

which is very small scale since MH ≪ Nhn
and Mh1

≪ Nhn
.

It means that the final computational work is asymptotically optimal and depends
very weakly on the the nonlinearity of GPE.

6. Numerical examples

In this section, we provided three numerical examples to validate the efficiency of
the multigrid method stated in Algorithm 5.1 with the nonlinear iteration technique
defined in Algorithm 4.1. About the convergence behavior of Algorithm 5.1, please
refer to [18, 27] which give the corresponding numerical results. Here, we are only
concerned with the computing time (in seconds) for Algorithm 5.1 for the eigenvalue
problem (1) with different choices of ζ.

Example 6.1. In this example, we solve GPE (1) with the computing domain Ω
being the unit square Ω = (0, 1)× (0, 1), W = x2

1 + x2
2 and different choices of ζ.

The sequence of finite element spaces are constructed by using the linear finite
element on the sequence of meshes which are produced by regular refinement with
β = 2 (connecting the midpoints of each edge). In this example, we choose the
coarse mesh TH = Th1 which is shown in Figure 1 to investigate the CPU time (in
seconds) for different ζ.
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Figure 1. The coarse mesh TH = Th1 for Example 6.1.

For comparison, we also present the CPU time of the original multigrid method
which has been introduced in [27]. The CPU time results are shown in Figure 2.
From Figure 2, we can find that the computational work of Algorithm 5.1 with
the nonlinear iteration defined by Algorithm 4.1 is much smaller than that of the
original multigrid method in [27]. The computational work of the original multigrid
method in [27] has linear scale but depends on the nonlinearity of the problem. It
is well known that bigger value of ζ means stronger nonlinearity of the problem
(1). This is why the original multigrid method needs more CPU time for bigger
ζ. Figure 2 also shows that the asymptotic computational work for Algorithm
5.1 is almost independent from the nonlinearity (the choice of ζ) of the eigenvalue
problem (1) which consists with the estimate (45) in Theorem 5.2.
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Figure 2. The CPU time (in seconds) for two dimensional eigenvalue
problem (1). Here linear solving time denotes the CPU time for the lin-
ear elliptic boundary value problem by the multigrid method, multilevel
method time denotes the CPU time for the original multigrid method
in [27] and tensor method time denotes the CPU time for Algorithm 5.1.
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Example 6.2. In the second example, we solve GPE (1) with the computing domain
Ω being the unit brick Ω = (0, 1) × (0, 1) × (0, 1), W = x2

1 + x2
2 + x2

3 and different
choice of ζ.

The sequence of finite element spaces are constructed by using the linear finite
element on the sequence of meshes which are produced by regular refinement with
β = 2 from the coarse mesh TH which is shown in Figure 3. In this example, we
also use the initial mesh TH = Th1 to investigate the CPU time (in seconds) for
different ζ.

In this example, we also present the CPU time for the original multigrid method
introduced in [27] for comparison. Figure 4 shows the CPU time results where we
can find the same behavior as in Example 6.1. The computational work of Algorith-
m 5.1 is much smaller than the original multigrid method in [27]. Figure 4 shows
that the computational work of the the original multigrid method in [27] depends
on the strength of the nonlinearity. Furthermore, the asymptotic computational
work for Algorithm 5.1 is almost independent of the nonlinearity (the choice of ζ)
of the eigenvalue problem (1) which consists with the estimate (45) in Theorem 5.2.

Figure 3. The coarse mesh TH = Th1 for Example 6.2.

Example 6.3. In this example, we also solve the GPE (1), where the computing
domain Ω is the L-shape domain Ω = (0, 2)× (0, 2)\[1, 2)× [1, 2), W = x2

1 + x2
2.

Due to the reentrant corner of Ω, the exact eigenfunction with singularities is
expected. The convergence order for approximate eigenpair is less than the order
predicted by the theory for regular eigenfunctions. Thus, the adaptive refinement is
adopted to couple with the multigrid method described in Algorithm 5.1. Since the
exact eigenvalue is not known, we also choose an adequately accurate approximation
on a fine enough mesh as the exact one to check the error estimates. We give
the numerical results of the multigrid method in which the sequence of meshes
Th1 , · · · , Thn is produced by the adaptive refinement with the following a posteriori
error estimator

η2(uhk
,K) := h2

K∥RK(λhk
, uhk

)∥20,K +
∑

e∈EI ,e⊂∂K

he∥Je(uhk
)∥20,e,(48)
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Figure 4. The CPU time (in seconds) for three dimensional eigenvalue
problem (1). Here multilevel method time denotes the CPU time for the
original multigrid method in [27] and tensor method time denotes the
CPU time for Algorithm 5.1.

where the element residual RK(uhk
) and the jump residual Je(uhk

) are defined as
follows:

RK(λhk
, uhk

) := λhk
uhk

+∆uhk
−Wuhk

− ζ|uhk
|2uhk

, in K ∈ Thk
,(49)

Je(uhk
) := −∇v+ · ν+ −∇v− · ν− := [∇v]e · νe, on e ∈ EI .(50)

Here EI denotes the set of interior faces (edges or sides) of Thk
and e is the common

side of elementsK+ andK− with the unit outward normals ν+ and ν−, respectively,
and νe = ν−.

Figure 5 shows the corresponding numerical results by Algorithm 5.1 coupled
with the adaptive refinement. From the numerical experiment, it is also observed
the errors by Algorithm 5.1 is the same as the original multigrid method in [27] since
the difference between these two algorithms is only the implementing technique.
From Figure 5, we can also find that Algorithm 5.1 can also work on the adaptive
family of meshes and obtain the optimal accuracy.

In this example, for comparison, we also present the CPU time for the original
multigrid method introduced in [27]. The CPU time results are shown in Figure
6 which shows the same behavior as in previous examples. The computational
work of Algorithm 5.1 is much smaller than the original multigrid method in [27].
Figure 6 shows that the computational work of the the original multigrid method
in [27] depends on the strength of the nonlinearity. Furthermore, the asymptotic
computational work for Algorithm 5.1 is almost independent from the nonlinearity
(the choice of ζ) of the eigenvalue problem (1) even on the adaptive family of
meshes.

7. Concluding remarks

In this paper, with the help of tensor, we propose an efficient implementing
method for the multigrid method introduced in [27] to solve GPE. With the new
implementing method for the nonlinear iteration, the asymptotical computation-
al work for solving GPE is almost the same as solving the corresponding linear
boundary value problem by the multigrid method, and almost independent of the
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Figure 5. The errors for eigenvalue problem (1) which is solved by
the multigrid method coupled with the adaptive refinement. The left
subfigure shows the errors for the eigenvalue approximation and the
right one shows the posteriori error estimates for the eigenfunction ap-

proximations.
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Figure 6. The CPU time (in seconds) for eigenvalue problem (1) which
is solved by the multigrid method coupled with the adaptive refinement.
Here multilevel method time denotes the CPU time for the original
multigrid method in [27] and tensor method time denotes the CPU time
for Algorithm 5.1.

nonlinearity of GPE. Three examples are provided to validate the efficiency of the
proposed method.

The idea and method here can also be extended to other problems with polyno-
mial or rational type of nonlinearity such as Navier-Stokes, Kohn-Sham equations
and some phase models. Furthermore, we can use the algorithms here to design high
order nonlinear iteration method for the general nonlinear problems and nonlinear
eigenvalue problems.
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