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ROBUST AND EFFICIENT MIXED HYBRID DISCONTINUOUS

FINITE ELEMENT METHODS FOR ELLIPTIC INTERFACE

PROBLEMS

JIANG ZHU AND HÉCTOR ANDRÉS VARGAS POBLETE

Abstract. Because of the discontinuity of the interface problems, it is natural to apply the
discontinuous Galerkin (DG) finite element methods to solve those problems. In this work, both
fitted and unfitted mixed hybrid discontinuous Galerkin (MHDG) finite element methods are
proposed to solve the elliptic interface problems. For the fitted case, the problems can be solved
directly by MHDG method. For the unfitted case, the broken basis functions (unnecessary to
satisfy the jump conditions) are introduced to those elements which are cut across by interface,
the weights depending on the volume fractions of cut elements and the different diffusions (or
material heterogeneities) are used to stabilize the method, and the idea of the Nitsche’s penalty

method is applied to guarantee the jumps on the interface parts of cut elements. Unlike the
immersed interface finite element methods (IIFEM), the two jump conditions are enforced weakly
in our variational formulations. So, our unfitted interface MHDG method can be applied more
easily than IIFEM to general cases, particularly when the immersed basis function cannot be
constructed. Numerical results on convergence and sensitivities of both interface location within a
cut element and material heterogeneities show that the proposed methods are robust and efficient
for interface problems.

Key words. Elliptic interface problems, discontinuous Galerkin finite element methods, mixed
and hybrid methods, Nitsche’s penalty method, sensitivities of interface location and material
heterogeneities.

1. Introduction

Interface problems arise frequently in many applications, as for example, in heat
and mass transfer, electromagnetic wave propagation, cell and bubble formation,
biological science, fluid mechanics and many other practical applications. In these
problems, the solution and the flux are usually nonsmooth on interface. Interface
problems with fixed interfaces can be solved efficiently by fitted interface methods
[7, 5, 10, 20]. In these methods the meshes are constructed to align or approximate
to the interface. However, for the moving interface problems, the fitted interface
methods are very costly because of the generation of new fitted interface meshes at
each time step.

To overcome this difficulty, the unfitted interface methods have been studied.
The immersed boundary method was proposed in [29] to model blood flow in the
heart. Since then, other unfitted interface methods, such as the immersed interface
(finite difference) method [21, 19], the immersed interface finite element method
(IIFEM) [23, 24, 15, 17, 18], the ghost fluid method [14, 25, 26], the extended
finite element method (XFEM) [28, 4, 37], the Nitsche’s penalty method [16, 1, 27],
and so on, have been developed. In unfitted interface methods, the meshes are
fixed, independent of the interface geometry and the interface usually cuts through
cells. Then the moving interface problems can be solved with fixed meshes, without
remeshing process.
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Because of the discontinuity of the interface problems, it is natural to apply the
DG methods to solve those problems. The DG methods were introduced indepen-
dently in [13, 31, 6]. Since then, numerous DG methods have been developed. Be-
cause of the flexibility for mesh and polynomial refinements, localizability, stability
and parallelizability, the DG methods have been widely applied to many problems.
Recently, a fitted DG method with a priori and a posteriori error estimations for the
interface diffusion problem was studied in [10], the hybridizable DG (HDG) method
based on [11] was applied to the fitted interface diffusion problem in [20], an unfitted
DG method based on Nitsche’s penalty method for the interface diffusion problem
was introduced and analyzed in [27], and a selective immersed DG method for the
interface diffusion problem was proposed in [17]. Besides, the mixed method can
be used to get more precise approximation to the flux which is necessary in many
applications, particularly for the coupled problems [34, 33, 35, 36, 32, 22]. From
computational point of view, a particular advantage of the MHDG method is that
it can be formulated and implemented at the element level. This allows to eliminate
the primal and flux variables on the element level, then to obtain a global system
only for the Lagrange multipliers.

In this work, we propose both fitted and unfitted MHDG methods for elliptic in-
terface problems. For the fitted case, we solve the problems directly by the MHDG
methos [13, 2, 8, 9, 11, 12]. For the unfitted case, similarly to the idea presented
in[16], we propose the broken Raviart-Thomas basis functions (unnecessary to sat-
isfy the jump conditions) to those elements which are cut across by interface, we
introduce the weighted averages depending on the volume fractions of cut elements
and the material heterogeneities to stabilize the method, and we apply the idea of
the Nitsche’s penalty method to guarantee the jumps on the interface parts of cut
elements. Unlike the IIFEM method, the two jump conditions are enforced weakly
in our variational formulations. Thus, our unfitted MHDG method can be applied
more easily than IIFEM method to general cases, particularly when the immersed
basis function cannot be constructed. Numerical results on convergence and sensi-
tivities of both interface location within a cut element and material heterogeneities
show that the proposed methods are robust and efficient for interface problems.

The paper is organized as follows. In section 2, we introduce the elliptic interface
model problem, define the notations and the finite element spaces. In section 3,
we present the fitted MHDG method and the corresponding numerical results. In
section 4, we formulate the unfitted MHDG method. However, numerical results
show that the flux on interface cannot be well approximated by the formulation.
To get a good approximation to the flux on interface and to guarantee the interface
jumps, we introduce two penalty terms to the formulation in section 4.2. As a result
we obtain numerically a robust and efficient MHDG method for both cut elements
with arbitrary small volume fractions and large material heterogeneities. Finally
in section 5 we present some concluding remarks. The numerical analysis of the
proposed interface MHDG method should be our next work.
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Figure 1. Ω is divided by the interface Γ into two disjoint sub-
domains, Ω1 and Ω2. ∂Ωi

D and ∂Ωi
N (i = 1, 2) are Dirichlet and

Neumann boundaries, respectively. n1 is the outward unit normal
vector of Ω1.

2. Model problem

In this work we consider the following elliptic interface problem:
(1)



(i) −∇ · (κi∇ui) = f in Ωi, i = 1, 2,
(ii) ui = giD on ∂ΩD ∩ ∂Ωi,
(iii) −κi∇ui · ni = giN on ∂ΩN ∩ ∂Ωi,
(iv) [[u]] = u1n1 + u2n2 = sDn1 on Γ,
(v) −[[κ∇u]] = −

(
κ1∇u1 · n1 + κ2∇u2 · n2

)
= sN on Γ,

where Ω ⊂ R
d is a bounded domain with Lipschitz boundary ∂Ω = ∂ΩD ∪ ∂ΩN

such that ∂ΩD ∩ ∂ΩN = ∅. The two subdomains Ω1 and Ω2, satisfy Ω1 ∩ Ω2 = ∅,
Ω = Ω1 ∪ Ω2 and the interface Γ = Ω1 ∩ Ω2, κ ∈ L∞(Ω) is a positive diffusion
function, with possible large jumps across subdomain boundaries, κi = κ |Ωi ∈

C(Ωi), f ∈ L2(Ω), gD ∈ H1/2(∂ΩD), gN ∈ L2(∂ΩN ), sD ∈ H1/2(Γ), sN ∈ L2(Γ)
and ni denotes the outward unit normal vector of Ωi, see Figure 1 for details.

Let σi = −κi∇ui the diffusive flux, then the model problem (1) can be written
in mixed form as:

(2)





(i) 1
κiσ

i +∇ui = 0 in Ωi, i = 1, 2,
(ii) ∇ · σi = f in Ωi, i = 1, 2,
(iii) ui = giD on ∂ΩD ∩ ∂Ωi,
(iv) σ

i · ni = giN on ∂ΩN ∩ ∂Ωi,
(v) [[u]] = u1n1 + u2n2 = sDn1 on Γ,
(vi) [[σ]] =

(
σ

1 · n1 + σ
2 · n2

)
= sN on Γ.

2.1. Finite element approximation. Let Th be a regular triangulation of Ω,
see Figure 2. For each element T ∈ Th, we denote by ∂T the boundary of T , set
∂Th = {∂T : T ∈ Th}. Denote by Eh the set of all edges of Th, E

I
h is the set of

all interior edges, ED
h and EN

h are the sets of all boundary edges belonging to the
Dirichlet and Neumann boundaries ∂ΩD and ∂ΩN , respectively. Then we have
Eh = EI

h ∪ ED
h ∪ EN

h . Furthermore, denote he the diameter of e ∈ Eh, ei = e ∩ Ωi.
|T | is the area/volume of T ∈ Th. T i = T ∩ Ωi and ΓT = T ∩ Γ . We define

(3) T i
h = {T : T ∈ Th; |T

i| > 0}, T 0
h = T 1

h ∩ T 2
h ,

(4) E i
h = {e : e ∈ Eh; |e

i| > 0}, E0
h = E1

h ∩ E2
h,

and the discontinuous finite element spaces

(5) Vh = V1
h × V2

h, Uh = U1
h × U2

h, Mh = M1
h ×M2

h,
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(6)
V i
h =

{
τ
i
h : τ i

h ∈ [L2(Ωi)]d : τ i
h |T ;∈ RT k(T ), ∀ T ∈ T i

h

}
,

U i
h =

{
vih : vih ∈ L2(Ωi) : vih |T ;∈ Pk(T ), ∀ T ∈ T i

h

}
,

Mi
h =

{
µi
h : µi

h ∈ L2(E i
h) : µh = 0 on ∂ΩD, µ

i
h |e ∈ Pk(e), ∀ e ∈ E i

h

}
,

where Pk(T ) denotes the space of polynomials of degree ≤ k on T and RT k(T )
denotes the Raviart-Thomas space on T [30], defined by

(7) RT k(T ) =
[
Pk(T )

]d
+ xPk(T ).

(a) Fitted mesh (b) Unfitted mesh

Figure 2. Fitted and unfitted triangulations for the domain Ω.
In the fitted case the mesh is aligned with the interface Γ, then
T 0
h = ∅ and E0

h = ∅. For the unfitted case, Γ cuts arbitrarily the
elements because the mesh is not aligned with the interface. The
grey zone corresponds to the set T 0

h , i.e. the set of elements crossed
by the interface. In the unfitted case T 0

h 6= ∅ and E0
h 6= ∅ in general.

For σh =
(
σ

1
h,σ

2
h

)
∈ Vh and uh =

(
u1h, u

2
h

)
∈ Uh. We define the jumps on ΓT as

(8) [[σh]] = σ
1
h · n1 + σ

2
h · n2, [[uh]] = u1hn

1 + u2hn
2 on ΓT for T ∈ T 0

h ,

the volume and edge inner products as

(9) (uh, vh)Th
=
∑

T∈Th

(uh, vh)T , (uh, vh)T =
(
u1h, v

1
h

)
T 1

+
(
u2h, v

2
h

)
T 2
,

(10) 〈uh, vh〉∂Th
=
∑

T∈Th

〈uh, vh〉∂T , 〈uh, vh〉∂T = 〈u1h, v
1
h〉∂T∩T 1 + 〈u2h, v

2
h〉∂T∩T 2 .

For a piecewise constant κ, we define

(11) κ (uh, vh)Th
=
∑

T∈Th

(κuh, vh)T and κ〈uh, vh〉∂Th
=
∑

T∈Th

〈κuh, vh〉∂T

3. Fitted MHDG method

For a fitted mesh Th of Ω. Multiplying (2.i) and (2.ii) by test functions τh and
vh respectively, integrating on element T ∈ Th, and applying the Green formula in
the first equation, we obtain

1
κ (σh, τh)T − (uh,∇ · τh)T + 〈ûh, τh · n〉∂T = 0,(12)

− (∇ · σh, vh)T = − (f, vh)T .(13)

Now, to capture the jump condition for the solution on the interface, ûh is defined
in terms of λh ∈ Mh as follows:

(14) ûh =

{
λh + sD, if e ∩ Γ 6= ∅, for e ∈ ∂T and T ∈ T 1

h ,
λh, otherwise.
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Introducing the delta function δΓ, defined on ∂Th as

(15) δΓ =

{
1, if e ∩ Γ 6= ∅, for e ∈ ∂T and T ∈ T 1

h ,
0, otherwise.

and using (14), we can rewrite (12) and (13) as

1
κ (σh, τh)T − (uh,∇ · τh)T + 〈λh + δΓsD, τh · n〉∂T = 0,(16)

− (∇ · σh, vh)T = − (f, vh)T .(17)

Observe that if λh is available, we can solve the system (16)-(17) in element level.
Hence, (16)-(17) defines a local problem that determines (σh, uh) as a function of
λh on each element.

To determine λh we enforce weakly the continuity requirements for the normal
component of the flux variable across interelement boundaries and also we impose
weakly the Neumann boundary condition. We require that λh ∈ Mh satisfies

(18) 〈σh · n, µh〉∂Th\(ED
h
∪EN

h ) − 〈sN , µh〉Γ + 〈σh · n− gN , µh〉EN
h

= 0 ∀µh ∈ Mh.

Finally, summing the equations (16) and (17) over all elements, from (18) and
rearranging some terms, we obtain the fitted MHDG formulation for the diffusion
interface problem.

3.1. Fitted MHDG method. Find (σh, uh, λh) ∈ Vh × Uh ×Mh such that, for
all (τh, vh, µh) ∈ Vh × Uh ×Mh

(19)





(i) 1
κ (σh, τh)Th

− (uh,∇ · τh)Th
+ 〈λh, τh · n〉∂Th\ED

h

= −〈δΓsD, τh · n〉∂Th
− 〈gD, τh · n〉ED

h
,

(ii) − (∇ · σh, vh)Th
= − (f, vh)Th

,
(iii) 〈σh · n, µh〉∂Th\ED

h
= 〈sN , µh〉Γ + 〈gN , µh〉EN

h
.

3.1.1. Matrix representation for the fitted MHDG method. The fitted
MHDG formulation (19) yields the following (global) linear system

(20)



A BT CT

B 0 0
C 0 0






σ

u

λ


 =




f1
f2
f3


 ,

where σ, u and λ correspond to the vector of degrees of freedom for σh, uh and
λh, respectively.

For the implementation details of the fitted MHDG method (19), we refer [3]
and [9].

3.1.2. Numerical results. The lowest order interpolation finite element spaces
Vh, Uh and Mh are applied in all numerical tests in this paper. In this section we
present numerical results of the performance of the proposed fitted MHDG formu-
lation (19) for the diffusion interface problem (1). To study the convergence of the
method, we compute the numerical solutions on a sequence of fitted unstructured
refined meshes. The meshes are generated by the mesh generator EasyMesh.

The accuracy of the method is measured by the following relative errors in L2 (Ω)-
norm

(21) euΩ =
‖u− uh‖0,Ω

‖u‖0,Ω
, eσΩ =

‖σ − σh‖0,Ω
‖σ‖0,Ω

,
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where ‖·‖0,Ω denotes the L2 (Ω)-norm. We are particularly interested in the accu-
racy of the method on the interface which can be measured by the following relative
errors in L2 (Γ)-norm

(22) eu
i

Γ =
‖ui − uih‖0,Γ

‖ui‖0,Γ
, eσ

i·n1

Γ =
‖(σi − σ

i
h) · n

1‖0,Γ
‖σi · n1‖0,Γ

, i = 1, 2.

Test 1. As in Zilian et al. [37], we consider the elliptic interface problem in a

square domain Ω = (0, 1)
2
with Dirichlet boundary conditions. The domain Ω is

partitioned by an immersed interface Γ into an upper subdomain Ω1 and a lower
subdomain Ω2. In each subdomain the diffusion coefficient κi is constant. The
problem is defined by

(23)





(i) 1
κiσ

i +∇ui = 0 in Ωi,
(ii) ∇ · σi = f in Ωi,
(iii) ui = gD on ∂ΩD ∩ ∂Ωi,
(iv) [[u]] = sDn1 on Γ,
(v) [[σ]] = sN on Γ.

Let f = 0 and the exact solution be as follows:

(24) u(x, y) =





κ1sin(πx) [cosh(πy)− coth(π)sinh(πy)] ,
if x ∈ Ω1,

κ2sin(πx) [cosh(πy)− coth(π)sinh(πy)] ,
if x ∈ Ω2,

where Ω1 := {(x, y) ∈ Ω : φ(x, y) > 0}, Ω2 := {(x, y) ∈ Ω : φ(x, y) < 0} and φ(x, y) =
y − 1/3 corresponds to the level set function which defines the interface.

In this test we consider two cases: Case A, κ1 = κ2 = 1; Case B, κ1 = 3 and
κ2 = 0.5. We can observe that, in the Case A the exact solution and the normal
component of the flux are continuous on the interface, and in the Case B the solution
and the normal flux are discontinuous across the interface. The interfacial jump
conditions are given by

• Case A:

(25) [[u]] = 0, [[σ]] = 0 on Γ.

• Case B:

(26) [[u]] =
(
κ1 − κ2

)
sin(πx) [cosh(πy)− coth(π)sinh(πy)]n1 on Γ,

(27)

[[σ]] = π
[(
κ2
)2

−
(
κ1
)2]
[
cos(πx) {cosh(πy)− coth(π)sinh(πy)}
sin(πx) {sinh(πy)− coth(π)cosh(πy)}

]
· n1 on Γ.

Figure 3 shows the exact and numerical solutions at the horizontal interface in
the cases A and B. These results for the variable u and the normal component
σ · n1 of the variable σ are obtained on a fitted unstructured mesh with mesh size
h = 0.03125, consisting of 1281 nodes, 2340 elements and 3710 sides, by evaluating
the approximated solutions at the Gauss points of the piecewise linear interface.
Very good approximations to both the variables u and the normal component of σ
on the interface can be observed in both cases. Figures 4 and 5 present the optimal
convergence results for the approximations uh and σh in L2(Ω)-norm relative error
and in L2(Γ)-norm relative error for both cases. We can observe that the proposed
method presents very good approximations to all variables globally and near to the
interface, for the homogeneous and non-homogeneous interface conditions.
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Figure 3. Exact solutions of u and σ · n1 and their numerical
solutions at the Gauss points of the horizontal interface y = 1/3.
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Figure 4. Convergence rates for the Case A.
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Figure 5. Convergence rates for the Case B.

Test 2. In this test, we are interested in the sensitivity of the method (19) for high
contrast in material properties. We consider the following problem which is similar
to that tested in Annavarapu et al.[1]:

(28)





(i) 1
κiσ

i +∇ui = 0 in Ωi,
(ii) ∇ · σi = f in Ωi,
(iii) ui = 1 on ∂ΩD ∩ ∂Ωi = {(x, y) ∈ Ω : x = 0, 1},
(iv) σ

i · ni = 0 on ∂ΩN ∩ ∂Ωi = {(x, y) ∈ Ω : y = 0, 1},
(v) [[u]] = sDn1 on Γ,
(vi) [[σ]] = 0 on Γ,
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where Ω = (0, 1)
2
, f1 = f2 = 1. The exact solution is as follows:

(29) u(x, y) =





(3κ1 + κ2)x

4κ1(κ1 + κ2)
−

x2

2κ1
+ 1,

if x ∈ Ω1 = {(x, y) ∈ Ω : φ(x, y) > 0},
κ2 − κ1 + (3κ1 + κ2)x

4κ2(κ1 + κ2)
−

x2

2κ2
+ 1,

if x ∈ Ω2 = {(x, y) ∈ Ω : φ(x, y) < 0},

where φ(x, y) = c − x corresponds to the level set function to define the vertical
interface and c ∈ R is a parameter to fix the interface location.

Again we use an unstructured mesh with h = 0.03125, consisting of 1281 nodes,
2340 elements and 3710 sides. We set c = 0.8, κ1 = 1 and vary κ2 from 10−6

to 106 in terms of a geometric progression with common ratio 10. For each ratio
between κ2 and κ1 we compute on the interface the relative error in percentage for
the variable u as

(30) Eui

∞ = max
(xp,yp)∈ΓT ,T∈T 0

h

(
|u(xp, yp)− uih(xp, yp)|

|u(xp, yp)|

)
∗ 100, i = 1, 2,

and for the normal component of the flux variable σ as

(31) Eσ
i·n1

∞,Γ = max
(xp,yp)∈ΓT ,T∈T 0

h

(
|
(
σ(xp, yp)− σ

i
h(xp, yp)

)
· n1|

|σ(xp, yp) · n1|

)
∗ 100, i = 1, 2,

where {(xp, yp)} correspond to the Gauss points of integration on the interface ΓT .
Figure 6 presents very good sensitivities of the variable u and the normal com-

ponent of the flux variable σ · n1 for large material heterogeneities.
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Figure 6. Sensitivity for material contrast. Fitted MHDG method.

4. Unfitted MHDG finite element method

We are now going to consider an unfitted partition Th of Ω. As in [16] we assume
that the mesh satisfies:

• The triangulation Th is regular.
• If Γ ∩ T 6= ∅, T ∈ Th, then Γ intersects ∂T exactly twice, and each edge at
most once.

• Let ΓT,h be the straight line segment connecting the point of intersection be-
tween Γ and ∂T . We assume that ΓT is a function of length on ΓT,h: in par-
ticular, in local coordinates (s, t) we have ΓT,h = {(s, t) : 0 < s < |ΓT,h|, t = 0}
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and ΓT = {(s, t) : 0 < s < |ΓT,h|, t = δ(s)}, where δ is positive in the direc-
tion n1. This assumption is always fulfilled for sufficiently fine meshes with
a bounded curvature Γ.

Multiplying (2.i,ii) by test functions τh and vh respectively, integrating on ele-
ment T ∈ Th, and applying the Green formula, we obtain

1
κ (σh, τh)T − (uh,∇ · τh)T + 〈λh, τh · n〉∂T +

∑

i

〈uih, τ
i
h · ni〉ΓT

= 0,(32)

− (σh,∇vh)T + 〈σh · n, vh〉∂T +
∑

i

〈σi
h · ni, vih〉ΓT

= (f, vh)T ,(33)

where the integral terms on ΓT appear only if T ∈ T 0
h .

Summing over all elements in Th we have

(34)

1
κ (σh, τh)Th

−(uh,∇ · τh)Th
+〈λh, τh · n〉∂Th\ED

h
+
∑

i

〈uih, τ
i
h · ni〉Γ

= −〈gD, τh · n〉ED
h
,

− (σh,∇vh)Th
+ 〈σh · n, vh〉∂Th

+
∑

i

〈σi
h · ni, vih〉Γ = (f, vh)Th

.(35)

For the terms involving the interface we have the following identities

∑

i

〈uih, τ
i
h · ni〉Γ =

∑

T∈T 0

h

〈[[uh]], {τh}w〉ΓT
+ 〈{uh}

w
, [[τh]]〉ΓT

=
∑

T∈T 0

h

〈sDn1, {τh}w〉ΓT
+ 〈{uh}

w
, [[τh]]〉ΓT

,(36)

and
∑

i

〈σi
h · ni, vih〉Γ =

∑

T∈T 0

h

〈[[σh]], {vh}
w〉ΓT

+ 〈{σh}w , [[vh]]〉ΓT

=
∑

T∈T 0

h

〈sN , {vh}
w〉ΓT

+ 〈{σh}w , [[vh]]〉ΓT
(37)

where the weighted averages on ΓT , for T ∈ T 0
h , defined by

(38)
{σh}w = w1

σ
1
h + w2

σ
2
h, {σh}

w
= w2

σ
1
h + w1

σ
2
h,

{uh}w = w1u1h + w2u2h, {uh}
w = w2u1h + w1u2h.

and

(39) w1 =
|T 1|/κ1

|T 1|/κ1 + |T 2|/κ2
, w2 =

|T 2|/κ2

|T 1|/κ1 + |T 2|/κ2
,

satisfy that w1 + w2 = 1.
Similarly to (18), we require that λh ∈Mh satisfies

(40) 〈σh · n, µh〉∂Th\(EN
h
∪ED

h )
+ 〈σh · n− gN , µh〉EN

h
= 0 ∀µh ∈ Mh.

Thus, we obtain the unfitted MHDG formulation.
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4.1. Unfitted MHDG method. Find (σh, uh, λh) ∈ Vh × Uh ×Mh such that
(41)



1
κ (σh, τh)Th

− (uh,∇ · τh)Th
+ 〈λh, τh · n〉∂Th\ED

h
+
∑

T∈T 0

h

〈{uh}
w
, [[τh]]〉ΓT

= −
∑

T∈T 0

h

〈sDn1, {τh}w〉ΓT
,−〈gD, τh · n〉ED

h
,

− (σh,∇vh)Th
+ 〈σh · n, vh〉∂Th

+
∑

T∈T 0

h

〈{σh}w , [[vh]]〉ΓT

= (f, vh)Th
−
∑

T∈T 0

h

〈sN , {vh}
w〉ΓT

,

〈σh · n, µh〉∂Th\ED
h
= 〈gN , µh〉EN

h
,

for all (τh, vh, µh) ∈ Vh × Uh ×Mh.
The variational formulation (41) can be written equivalently in the following

symmetric form:
Find (σh, uh, λh) ∈ Vh × Uh ×Mh such that

(42)



1
κ (σh, τh)Th

− (uh,∇ · τh)Th
+ 〈λh, τh · n〉∂Th\ED

h
+
∑

T∈T 0

h

〈{uh}
w
, [[τh]]〉ΓT

= −
∑

T∈T 0

h

〈sDn1, {τh}w〉ΓT
,−〈gD, τh · n〉ED

h
,

− (∇ · σh, vh)Th
+
∑

T∈T 0

h

〈[[σh]], {vh}
w〉ΓT

= − (f, vh)Th
+
∑

T∈T 0

h

〈sN , {vh}
w〉ΓT

,

〈σh · n, µh〉∂Th\ED
h
= 〈gN , µh〉EN

h
,

for all (τh, vh, µh) ∈ Vh × Uh ×Mh.

4.1.1. Implementation of the unfitted MHDG method. For the implemen-
tation of the unfitted MHDG method (42), similarly in [2, 3, 9], first, we present
the global linear system associated to the discrete formulation and explain the
procedure to eliminate the primary variables in terms of the Lagrange multipli-
ers. Then we show how to construct the finite element spaces, and finally, because
the formulation is implemented element by element, we also describe the matrix
representation at element level with necessary modifications for those cut elements.

The presented implementation technique can be applied for high order interpo-
lations and also for the other unfitted methods presented in the next sections.

4.1.2. Matrix representation for the unfitted MHDG method. TheMHDG
formulation (42) yields the following (global) linear system

(43)



A BT CT

B 0 0
C 0 0






σ

u

λ


 =




f1
f2
f3


 ,

where σ, u and λ correspond to the vector of degrees of freedom for σh, uh and
λh, respectively.

Now we are describing the procedure to eliminate the variables σ and u in terms
of the global variable λ.

By the first equation of (43), we have

(44) σ = A−1
(
f1 −BTu− CT

λ
)
,
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replacing in the second and third equations, we have

(45)

[
J L
N O

] [
u

λ

]
=

[
v1

v2

]
,

where

(46)
J = BA−1BT , L = BA−1CT , N = CA−1BT

O = CA−1CT , v1 = BA−1f1 − f2, v2 = FA−1f1 − f3.

By the first equation of (45), we obtain

(47) u = J−1 (v1 − Lλ) ,

and replacing in the second equation, we obtain the global system for the Lagrange
multipliers

(48) Mλ = f .

where M = O −NJ−1L and f = v2 −NJ−1v1.
Since Vh is a discontinuous finite element space, the matrix A is block diagonal

and easy to be inverted element-wisely to yield a block diagonal inverse. Similarly,
the matrix J also is block diagonal and can be inverted element by element because
Uh is also a discontinuous finite element space. After solving the global system for
the Lagrange multipliers, we can obtain u from (47) and σ from (44) at element
level independently.

4.1.3. Construction of the finite element approximation spaces. We present
here how to construct the lowest order discontinuous finite element spaces.

Let an arbitrary element T ∈ Th, with center of gravity (xc, yc) and an arbitrary
edge e ∈ Eh \ ED

h . For the local Raviart-Thomas space RT 0(T ) we use the basis
functions

(49) φT1 = (1, 0) , φT2 = (0, 1) and φT3 = (x− xc, y − yc) ,

given in [3].
For the polynomial spaces P0(T ) and P0(e) the basis are given by ψT = 1 and

ψe = 1, respectively.
If T ∈ T i

h , i = 1, 2 and T /∈ T 0
h , the basis with support on T are: three RT 0(T )

basis, φT1 , φ
T
2 and φT3 , one P0(T ) basis, ψT and three P0(e) basis, ψei , ψej and

ψek .
If T ∈ T 0

h , is cut by interface in a triangular and quadrilateral parts (see Figure

7), the basis with support on T are: six RT 0(T ) basis, φ
T i

1 , φT
i

2 , φT
i

3 , i = 1, 2, two

P0(T ) basis, ψT 1

, ψT 2

and five P0(e) basis, ψe1j , ψe1k , ψe2i , ψe2j and ψe2k (or four
P0(e) basis if T is divided into two triangles).

Figure 7. Decomposition of element T0 ∈ T 0
h , and local bases.
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First, for an arbitrary element T ∈ T i
h , i = 1, 2 and T /∈ T 0

h we have the following
local system

(50)

1
κ (σh, τh)T − (uh,∇ · τh)T + 〈λh, τh · n〉∂T\ED

h
= −〈gD, τh · n〉∂T∩ED

h

− (∇ · σh, vh)T = − (f, vh)T
〈σh · n, µh〉∂T\ED

h
= 〈gN , µh〉∂T∩EN

h

and the corresponding local matrix representation

(51)



AT BT

T CT
T

BT 0 0
CT 0 0






σT

uT

λT


 =




f1T
f2T
f3T


 ,

where the local matrices and vectors have the dimensions: AT ∈ M3×3 (R), BT ∈
M3×1 (R), CT ∈ M3×3 (R), f1T ∈ M3×1 (R), f2T ∈ M1×1 (R) and f3T ∈ M3×1 (R).
Appling the procedure described above for the global system. We obtain the local
contribution of T to the global system (48).

(52) MTλT = fT .

Secondly, we consider an arbitrary element T0 ∈ T 0
h consisting of two portions

T 1
0 and T 2

0 . Figure 8 shows the case when T 1
0 corresponds to the triangular part

and T 2
0 is the quadrilateral part of T0. The triangular part T 1

0 has only two parts
of the edges of T0 while the quadrilateral part T 2

0 has three parts of the edges, so
we introduce two and three Lagrange multipliers (λe1

j
, λe1

k
) and (λe2

i
, λe2

j
, λe2

k
) for

T 1
0 and T 2

0 respectively to enforce flux continuities.
For the case when T 1

0 corresponds to the quadrilateral part and T 2
0 is the triangu-

lar one, it can be implemented similarly. Then each cut element has five Lagrange
multipliers (or four Lagrange multipliers if both T 1

0 and T 2
0 are triangles).

Figure 8. Decomposition of element T0 ∈ T 0
h . T 1

0 and T 2
0 are

the intersections of T0 with Ω1 and Ω2, respectively. Two La-
grange multipliers (λe1

j
, λe1

k
) are needed for the triangular part T 1

0

while three Lagrange multipliers (λe2
i
, λe2

j
, λe2

k
) are necessary for

the quadrilateral part T 2
0 .

From (42) we have the local formulation on T0

(53)

1
κ (σh, τh)T0

− (uh,∇ · τh)T0
+ 〈λh, τh · n〉∂T0\ED

h
+ 〈{uh}

w
, [[τh]]〉ΓT0

= −〈sDn1, {τh}w〉ΓT0
− 〈gD, τh · n〉∂T0∩ED

h

− (∇ · σh, vh)T0
+ 〈[[σh]], {vh}

w〉ΓT0
= − (f, vh)T0

+ 〈sN , {vh}
w〉ΓT0

〈σh · n, µh〉∂T0\ED
h
= 〈gN , µh〉∂T0∩EN

h
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and the corresponding local matrix representation

(54)



AT0

BT
T0

CT
T0

BT0
0 0

CT0
0 0






σT0

uT0

λT0


 =




f1T0

f2T0

f3T0


 ,

where the element level matrices and vectors have the dimensions: AT0
∈ M6×6 (R),

BT0
∈ M6×2 (R), CT0

∈ M6×5 (R) (or M6×4 (R)), f1T0
∈ M6×1 (R), f2T0

∈
M2×2 (R) and , f3T0

∈ M5×1 (R) (or M4×1 (R)).
The local contribution of T0 to the global system (48) is given by

(55) MT0
λT0

= fT0
.

We can observe that the local matrix representation is the same for all elements.
The difference is the size of the local matrices and vectors.

4.1.4. Numerical results. In this section we focus on the convergence of the
unfitted MHDG method (42).
Test 3. We solve the same problem as in Test 1 by the method (42) on the struc-
tured meshes.

Figure 9 shows the exact and numerical solutions on the interface. We can
observe good approximations to the variable u on both sides of the interface, but
to the the normal flux σ ·n in both the Cases A and B. Figures 10 and 11 show the
convergence results for the Cases A and B, respectively. For the Case A, Figure
10 shows optimal convergence rates for both approximations in L2 (Ω)-norm. For
the Case B, Figure 11 shows an optimal convergence rate for the approximation uh
and a suboptimal convergence rate for σh globally. We observe in the Case B non
convergence in L2 (Γ)-norm of the numerical interfacial flux on both sides.

As the result, the unfitted MHDG method (42) does not work well although
it has a good approximation to u. The normal flux on the interface is not well
approximated and it is necessary to develop a new unfitted MHDG method.
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Figure 9. Exact solutions and their numerical solutions at the
Gauss points of the interface with structured meshes. (a) and (b)
are for the mesh with h = (1/16); (c) and (d) are for the mesh
with h = (1/32). Unfitted method (42).
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Figure 10. Convergence study for the Case A. Unfitted method (42).
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Figure 11. Convergence study for the Case B. Unfitted method (42).

4.2. Unfitted MHDG penalty method. The main defect of the method (42)
is that two jumps (2.v, vi) on the interface cannot be guaranteed. To do that, we
add two penalization terms into the first and second equations of (42) respectively,
based on the idea of the Nitsche’s penalty method. Then, we have
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Find (σh, uh, λh) ∈ Vh×Uh×Mh such that, for all (τh, vh, µh) ∈ Vh×Uh×Mh

(56)



1
κ (σh, τh)Th

− (uh,∇ · τh)Th
+ 〈λh, τh · n〉∂Th\ED

h
+
∑

T∈T 0

h

〈{uh}
w
, [[τh]]〉ΓT

+
∑

T∈T 0

h

α
h 〈[[σh]], [[τh]]〉ΓT

= −
∑

T∈T 0

h

〈sDn1, {τh}w〉ΓT
+
∑

T∈T 0

h

α
h 〈sN , [[τh]]〉ΓT

− 〈gD, τh · n〉ED
h

− (∇ · σh, vh)Th
+
∑

T∈T 0

h

〈[[σh]], {vh}
w〉ΓT

+
∑

T∈T 0

h

βWe

h 〈[[uh]], [[vh]]〉ΓT

= − (f, vh)Th
+
∑

T∈T 0

h

〈sN , {vh}
w〉ΓT

+
∑

T∈T 0

h

βWe

h 〈sDn1, [[vh]]〉ΓT
,

〈σh · n, µh〉∂Th\ED
h
= 〈gN , µh〉EN

h
,

where α, β > 0, and We = {k}w.

4.2.1. Matrix representation for the unfitted MHDG penalty method.

The unfitted MHDG formulation (56) yields the following (global) linear system

(57)



A BT CT

B D 0
C 0 0






σ

u

λ


 =




f1
f2
f3


 ,

where σ, u and λ corresponds to the vector of degrees of freedom for σh, uh and
λh, respectively.

The unfitted MHDG formulation (56) maintains the same structure as formula-
tion (42). The penalization terms for u and σ are contributed in the matrices A
and D, respectively.

4.2.2. Numerical results. Here we evaluate the performance of the unfitted
penalty MHDG (56) by its convergences and sensitivities of both interface loca-
tion and material heterogeneities. For all tests, we consider α = β = 1.
Test 4. As in Zilian et al. [37], we consider three different shapes of interfaces, see
Figure 12. The interfaces are defined by the level set functions

(58)
φ1 = y − 1

3 , (Horizontal interface)
φ2 = y − x

4 − 1
3 , (Straight sloped interface)

φ3 = y + x2 − x− 1
3 (Curved interface)

Figure 12. Domain geometry and interfaces shape.
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The exact and numerical solutions on the horizontal interface shape are presented
in Figure 13. It is shown that the introduction of the two penalties produces a
significant improvement on the approximation to the interfacial flux. For the Cases
A and B, we obtain very good approximations to both u and σ ·n on the interface.
Figures 14 to 19 show the convergence results of both uh and σh for three interface
shapes with homogeneous and non-homogeneous jumps. It is observed that the
optimal global convergence rates for both uh and σh in all of the cases and the
interfacial convergence rates are optimal in some cases and suboptimal in the others.
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Figure 13. Exact solutions and their numerical solutions at the
Gauss points of the horizontal interface on structured meshes. (a)
and (b) are for the mesh with h = (1/16); (c) and (d) are for the
mesh with h = (1/32). Unfitted MHDG penalty method (56).
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Figure 14. Convergence for the horizontal interface. Case A.
Unfitted MHDG penalty method (56).
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Figure 15. Convergence for the horizontal interface. Case B.
Unfitted MHDG penalty method (56).
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Figure 16. Convergence for the sloped interface. Case A. Unfit-
ted MHDG penalty method (56).
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Figure 17. Convergence for the sloped interface. Case B. Unfit-
ted MHDG penalty method (56).
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Figure 18. Convergence for the curved interface. Case A. Unfit-
ted MHDG penalty method (56).
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Figure 19. Convergence for the curved interface. Case B. Unfit-
ted MHDG penalty method (56).

Test 5. Here we are interested in studying the sensitivity of the unfitted MHDG
penalty method (56). We test the robustness of the method in relation to the
interface location in a cut element for the same and different material properties.
We also evaluate the sensitivity for high contrast in material properties with a fixed
interface location.

To study the sensitivity for the interface location, we consider a fixed structured
mesh, and we move the interface position from a to b, see Figure 20. For each inter-
face location, we evaluate on the interface the relative maximum error in percentage
for u and σ · n1 as in (30) and (31).

In the second part of the test, we fix the interface in the position x = a+0.13h or
x = a+0.87h. Then we have the level set function φ(x, y) = c−x with c = a+0.13h
or c = a + 0.87h. For each position we set κ1 = 1, change κ2 from 10−4 to 104

in terms of a geometric progression with common ratio 10. For each combination
of material properties we compute the relative maximum error in percentage for u
and σ · n1.
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Figure 20. Geometry for the sensitivity test used for the unfitted
MHDG penalty method (56). The left is the mesh and the right is
the parameters for the test.

Figure 21 shows the sensitivity results with respect to the interface location for
different material properties. We can observe the very good sensitivities of both uh
and σh for all combinations of material properties.

Figure 22 shows the sensitivity results for a fixed interface position and vari-
able material diffusivities. The very good sensitivities of both uh and σh are also
observed for the two considered interface positions.
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Figure 21. Sensitivity for interface location. Unfitted MHDG
penalty method (56).
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Figure 22. Sensitivity for material contrast. Unfitted MHDG
penalty method (56).

5. Conclusions and future works

In this paper we propose both fitted and unfitted mixed hybrid discontinuous
Galerkin (MHDG) finite element methods to solve numerically elliptic interface
problems. The fitted method is a natural application of the classical MHDG for
smooth elliptic problems. We present the numerical results on convergences and
sensitivities with large material heterogeneities. For the unfitted case, we first
propose a MHDG with the broken basis functions (unnecessary to satisfy the jump
conditions) to those cut elements, and stabilize the method by the weighted averages
depending on the volume fractions of cut elements and the material heterogeneities,
numerical results show optimal global convergence rate for both the solution and
the flux. However the interfacial normal flux is not convergent, and we also observe
non-physical oscillations on the cut elements. To solve this problem, we apply
the idea of the Nitsche’s penalty method to guarantee two jumps on the interface
parts of cut elements. Numerical results on convergences and sensitivities of both
the interface location within a cut element and the material heterogeneities show
that the final unfitted MHDG penalty method is robust and efficient for interface
problems. Unlike the immersed interface finite element methods (IIFEM), the
two jump conditions are enforced weakly in our variational formulations. So, our
unfitted interface MHDG penalty method can be applied more easily than IIFEM to
general cases particularly when the immersed basis function cannot be constructed.

In the near future we will give numerical analysis of the proposed unfitted MHDG
penalty method and extend to other application problems such as the Darcy flows
in fractured porous media, moving interface problems, and so on.
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