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ANISOTROPIC MESH ADAPTATION METHOD BASED ON

ANISOTROPIC BUBBLE-TYPE LOCAL MESH GENERATION

WEI GUO, YUFENG NIE AND WEIWEI ZHANG∗

Abstract. A new anisotropic adaptive mesh refinement method based on anisotropic bubble-
type local mesh generation (ABLMG) for elliptic partial differential equations is proposed. The
anisotropic meshes are generated as quasi-uniform meshes in metric spaces with the metric de-
termined on each vertex by anisotropic a posteriori error estimator. Under the new metric, the

error is equidistributed in the directions of maximum and minimum stretching on an element,
and the mesh size is reduced/coarsend in regions with large/small errors. With the full use of the
adjacent lists provided by the node placement method, the local mesh for each vertex is generated
through ABLMG method. Compared with other methods, the mesh refining and coarsening can

be obtained in the same framework and the mesh suits the metric well at each refinement level.
Numerical results in two-dimensions are presented to verify the ability of our metric tensor to
generate anisotropic mesh with correct concentration and stretching direction.

Key words. Metric tensor, anisotropic mesh, adaptive finite element, node placement and local
mesh generation.

1. Introduction

The advantage of anisotropic adaptive mesh refinement method has been amply
demonstrated for improving computational efficiency and enhancing the solution
accuracy, especially for the problems with anisotropic features. Through adapting
the mesh size, shape and orientation, the mesh can be refined both in regions
and directions with large errors. The use of anisotropic mesh refinement method
involves several key factors: error estimates, determination of metric tensor and
anisotropic mesh generation. Beginning with the pioneering work of D’Azevedo[7]
and Simpson[27], these techniques have been developed by many researchers[24, 3,
5, 9, 12, 18].

Deriving an efficient and reliable a posteriori error estimator is a difficult task
on highly anisotropic mesh. Two requirements must be satisfied for anisotropic
error estimators. The error estimator must perform well on anisotropic meshes
and should provide the directional information to refine the mesh with large errors.
Unfortunately, the classical isotropic a posteriori error estimators can’t suit the re-
quirements. For isotropic error estimator, the effectivity index of estimator depends
on the mesh aspect ratio which is unbounded for anisotropic mesh. Since the early
nineties of last century, many anisotropic a posteriori error estimators have been
proposed, for example, the hierarchical a posteriori error estimator[15], the dual
weighted residual estimator[11], local problem estimates[2] and so on. In order to
specify the refinement direction most of the present error estimators make use of
the gradient or Hessian matrix of the solution which are unavailable in numerical
computation. To avoid the difficulty, the information of the solution is approximat-
ed by the recovery technique such as the Zienkiewicz-Zhu post-processing[34, 35].
It is worth pointing out that although no convergence can be certified in anisotropic
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mesh, numerical results show that the information obtained from recovery technique
can be used to guide refinement and coarsening for anisotropic adaptive mesh re-
finement.

Obtaining the metric from a posteriori error estimator to guide the mesh gener-
ation is important for anisotropic mesh generation. Different from isotropic mesh
refinement where only the mesh size need to be optimized, for anisotropic mesh
refinement method the shape and orientation also need to be optimized. Al-
l of them are described by the metric tensor, determined by error estimates. A
number of strategies have been developed to deduce metric tensors. The met-
ric tensors are commonly defined as the Hessian matrix of the solution proposed
by D’Azevedo[7]. Based on error estimates for polynomial preserving interpola-
tion estimation, Huang[14] developed a general formula for the metric tensor. For
the anisotropic elliptic problems Huang et al.[16] verified that high-accuracy finite
element solution and superconvergence on the mesh vertices can be obtained by
utilizing the inverse of the anisotropic diffusion matrix as the metric tensor for
anisotropic mesh generation.

For high-quality anisotropic adaptive mesh generation, three basic approaches
exist to achieve mesh refinement: mesh smoothing, anisotropic re-meshing and mesh
splitting[24]. For mesh smoothing method, the nodes are relocated at each refine-
ment level to minimize the error estimates. For example, Schneider and Jimack[25]
introduced a new anisotropic mesh adaptation strategy in order to modify the
node positions of a given (isotropic) mesh such that the a posteriori error esti-
mate is minimized. However how to choose the initial mesh vertex number for the
mesh smoothing method is still an open problem. Mesh splitting is a canonical
way to refine the mesh for isotropic adaptive mesh refinement method. Whereas
the strong anisotropic mesh can’t be obtained no matter which kind of splitting
strategies are used (the longest edge bisection method or the newest vertex bisec-
tion method), since splitting methods limit the aspect ratio for anisotropic mesh.
Many researchers[28] show that the anisotropy of the mesh can be increased by
pre-defined refinement patterns. Anisotropic re-meshing method requires generat-
ing new anisotropic mesh at each refinement level. The mesh with high quality
and strong anisotropy can be arrived in fewer steps. For instance the anisotropic
centroidal Voronoi tessellation (ACVT) have been developed by Du and Wang[10]
for two dimensional anisotropic mesh generation and optimization. There are also
a number of computer codes including BL2D[19], BAMG[13], and MMG3D[8] for
generating anisotropic meshes which lead to a large number of publications.

In this paper, the focus is on the anisotropic adaptive mesh refinement method
based on anisotropic bubble-type local mesh generation (ABLMG) method. The
ABLMG-based adaptive mesh generation method proposed in this paper is an
anisotropic re-meshing method. Initially, Shimada et al. [26] proposed the bubble
packing method (BPM) based on the fact that the force-balance configuration of
bubbles forms a well designed node set. The BPM can be used to generate the
anisotropic mesh such as the parametric surface mesh [32] and polygonal surface
mesh [29], in which the circle bubbles are replaced by ellipse bubbles. In order
to avoid using mesh topology, a pure node placement method by bubble simula-
tion (NPBS) was proposed by Liu et al.[20] in which the adjacent list structure is
set up to reduce the time of calculating interaction forces. For the node set with
high quality generated by NPBS, a fast bubble-type local mesh generation method
(BLMG) is presented in [6] and the anisotropic version (ABLMG) is presented in
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[31]. The BLMG method also has great potential in adaptive mesh refinement com-
bining with the a posteriori error estimator[30]. While the use of ABLMG method
in adaptive mesh refinement has not been explored, thus in the study, we aim to
develop a anisotropic adaptive finite element method with the ABLMG for elliptic
problems.

A brief outline of our method is now given. First, a coarse mesh with uniform
mesh size is generated, then anisotropic adaptive mesh refinement process is execut-
ed iteratively until the solution error requirement is satisfied. The iterative process
consists of computing the finite element solution on the current mesh, computing
an anisotropic a posteriori error estimator, determining the metric tensor and re-
constructing of the new mesh. At each refinement level, based on the anisotropic
a posteriori error estimator the new metric tensor is defined on each vertex to de-
termine the mesh size, shape and orientation, meahwhile, the corresponding mesh
metric field function is obtained by linear interpolation. The nodes are relocated
to near-optimal positions according to the Newton’s second law of motion. Finally,
The patch of elements is formed through the ABLMG method around each node,
and the union of the patches forms the anisotropic Delaunay triangulation of the
domain.

The rest of the paper is organised as follows. In Section 2, the anisotropic a
posteriori error estimator proposed by Picasso[21, 22, 23] is reviewed. In Section
3, the strategy for determining the metric tensor is firstly given according to the
anisotropic a posteriori error estimator. Then the key points of node placement
method are described and the ABLMG method is introduced. In Section 4 our
anisotropic mesh adaptation method is described in detail, and some numerical
examples are presented in Section 5. Finally, conclusions and future work are given
in Section 6.

2. Anisotropic a posteriori error estimates

Let Ω be a polygon of R2 with boundary ∂Ω. The second order elliptic partial
differential equation

(1)

{−∆u = f inΩ

u = 0 on ∂Ω

where f ∈ L2(Ω) is considered.
Let Th be a triangulation of Ω with mesh size h. Let Vh be the space of continuous

piecewise linear finite element space associated with triangulation Th. The finite
element approximation corresponding to the model problem (1) is: find uh ∈ Vh

such that

(2)

∫
Ω

∇uh · ∇vh dΩ =

∫
Ω

fvh dΩ ∀vh ∈ Vh

In order to describe the mesh anisotropy in triangulation Th, the frame work
in [11, 12] is used. Let TK : K̂ → K be the standard invertible affine map from

reference element K̂ to the element K in the triangulation Th. Let MK ∈ R2×2

and tK ∈ R2 be the matrix and the vector such that

(3) x = TK(x̂) = MK x̂+ tK

where x̂ ∈ K̂ and x ∈ K.
Since MK is invertible, it admits a singular value decompose MK = RT

KΛKPK ,
where RK and PK are orthogonal matrices and ΛK is diagonal matrix with positive
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entries. We set the matrix with the following form

(4) ΛK =

(
λ1,K 0
0 λ2,K

)
and RK =

(
r1,K
r2,K

)
chosen λ1,K ≥ λ2,K

Let eh = u− uh be the error of the approximation solution uh. Then we have

(5) ∥∇(u− uh)∥2L2(Ω) =

∫
Ω

f(u− uh) dΩ−
∫
Ω

∇uh · ∇(u− uh) dΩ

Let Ih : H1(Ω) → Vh be a clément interpolation operator. Utilizing the Galerkin
orthogonality property we have

∫
Ω

fv dΩ−
∫
Ω

∇uh · ∇v dΩ =

∫
Ω

f(v − Ihv) dΩ−
∫
Ω

∇uh · ∇(v − Ihv) dΩ

=
∑

K∈Th

∫
K

(f +∆uh)(v − Ihv) dΩ

+
1

2

∑
γ∈ϵI

∫
γ

[
∂uh

∂n
](v − Ihv) ds

(6)

where ϵI denotes the set of interior edges of Th and [·] defines the jump across edge
γ. Using Cauthy-Schwarz ineuqlity and the interpolation estimation results about
Ih in [11], we can get

∫
Ω

fv dΩ−
∫
Ω

∇uh · ∇v dΩ ≤ C(K̂)
(
λ2
1,KrT1,KGK(v)r1,K + λ2

2,KrT2,KGK(v)r2,K
)1/2

×
∑

K∈Th

(
∥f +∆uh∥L2(K) +

1

2

(
hK

λ1,Kλ2,K

) 1
2
∥∥∥∥∂uh

∂n

∥∥∥∥
L2(∂K)

)
(7)

where GK(v) denotes the matrix

(8) GK(v) =
∑

T∈∆K

∫T
(

∂v
∂x1

)2
dx

∫
T

∂v
∂x1

∂v
∂x2

dx∫
T

∂v
∂x1

∂v
∂x2

dx
∫
T

(
∂v
∂x2

)2
dx

 .

and ∆K is the set of triangles sharing a vertex with triangle K.
Considering the fact [12] that

(9) λ2,KhK̂ ≤ hK ≤ λ1,KhK̂ ,

we have

∫
Ω

fv dΩ−
∫
Ω

∇uh · ∇v dΩ ≤C(K̂)
∑

K∈Th

(
∥f +∆uh∥L2(K) +

1

2λ
1/2
2,K

∥∥∥∥∂uh

∂n

∥∥∥∥
L2(∂K)

)

×
(
λ2
1,KrT1,KGK(v)r1,K + λ2

2,KrT2,KGK(v)r2,K
)1/2

(10)

Substituting eh in place of v, we can obtain the estimation result
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∥∇(u− uh)∥2L2(Ω)

≤C
∑

K∈Th

ρK(uh)
(
λ2
1,KrT1,KGK(u− uh)r1,K + λ2

2,KrT2,KGK(u− uh)r2,K
)1/2

(11)

where ρK(uh) = ∥f +∆uh∥L2(K) +
1

2λ
1/2
2,K

∥∥∂uh

∂n

∥∥
L2(∂K)

.

Since u still exists in right hand side, the right hand of inequality (11) can’t be
used as a posteriori error estimator directly . The recovery technique is employed

here to calculate the quantity ∂(u−uh)
∂xi

. The simplest Z-Z recovery method defined

in [34, 35] is considered, and ∂(u−uh)
∂xi

is approximated by

Πh
∂uh

∂xi
− ∂uh

∂xi

where Πh at vertex P is defined as

Πh

(
∂uh

∂xi

)
(P ) =

1∑
K∈Th
P∈K

|K|
∑

K∈Th
P∈K

|K|
(
∂uh

∂xi

)
|K

Therefore, the matrix GK(u− uh) can be approximated by G̃K(uh) defined as

G̃K(uh) =

(12)

∫T (Πh
∂uh

∂x1
− ∂uh

∂x1

)(
Πh

∂uh

∂x1
− ∂uh

∂x1

)
dx

∫
T

(
Πh

∂uh

∂x1
− ∂uh

∂x1

)(
Πh

∂uh

∂x2
− ∂uh

∂x2

)
dx∫

T

(
Πh

∂uh

∂x1
− ∂uh

∂x1

)(
Πh

∂uh

∂x2
− ∂uh

∂x2

)
dx

∫
T

(
Πh

∂uh

∂x2
− ∂uh

∂x2

)(
Πh

∂uh

∂x2
− ∂uh

∂x2

)
dx


Finally we can get the anisotropic a posteriori error estimator defined as

(13) (ηAK)2 = ρK(uh)
(
λ2
1,KrT1,KG̃K(uh)r1,K + λ2

2,KrT2,KG̃K(uh)r2,K

)1/2
Remark 1. In isotropic case, the error estimate is shown as follows

(14) ∥∇(u− uh)∥2L2(Ω) ≤ C

( ∑
T∈Th

h2
K ∥f +∆uh∥2L2(K) +

1

2

∥∥∥∥[∂uh

∂n

]∥∥∥∥2
L2(∂Ω)

)1/2

and the corresponding isotropic a posteriori error estimator is

(15) (ηIK)2 = h2
K∥f +∆uh∥2L2(K) +

1

2
hK

∥∥∥∥[∂uh

∂n

]∥∥∥∥2
L2(∂K)

It is worth noting that C in Equation (14) depends on aspect ratio of the element
and this is the reason why the isotropic a posteriori error estimator will blow up
on anisotropic mesh.

3. Anisotropic adaptive mesh refinement

A good error estimator, a reliable metric tensor and an appropriate mesh re-
finement strategy are three important factors influencing the efficiency of adaptive
mesh refinement method. In this study, the estimator defined in Equation (13)
is used. The metric determination method is then discussed in detail, and the
anisotropic adaptive mesh refinement method is introduced in the following.
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θ

h2 h1

e2
e1

Figure 1. Elliptical bubble controlled by Riemannian metric tensor.

3.1. Determination of metric tensor. For two dimensional anisotropic mesh
generation, the element size, shape and orientation are described by a 2 × 2 Rie-
mannian metric tensorM(x) which is a symmetric definite positive matrix function.
Let µ1(x) and µ2(x) define the eigenvalue functions for M(x), e1(x) and e2(x) are
the corresponding unit orthogonal eigenvector functions, thus the metric tensor can
be decomposed as

M(x) =
[
e1(x) e2(x)

] [µ1(x) 0
0 µ2(x)

] [
e1(x) e2(x)

]T
(16)

=

[
cos θ(x) − sin θ(x)
sin θ(x) cos θ(x)

] [ 1
h2
1(x)

0

0 1
h2
2(x)

] [
cos θ(x) sin θ(x)
− sin θ(x) cos θ(x)

]
where h1(x) and h2(x) are the mesh sizes along the direction e1(x) and e2(x) at
any point x. For node placement method by bubble simulation, h1(x) and h2(x)
denote the lengths of two radii, and θ(x) describes the angle of the elliptical bubble
with the Ox direction, shown in Figure 1.

The bubble placement method requires the metric at each mesh vertex to be
given, namely for each vertex xi, the elliptical radii hi,1, hi,2 and the angle θi
shoule be calculated. For simplicity the aspect ratio si =

hi,1

hi,2
is introduced. So

there are three quantities at vertex xi need to be determined hi,1, si and θi.

Let T (l) denote the mesh of Ω with vertices
{
x
(l)
i

}N(l)

i=1
at the lth refinement level,

and N (l) is the number of vertices. Let η
(l)
K denote the anisotropic a posteriori error

estimator on triangle K defined in Equation (13). According to the estimator, the
metric tensor of the current mesh will be modified and the new metric function for
the (l + 1)th refinement level is denoted as M (l+1).

Firstly the strategy for determining the orientation is introduced. For estimator
(13), Formaggia and Perotto[11] have proved that the estimator is minimum when

the element is aligned with the eigenvectors of matrix G̃(uh), i.e. the maximum

streching direction is taken as the eigenvetor of G̃(uh) corresponding to the minimal
eigenvalue. So the metric is determined such that the element is aligned with the
eigenvectors of G̃(uh). We compute G̃i(uh), the average value of G̃K(uh) on the
triangles surrounding the vertex xi

G̃i(uh) =

∑
T∈T̃

(l)
i

G̃
(l)
T∑

T∈T̃
(l)
i

1

where T̃
(l)
i represents the union of elements that share the common vertex x

(l)
i

of T (l). We aim to align the triangles around vertex x
(l)
i with the eigenvectors
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of G̃i(uh), e
(l+1)
i,1 and e

(l+1)
i,2 where e

(l+1)
i,1 is the eigenvector corresponding to the

maximum eigenvalue of G̃K(uh). So the eigenvectors of metric tensor at vertex x
(l)
i

is e
(l+1)
i,2 and e

(l+1)
i,1 .

Then the way of determining the aspect ratio is considered. Both the analysis
in [23] and numerical results in [21] verify that the estimator (13) is reliable and
efficient on anisotropic meshes provided that

(17) λ2
1,KrT1,KG̃K(uh)r1,K = λ2

2,KrT2,KG̃K(uh)r2,K

In other words, the adaptive algorithm should guarantee that the error in minimal
and maximal stretching directions is equidistributed. So the aspect ratio for element
K is defined as

sK =

√√√√rT2,KG̃K(uh)r2,K

rT1,KG̃K(uh)r1,K

The aspect ratio on vertex x
(l)
i is defined as,

(18) s
(l+1)
i =

∑
T∈T̃

(l)
i

sK∑
T∈T̃

(l)
i

1
.

Finally the strategy for determining mesh size is introduced. The anisotropic
estimator at vertex xi is defined by area weighted average

η
(l)
i =

∑
K∈T̃

(l)
i

η
(l)
K |T |∑

K∈T̃
(l)
i

|T |

For adaptive bubble placement, the bubble area should be reduced in regions with
large error estimates, and enlarged in regions with small error estimates. The area
of elliptic bubble xi is

(19) r
(l)
i = πh

(l)
i,1h

(l)
i,2 = π

(
h
(l)
i,1

)2
sli

The new area of bubble xi is r
(l+1)
i which is determined as follows

(20) r
(l+1)
i =

r
(l)
i

f(η
(l)
i )

where f(η
(l)
i ) is a user function to control the extent of mesh refinement. Utilizing

the notation of aspect ratio, we can get the new size of xi is

h
(l+1)
i,1 =

√√√√ s
(l+1)
i

s
(l)
i f(η

(l)
i )

h
(l)
i,1(21)

h
(l+1)
i,2 =

√
1

s
(l+1)
i s

(l)
i f(η

(l)
i )

h
(l)
i,1(22)

f(η
(l)
i ) is a user function defined by
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(23) f(η
(l)
i ) = max

(
min

(
η
(l)
i

c(l)η̄(l)
, a

)
, b

)

where η̄(l) denotes the mean of the anisotropic a posteriori error estimator over
all the vertex at the lth refinement level, c(l) is a coefficient close to 1.0, and
the parameter a and b denote the bubble size refinement and coarsening factor
thresholds, respectively.

The ratio
η
(l)
i

η̄(l) between the error at the vertex xi and the avarage error reflects the

distribution of errors. To improve the efficiency of adaptive mesh refinement, the
refinement region is enlarged aritificially through dividing the ratio by c(l), where
c(l) < 1.0 such that the triangles in the neighbor of the vertex with large errors are
refined.

In order to guarantee that the size function changes smoothly, and avoid excessive
refining/coarsening in adaptive mesh refinement, a is usually chosen as 4.0 and b is
set to be 0.5. From Equation (20) it can be seen that if f = 4.0 then the bubble
area is decreased and the mesh around the vertex is refined. If f = 0.5 holds, then
the bubble area is increased and the triangles around the vertex will be coarsened.
This concides with the principle of refining mesh in regions with large errors and
coarsening the mesh with small errors.

The new metric for the (l + 1)th refinement level at vertex xi is

(24) M
(l+1)
i =

[
e
(l+1)
i,2 e

(l+1)
i,1

] [h(l+1)
i,1 0

0 h
(l+1)
i,2

] [
e
(l+1)
i,2 e

(l+1)
i,1

]T
The metric function for any point x ∈ Ω is defined by linear interpolation with
respect to the current mesh T (l). The linear interpolation method of metric in
triangle can be seen in [1]. In addition, when calculating the metric function of the
point x, it is required to find out the element where the bubble x lies. The process
is called localization operation [17]. In our study, the modified bucket searching
method is used to improve the efficiency.

3.2. Node placement by bubble simulation. For the mesh based numerical
methods, the accuracy and convergence of the solution depend on the mesh shape,
size and orientation, which rely on the node distribution. Many strategies have
been proposed for optimizing the node distribution. The NPBS can adjust the
node distribution automatically according to the given metric tensor to obtain the
high-quality node set. For the NPBS method, the computational domain is viewed
as force field and the nodes are considered as the centers of bubbles. Driven by
the interaction forces and the damping force, the bubbles are moved according to
the Newton’s second law of motion, until a force-balance configuration is obtained.
Finally, the centers of bubbles form a well-designed node set with high quality. The
flowchart is given in Figure 2, and the key procedures are discussed in the following.

The current mesh vertices {xi}N
(l)

i=1 are viewed as the centers of the bubbles, N (l)

is the bubble number at the lth refinement level. For anisotropic mesh generation
the elliptic bubble is adopted. The bubble motion is governed by the equation

(25) mẍi + cẋi = f̃i, i = 1 · · ·N (l)
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Y

Initial elliptical bubble placement

N

start

Renew adjacent lists every 5 steps

Output 

Compute new positions and metrics of 
elliptical bubbles

Whether the specified 
iterations reaches

Y

Is the overlap ratio 
of bubble is satisfied

N

Add/delete bubbles

Figure 2. The flowchart of the node placement process.

where m is the mass of bubble, c is the damping coefficient, N (l) is the number of
bubbles, xi is the center of bubble i, and f̃i is the resultant force exerted on bubble
i by its surrounding bubbles. For any two neighboring bubbles i, j, the interaction
force is

(26) f̃ (w) =

{
l0
(
1.25w3 − 2.375w2 + 1.125

)
0 ≤ w ≤ 1.5

0 1.5 < w

where w is the ratio of the real distance l and the ideal distance l0 between the
centers of elliptic bubbles i and j, i.e. w = l/l0. The modified interaction force is
adopted here proposed by Zhou et al.[33]. Compared with the traditional interac-
tion force, the modified one adapts to the problems with strong singularity better.
The ideal distance l0 for elliptic bubble i and j is defined as

(27) l0 = lij + lji

Here lij is the radius of elliptic bubble i in the direction from center of bubble
i to center of bubble j. lji is defined in the similar way. From the definition
of interaction force, a repulsive force is applied when the distance of two elliptic
bubbles is smaller than the ideal distance l0 (l/l0 < 1) shown in Figure 3(a), when
l/l0 = 1, the interaction force is zero shown in Figure 3(b), or an attractive force
is adopted when the bubbles are located farther than l0 (1 < l/l0 < 1.5), shown in
Figure 3(c), until the attractive force is zero if l/l0 > 1.5.

For solving the Equation (25), the second-order Euler predictor-corrector method
is used until the force balance configuration is obtained. For adaptive mesh refine-
ment method, the displacements of bubbles in different regions differ a lot. For the
bubbles with large errors, called moving bubbles, the position should be calculated
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(b) (c)(a)

ji

l < l0

lji

lij

ji

l > l0

ljilij
ljilij

ji

l = l0

Figure 3. The relationship between force and positions of ellip-
tical bubbles.(a) Repulsive force. (b) Stable. (c) Attractive force.

precisely with small time step, while for other bubbles, called oscillating bubbles,
the calculation should be rough to save the computation, i.e., the multilevel ap-
proach for time step is applied. To be specific, the motion equations are solved
numerically with small time step for moving bubbles while large time step for oscil-
lating bubbles. Suppose the time step for moving bubbles is ∆t, then the time step
for oscillating bubbles is set as κ∆t (κ > 1), where κ is the parameter to control
the time step size for oscillating bubbles. The oscillating bubbles step forward for
once with time step κ∆t, then the moving bubbles advance forward κ times with
time step ∆t. The iterative process are repeated until the balanced configuration
is obtained.

Since the interaction forces between bubbles are short-range, only the forces
exserted by adjacent bubbles need to be considered. In order to search adjacent
bubbles around bubble i quickly, an adjacent list including its adjacent bubbles
located within distance r = 1.7σ is built, where σ is the ideal distance between two
bubbles, i.e., σ = lij + lji.

The bubble number can be adjusted automatically through deleting the bubbles
whose overlap ratios are too large or adding bubbles whose overlap ratios are too
small during dynamic simulation. In anisotropic case, the overlap ratio is defined
as

(28) αi =

Ni∑
j=0

1

lij
(2lij + lji − dij)

where lij and lji are shown in Figure 3, dij is the real distance between the centers
of bubble i and bubble j, Ni is the length of the adjacent list corresponding to
bubble i. Actually, the overlap ratio describes the number of adjacent bubbles. In
the ideal case, the overlap ratios of bubbles on a line, on a surface, or in the inter-
nal volume are 2, 6 and 12, respectively. Through the bubble insertion/deletion,
the approximate bubble number can be obtained. Finally a node set meeting the
requirement of the metric tensor can be obtained.

3.3. Anisotropic bubble-type local mesh generation(ABLMG). The node
placement by bubble simulation provides a high-quality node set, as well as the adja-
cent list which is conductive to generate local mesh. The new local mesh generation
method is called Anisotropic Bubble-type Local Mesh generation (ABLMG).

Some notations are firstly introduced as follows. As shown in Figure 4, the
element patch is composed of the elements which share the common node, and the
common node is called central node. The node in the patch other than the central
node is named satellite node, and the the element is referred to a satellite element
of the central node.
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P

Satelite element

Satelite node

Central node

Figure 4. The patch associated with a central node P .

The adjacent list of each node contains its neighboring nodes including all satel-
lite nodes and a small number of non-satellite nodes. For Delaunay mesh, the local
mesh corresponding to the central node can be obtained through removing all the
non-satellite nodes and connecting the satellite nodes. The union of the local mesh
is the global Delaunay mesh. Taking the central node P as an example, the strategy
of removing non-satellite nodes is shown as follows:

(1) Connecting the central node P with all of the adjacent nodes in its adjacent
list.

(2) Sorting all the adjacent nodes in counterclockwise order, we get the se-
quence · · ·Pj−1, Pj , Pj+1 · · · .

(3) Checking node Pj(j = 1, 2, · · · , Nj) whether a satellite node of the central
node P .

If the adjacent list of node Pj−1 doesn’t contain Pj+1, then node Pj is
a satellite node of the central node P . Otherwise, the segment Pj−1Pj+1

intersects with the segment PPj . The intersection test between segment
Pj−1Pj+1 and segment PPj is applied.

Other node

Adjacent node

Central node
pj

pj-1

pj+1

P

Figure
5. Intersection
test for the patch of
the central node P .

Figure 6. Edge swap.

For isotropic case, Delaunay criteria can be used as intersection test to check
the relationship between the node Pj and the circumscribed circle of △PPj−1Pj+1,
however, it is disable in anisotropic case. The edge swap criteria [5] is used here to
remove the non-satelite nodes. In Figure 6, if ∠α+∠β > 180◦, i.e., sin(α+β) < 0,
the edge xz is non-Delaunay edge and should be removed. The condition can be
simplified as follows
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sin(α+ β) = sinα cosβ + sinβ cosα

=
a× b

|a| · |b|
· c · d
|c| · |d|

+
c× d

|c| · |d|
· a · b
|a| · |b|

(29)

∝ (a× b)(c · d) + (c× d)(a · b) < 0.

In Riemannian space it is equivalent to

(30)
√
detMavg(a× b)(cTMavgd) +

√
detMavg(c× d)(aTMavgb) < 0

where Mavg = (M(w) +M(x) +M(y) +M(z)) /4.

Since
√
detMavg is positive, so the edge swap criteria is obtained

(31) (a× b)(cTMavgd) + (c× d)(aTMavgb) < 0

If Equation (31) holds, the edge xz should bd removed, otherwise wy will be re-
moved and the nodes y and w will be deleted from each other’s adjacent lists
respectively.

After removing all the non-satellite nodes for each central node, only the satel-
lite nodes are left in the adjacent list and the local mesh can be obtained. The
ABLMG method is very easy to implement, and the process is suitable for parallel
environment since it can be executed simultaneously.

4. ABLMG-based adaptive mesh refinement method

Let Ω denote the given domain. The flowchart of the adaptive mesh refinement
algorithm based on ABLMG method is given as follows:

(1) Generate an initial coarse mesh T (0) on Ω and define the refinement level
l = 0.

(2) Solve the model problem (1) by linear finite element method on T (l). If l
is more than the prescribed refinement level, stop, otherwise go to step 3.

(3) Compute the anisotropic error estimator (13) for each element K ∈ T (l).
Determine the metric tensor for each mesh vertex utilizing Equations (24),
and the metric function M(l+1) can be obtained through linear interpola-
tion.

(4) Generate the node distribution satisfying the new metric function M(l+1)

using node placement method by bubble simulation.
(5) Build the local mesh for each node with ABLMG method, and the union

of the local mesh is the global Delaunay mesh T (l+1). Set l = l + 1, then
go to step 2.

5. Numerical examples

In this section, several numerical tests with an anisotropic behaviour are present-
ed to illustrate the effectiveness of the ABLMG-based adaptive mesh refinement
method. The numerical experiments contain different forms of singularities which
can be encountered in practical applications. We compare our method with the
adaptive mesh refinement method based on the software BAMG. The compara-
tive study about anisotropic and isotropic adaptive mesh refinement method is also
carried out to verify the advantage of the anisotropic adaptation.

The convergence rate CR[30] with respect to the norm | · |H1 at the refinement
level l is computed by
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(32) CR =
2 log (|eh,l|H1/|eh,l−1|H1)

log (Nl−1/Nl)

where Nl is the number of nodes and eh,l denotes the error u−uh at the refinement
level l.

Let ηA be the isotropic, anisotropic error estimates defined by

ηA =

( ∑
K∈Th

(ηAK)2

)1/2

where ηAK are defined in Equation (13). We have computed the corresponding
effectivity indices[22] namely

eiA =
ηA

∥∇(u− uh)∥L2(Ω)

to demonstrate that only the anisotropic a posteriori error estimator is effective on
anisotropic mesh.

In order to test the anisotropic mesh quality, the formula discussed in [4] is used.
Mesh quality α for △P1P2P3 is defined as

α = min(α̂(P1), α̂(P2), α̂(P3))

where

(33) α̂(Pi) = 2
√
3

√
det(Mi) · det[P2 − P1, P3 − P1]

d(Mi, P1P2)2 + d(Mi, P2P3)2 + d(Mi, P1P3)2

In Equation (33) Mi is the metric tensor at Pi, det(M) is the determinant of M,
and d(M, ·) describes the distance under metric tensor M.
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Figure 7. Adaptive ABLMG meshes for Example 1. Top: adap-
tive meshes at the 2nd, 5th and 7th refinement level. Bottom: The
close-up views at (0.7, 0.7).
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5.1. Example 1. The first example is the boundary value problem on Ω = [0, 1]2

in the form of Equation (1) with the right side f and the Dirichlet boundary con-
dition being chosen such that the exact solution is

(34) u =
1

1 + e20(x+y)−25

The solution function represents a shock wave along the line y = 1.25− x[15]. The
ABLMG-based adaptive finite element method is carried out to obtain a convergent
solution.

The initial coarse mesh is uniform with mesh size h(0) = 0.1, and then the
anisotropic adaptive meshes are generated by the ABLMG adaptive mesh refine-
ment method. The meshes at the 2nd, 5th and 7th refinement level and the close-ups
of the corresponding mesh are shown in Figure 7. The meshes at different levels
all are concentrated in the correct position and aligned along the shock wave. The
mesh size and orientation confirm that our metric determination method is reliable.

Table 1 gives the information about mesh quality, maximum value of aspect
ratio ratiomax, solution errors and effectivity indices of anisotropic and isotropic
estimators at all refinement levels. From Table 1, it can be seen that the meshes
at each refinement level remain well shaped supported by the average quality qave.
The high quality mesh conduces to solve PDEs with finite element methods. The
maximum value of the aspect ratio ratiomax implies that the mesh has strong
anisotropic feature. The effectivity indices of anisotropic estimator for different
aspect ratios being constant value indicates that the anisotropic error estimator (13)
is independent of the aspect ratio. It demonstrates the anisotropic error estimator
(13) is equivalent to the true error.

Table 1. Mesh quality, effectivity indices and solution errors for
Example 1.

l N qave ratiomax |e|H1 CR eiA

0 131 0.954 2.5 6.441e− 01 0.0 4.065
1 309 0.868 9.8 2.393e− 01 3.481 5.036
2 496 0.853 11.9 1.229e− 01 2.816 5.535
3 591 0.880 15.6 8.684e− 02 3.968 5.020
4 861 0.887 32.3 5.116e− 02 2.813 5.079
5 1211 0.895 61.3 3.458e− 02 2.295 5.105
6 1786 0.908 74.3 2.311e− 02 2.076 5.131
7 2611 0.922 81.9 1.573e− 02 2.024 5.142
8 3622 0.936 90.2 1.165e− 02 1.837 5.061
9 5085 0.950 103.6 8.726e− 03 1.703 4.973
10 7241 0.958 121.5 6.779e− 03 1.429 4.983
11 10458 0.961 125.8 5.364e− 03 1.274 4.928
12 15264 0.967 127.1 4.380e− 03 1.072 4.847

A comparison study about convergence rate for four mesh refinement schemes
is conducted. The isotropic mesh refinement scheme applies the BLMG-based
adaptive mesh refinement [30] based on the estimator (15). The BAMG-based
anisotropic adaptive mesh refinement method employs the software BAMG ac-
cording to our metric tensor (24) to refine the mesh. The plots of the error norm
(|e|H1(Ω)) versus the number of nodes for different mesh refinement strategies are
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shown in Figure 8. It can be seen that both isotropic and anisotropic adaptive
mesh refinement methods lead to much smaller errors than the uniform mesh al-
though they have different levels of errors. The isotropic adaptive method requires
10 times more DOFs than an anisotropic one to obtain the same level of error.
This demonstrates that the anisotropic adaptive mesh refinement method performs
better than isotropic one by adapting not only mesh size but also shape and ori-
entation. For the two anisotropic mesh refinement schemes, the ABLMG-based
adaptive mesh refinement method can obtain much better approximation than the
BAMG at almost the same number of DOFs.
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Figure 8. Error comparison for different adaptive mesh refine-
ment methods.

Table 2. Comparison of the errors between the method in [15]
and the ABLMG-based mesh refinement method.

Edge-based
estimator

Hessian recovery
estimator

Full error
estimator

The present
method

N 684 693 714 648
∥e∥L2(Ω) 1.4× 10−3 3.5× 10−4 3.4× 10−4 3.5× 10−4

Meanwhile, we also compare the result with other methods in [15] for the same
PDE and the same exact solution shown in Table 2. The L2 norm of error with
three anisotropic error estimator are 1.4×10−3, 3.5×10−4 and 3.4×10−4 on meshes
with 684, 693 and 714 vertices. For our ABLMG-based adaptive method we have
|e|L2(Ω) = 3.5 × 10−4 on the mesh with 648 vertices; this means higher accuracy
can be attained with less vertices with the help of our adaptive mesh refinement
method.

5.2. Example 2. This example is to generate adaptive meshes for the problem in
which the exact solution is

(35) u(x, y) = tanh

(
−100

(
y − 1

2
− 1

4
sin(2πx)

)2
)
, ∀(x, y) ∈ Ω ≡ [0, 1]2.
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A solution plot and the corresponding adaptive anisotropic mesh are shown in
Figure 9. Compared with Example 1, this function exhibits a weaker anisotropic
feature.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 9. Surface plot of the Example 2 and the corresponding
adaptive mesh.

As in Example 1, the anisotropic mesh generated by ABLMG-based adaptive
mesh refinement method have high quality, which is demonstrated by the value
qave in Table 3. Table 3 also includes the information about aspect ratios, solution
errors and convergence rates at each refinement level. It can be seen that the mesh
anisotropy is weak supported by the value ratiomax.

The plots of the error norms (|eh|H1(Ω)) versus the number of nodes for different
refinement strategies is depicted in Figure 10. From Figure 10, we can observe
that the anisotropic adaptive mesh refinement method is better than the isotrop-
ic one although the solution anisotropy is not significant. To achieve the similar
accuracy, the number of DOFs for ABLMG-based refinement method is small-
er than the number for the BAMG-based refinement strategy. For the problem
with weak anisotropy, the numerical result of anisotropic refinement is close to the
isotropic one. Thus we can conclude that better approximation can be obtained for
anisotropic adaptive mesh refinement method for stronger anisotropic problems.

5.3. Example 3. This example is to generate an adaptive mesh for the model
problem (1) with the true solution being chosen as

(36) u = tanh(60y)− tanh(60x− 60y − 30), ∀(x, y) ∈ Ω ≡ [0, 1]2

The function exhibits a strong anisotropic feature along the boundary layer y = 0
and along the line y = x− 0.5[15].
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Table 3. Mesh quality, effectivity indices and solution errors for
Example 2.

l N qave ratiomax |e|H1 CR eiA

0 131 0.887 2.3 4.344e− 00 0.0 10.409
1 353 0.862 5.6 2.848e− 00 0.851 5.775
2 663 0.932 6.1 1.221e− 01 2.687 3.701
3 944 0.890 5.3 7.387e− 01 2.846 2.727
4 1412 0.915 4.7 4.992e− 01 1.945 2.083
5 2147 0.923 4.6 3.590e− 01 1.573 1.586
6 3446 0.930 3.5 2.641e− 01 1.298 2.157
7 5206 0.947 3.9 2.011e− 01 1.321 2.583
8 7593 0.952 4.2 1.626e− 01 1.125 2.624
9 10965 0.931 4.6 1.307e− 01 1.190 1.951
10 17532 0.938 5.6 9.863e− 02 1.199 2.238
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Figure 10. Error comparison for different adaptive mesh refine-
ment methods.

Figure 11 displays the refined meshes by the ABLMG-based adaptive mesh re-
finement method. One can observe that all the meshes produce correct concentra-
tions and are properly aligned with the fronts of the shock wave and the boundary
layer. The absolute error distribution of the corresponding refinement level are
shown in Figure 12. It can be clearly seen that the absolute error for mesh refine-
ment method is reduced and almost equally distributed on the elements. Similar
to that in first two examples, the same conclusion about the solution erros and ef-
fectivity indices can be obtained in Table 4. For this example, the mesh anisotropy
is strong concluded by the value ratiomax. The anisotropic error estimator is also
reliable and efficient.

The plots of the error norms (|eh|H1(Ω)) versus the number of nodes for different
refinement strategies are depicted in Figure 13. From Figure 13, we can observe
that the ABLMG-based adaptive mesh refinement method is much better than the
isotropic one for the problems with strong anisotropy.
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Figure 11. ABLMG meshes and corresponding close-ups at the
2nd, 5th and 7th refinement level for Example 3.

Figure 12. Error distribution on mesh at the 2nd, 5th and 7th
refinement level for Example 3.

Table 4. Solution errors, convergence ratios and effectivity in-
dices for Example 3.

l N ratiomax |e|H1 CR eiA

0 353 2.5 7.842e− 00 0.0 3.667
1 669 16.4 3.536e− 00 2.492 4.273
2 1284 21.1 1.529e− 00 2.572 4.764
3 1628 29.2 7.350e− 01 6.173 5.003
4 2145 43.6 4.684e− 01 3.268 5.149
5 3154 57.1 3.231e− 01 1.927 5.186
6 4818 59.1 2.262e− 01 1.682 5.238
7 7132 101.8 1.711e− 01 1.426 5.483
8 9000 125.3 1.494e− 01 1.162 5.245

5.4. Example 4. In this example, the same PDE as in Example 1 is solved to
test the capability of handling the boundary layer singularity using ABLMG-based
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Figure 13. Error comparison for different adaptive mesh refine-
ment methods.
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Figure 14. ABLMG meshes and corresponding close-ups at the
2nd, 5th and 7th refinement level for Example 4.

AFEM. The exact solution is defined as

u(x, y) = e−25x + e−25y

where the function models a boundary layer near the coordinate axes[15].
Figure 14 displays the refined meshes by the ABLMG-based adaptive mesh re-

finement method. One can observe that the elements of the meshes are concentrated
in the correct position and properly aligned in the boundary layers. The absolute
error distribution of the corresponding refinement level are also shown in the Figure
15. It can be clearly seen that the absolute error for mesh refinement method is
reduced and almost equally distributed on the elements. The plots of the error for
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Figure 15. Error distribution on mesh at the 2nd, 5th and 7th
refinement level for Example 4.

103 104 10510-1100 Number of DOFError in H1  seminorm  
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Figure 16. Error comparison for different adaptive mesh refine-
ment methods.

different refinement strategies versus the number of nodes are presented in Figure
16. Similar to that in previous examples, the same conclusions about the solution
errors can be obtained.

6. Conclusions

In this paper, we present an anisotropic adaptive mesh refinement method com-
bining anisotropic bubble-type local mesh generation with the metric determined
by the a posteriori error estimator. Our metric determination method use the
recovery-based technique to approximate the direction information of the solution.
The new metric assures that the elements are aligned with the correct direction and
concentrated in the suitable position. The ABLMG-based mesh refinement method
assures that the triangles remain very well shaped at all levels of refinement. Nu-
merical results have shown that the new method is robust and effective. Optimal
convergence rates with respect to H1 norm can be obtained through the method.

Though the initial study about ABLMG-based mesh refinement method is car-
ried out here for classical linear second order elliptic equation, it can be also applied
to solve more complex system of equations. Since the local mesh for each node can
be obtained simultaneously, the node-based local mesh generation method has great
potential advantage in parallel computing, and the study of the parallel ABLMG-
based adaptive finite element method will be our future work.
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