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A RELAXATION APPROACH TO DISCRETIZATION

OF BOUNDARY OPTIMAL CONTROL PROBLEMS

OF SEMILINEAR PARABOLIC EQUATIONS

B. KOKKINIS

Abstract. We consider an optimal boundary control problem described by a semilinear parabolic

partial differential equation, with control and state constraints. Since this problem may have no
classical solutions, it is reformulated in the relaxed form. The relaxed control problem is discretized
by using a finite element method in space and a partially implicit scheme in time, while the
controls are approximated by piecewise constant relaxed controls. We first state the necessary

conditions for optimality for the continuous problem and the discrete relaxed problem. Next,
under appropriate assumptions, we prove that accumulation points of sequences of optimal (resp.
admissible and extremal) discrete relaxed controls are optimal (resp. admissible and extremal)

for the continuous relaxed problem.

Key words. Boundary optimal control, semilinear parabolic systems, state constraints, relaxed
controls, discretization.

1. Introduction

It is well known that optimal control problems, without any convexity assump-
tions on the data, have no classical solutions in general. These problems are usually
studied by considering their corresponding relaxed formulations, where at each time,
the control variable is not a vector in some set but instead a probability measure
on that set. Relaxation theory has been introduced, initially, in order to prove ex-
istence of optimal controls and later to derive necessary conditions for optimality.
There exist an extensive literature concerning relaxation of control problems, see
e.g. Warga [19], Roub́ıček [16], Fattorini [11] and the references therein.

In this paper we consider an optimal boundary control problem for systems gov-
erned by a semilinear parabolic partial differential equation, with control and state
constraints. The problem is motivated, for example, by the control of a heat (or
other) diffusion process whose source is nonlinear in the heat and temperature, with
nonconvex cost and control constraint set (e.g. on-off type control). This class of
problems has been extensively studied by several authors, among them Ahmed et
al. [1], Casas [5], Barbu [2], Fattorini et al. [10], Tröltzsch [18] etc. We first s-
tate the existence of optimal controls and the necessary conditions for optimality
for the continuous relaxed problem. Then, the relaxed problem is discretized by
using a Galerkin finite element method with continuous piecewise linear basis func-
tions in space for space approximation, and a partially implicit scheme in time,
while the controls are approximated by piecewise constant relaxed controls. The
discretization is motivated by the fact that in practice optimization methods are
usually applied to the problem after some discretization. Then, we prove the ex-
istence of optimal controls and derive necessary conditions for optimality for the
discrete relaxed problem. Finally, we study the behaviour in the limit of the above
approximation. More precisely, we prove, under appropriate assumptions, that ac-
cumulation points of sequences of optimal (resp. admissible and extremal) discrete
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relaxed controls are optimal (resp. admissible and extremal) for the continuous
relaxed problem. The novelty of the present paper is in the finite element approx-
imation of a boundary optimal control problem using, as a tool, relaxed controls,
which can be further used in optimization algorithms (see [8]). For a different
approach, using differential inclusions and approximations in abstract spaces, of a
Mayer type optimal control problem, see Mordukhovich et al. [14], where existence
theory, necessary optimality conditions and convergence are considered.

For approximation of nonconvex optimal control and variational problems, and
of Young measures, see e.g. [4, 6, 9, 13, 15] and the references therein.

2. The continuous optimal control problems

Let Ω be a bounded domain in Rd with boundary Γ = Γ0 ∪ Γ1, I = (0, T ),
T <∞, an interval, and set Q := Ω× I, Σ0 := Γ0× I, Σ1 := Γ1× I and Σ := Γ× I.
Consider the parabolic state equation

(1) yt +A(t)y = f0(x, t, y(x, t)) in Q,

(2) y(x, t) = 0 on Σ0,

(3)
∂y

∂νA
= f1(x, t, w(x, t)) on Σ1,

(4) y(x, 0) = y0(x) in Ω,

where A(t) is the second order elliptic differential operator

(5) A(t)y := −
d∑

j=1

d∑
i=1

(∂/∂xi)[aij(x, t)∂y/∂xj ]

and

(6)
∂y

∂νA
=

d∑
j=1

d∑
i=1

aij (x, t)
∂y

∂xj
νj , with (x, t) ∈ Σ1,

where ν (x) is the outwards unit vector to Γ at the point x.
We denote by (·, ·) and ∥ · ∥ the inner product and norm in L2(Ω), by (·, ·)Γ1 and

∥ · ∥Γ1
the inner product and norm in L2(Γ1), by (·, ·)1 and ∥ · ∥1 the inner product

and norm in the Sobolev space H1(Ω) and by < ·, · > the duality bracket between
V :=

{
v ∈ H1(Ω) : v |Γ0 = 0

}
, where v |Γ0 is the trace function on Γ0 and its dual

space V ∗. The state equation will be interpreted in the following weak form

(7)
< yt, v > +a(t, y, v) = (f0(t, y), v) + (f1(t, w), v)Γ1 , ∀v ∈ V, a.e. in I,
y(t) ∈ V a.e. in I, y(0) = y0,

where the derivative yt is understood in the sense of V -vector valued distributions,
and a(t, ·, ·) denotes the usual bilinear form on V × V associated with A(t)

(8) a(t, y, v) :=
d∑

j=1

d∑
i=1

∫
Ω

aij(x, t)
∂y

∂xi

∂v

∂xj
dx.

We define the set of classical controls

W := {w : Σ1 → U |w measurable} ⊂ L∞(Σ1),

where U is a compact subset of Rd′
, and the functionals

(9) Gm(w) :=

∫
Q

g0m(x, t, y)dxdt+

∫
Σ1

g1m(x, t, y, w)dγdt, m = 0, ..., q.
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The continuous classical optimal control problem is

(10) minimize G0(w)

subject to the state equation (1)-(4), the control constraints w ∈ W and the state
constraints

(11) Gm(w) = 0, m = 1, ..., p,

(12) Gm(w) ≤ 0, m = p+ 1, ..., q.

In what follows, we shall make some of the following assumptions.
(H1) Γ = Γ0 ∪ Γ1 is Lipschitz (e.g. appropriately piecewise C1, or polyhedral),
where Γ0 has a positive (d− 1)-dimensional measure (see e.g. [18]).
(H2) The coefficients aij satisfy the ellipticity condition

d∑
j=1

d∑
i=1

aij(x, t)zizj ≥ α0

d∑
i=1

z2i , ∀zi, zj ∈ R, a.e. in Q,

with α0 > 0, aij ∈ L∞(Q), which implies that

|a(t, y, v)| ≤ α1 ∥y∥1 ∥v∥1 , a(t, v, v) ≥ α2 ∥v∥21 , ∀y, v ∈ V, t ∈ I, for some
α1 ≥ 0, α2 > 0.
(H3) The function f0 is defined on Q × R, measurable for fixed y, continuous for
fixed x, t, and satisfies

|f0(x, t, y)| ≤ ψ0(x, t) + γ |y| , (x, t, y) ∈ Q× R, with ψ0 ∈ L2(Q), γ ≥ 0,
|f0(x, t, y1)− f0(x, t, y2)| ≤ L |y1 − y2| , (x, t, y1, y2) ∈ Q× R2.

(H4) The function f1 is defined on Σ1 × U, measurable for fixed u, continuous for
fixed x, t, and satisfies

|f1(x, t, u)| ≤ ψ1(x, t), (x, t, u) ∈ Σ1 × U, with ψ1 ∈ L2(Σ1).
(H5) The functions g0m (resp. g1m) are defined on Q × R (resp. Σ1 × R × U),
measurable for fixed y (resp. y, u), continuous for fixed x, t, and satisfy

|g0m(x, t, y)| ≤ ζ0m(x, t) + δ0my
2, (x, t, y) ∈ Q× R,

with ζ0m ∈ L1(Q), δ0m ≥ 0,
|g1m(x, t, y, u)| ≤ ζ1m(x, t) + δ1my

2, (x, t, y, u) ∈ Σ1 × R× U,
with ζ1m ∈ L1(Σ1), δ1m ≥ 0.
(H6) The function f0y is defined on Q × R, measurable on Q for fixed y ∈ R and
continuous on R for fixed (x, t) ∈ Q and satisfies |f0y (x, t, y)| ≤ L1, (x, t, y) ∈ Q×R.
(H7) The functions g0my (resp. g1my) are defined on Q × R (resp. Σ1 × R × U),
measurable on Q for fixed y ∈ R (resp. on Σ1 for fixed y ∈ R and u ∈ U) and
continuous on R for fixed (x, t) ∈ Q (resp. on R × U for fixed (x, t) ∈ Σ1), and
satisfy

|g0my(x, t, y)| ≤ η0m(x, t) + δ
′

0m |y| , (x, t, y) ∈ Q× R,
with η0m ∈ L2(Q), δ

′

0m ≥ 0,

|g1my(x, t, y, u)| ≤ η1m(x, t) + δ
′

1m |y| , (x, t, y, u) ∈ Σ1 × R× U,

with η1m ∈ L2(Σ1), δ
′

1m ≥ 0.

It is well known that, even if the set U is convex, the classical problem may
have no solutions. The existence of such a solution is usually proved under strong,
often unrealistic (for nonlinear systems) convexity assumptions (such as the Cesari
property). Reformulated in the so-called relaxed form, the problem is convexified
in some sense and has a solution in a larger space under weaker assumptions.
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Next, we define the set of relaxed controls (Young measures; for the relevant
theory, see [19])

(13) R :={r:Σ1→M1(U) |rweaklymeasurable}⊂L∞
w (Σ1,M(U))≡L1(Σ1,C(U))∗,

where M(U) (resp. M1(U)) is the set of Radon (resp. probability) measures on
U . The set R is endowed with the relative weak star topology of L1(Σ1, C(U))∗,
and R is convex, metrizable and compact. If we identify every classical control
w(·) with its associated Dirac relaxed control r(·) = δw(·), then W may be also

regarded as a subset of R, and W is thus dense in R. For ϕ ∈ L1(Σ1, C(U)) (or
ϕ ∈ B(Σ1, U ;R), where B(Σ1, U ;R) is the set of Caratheodory functions, see Warga
[19]) and r ∈ L∞

w (Σ1,M(U)) (in particular, for r ∈ R), we shall use the simplified
notation

(14) φ(x, t, r(x, t)) :=

∫
U

φ(x, t, u)r(x, t)(du),

where φ(x, t, r(x, t)) is thus linear (under convex combinations, for r ∈ R) in r. A
sequence (rk) converges to r ∈ R in R iff

(15) lim
k→∞

∫
Σ1

ϕ(x, t, rk(x, t))dγdt =

∫
Σ1

ϕ(x, t, r(x, t))dγdt,

for every ϕ ∈ L1(Σ1;C(U)), or ϕ ∈ B(Σ1, U ;R), or ϕ ∈ C(Σ1 × U).

The continuous relaxed optimal control problem is

(16) minimize G0(r)

subject to the relaxed state equation

(17)
< yt, v > +a(t, y, v) = (f0(t, y), v) + (f1(t, r), v)Γ1 , ∀v ∈ V, a.e. in I,
y(t) ∈ V a.e. in I, y(0) = y0,

the control constraints r ∈ R and the state constraints

(18) Gm(r) = 0, m = 1, ..., p,

(19) Gm(r) ≤ 0, m = p+ 1, ..., q.

The following theorem can be proved by standard compactness arguments (see
[12])

Theorem 2.1. Under Assumptions (H1-H4), for every control r ∈ R and y0 ∈
L2(Ω) (or y0 ∈ V ), the relaxed state equation has a unique solution y := yr such
that y ∈ L2(I, V ), yt ∈ L2(I, V ∗); moreover, y is essentially equal to a function in
C(Ī , L2(Ω)), and thus the initial condition is well defined.

The following proposition generalizes Proposition 2.1 in [6], with a simpler proof,
and will be very useful in what follows.

Proposition 2.1. For i = 1, ...,K, K ≥ 0, let si ≥ 1, σi ∈ [0, si] if si < +∞,

σi := 0 if si = +∞, with 1
s0
+

K∑
i=1

σi

si
= 1, 1

si
:= 0 if si = +∞. For simplicity reasons

we denote in this Proposition by ∥ · ∥ some norm in RN . Let Z be a compact subset
of RP , P ≥ 1 and let F be a function defined on Z × (RN )K × U , measurable for
every y, u fixed, continuous for every z fixed, and satisfying

|F (z, y, u)| ≤ Φ(z) + Ψ(z)
K∏
i=1

ξi(∥yi∥), for every (z, y, u) ∈ Z × (RN )K × U ,

with ∥yi∥ ≤ Ci if si = +∞, where y := (y1, ..., yK), Φ ∈ L1(Z), Ψ ∈ Ls0(Z),
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ξi(∥yi∥) := ∥yi∥σi if si < +∞, ξi(∥yi∥) := 1 if si = +∞. If (yki ) converges to yi
in Lsi(Z;RN ) strongly, i = 1, ...,K, with

∥∥yki ∥∥ ≤ Ci (for k sufficiently large) if

si = +∞, and (rk) converges to r in R, then

lim
k→∞

∫
Z

F (z, yk(z), rk(z))dz =

∫
Z

F (z, y(z), r(z))dz.

Proof. We have ∫
Z

F (z, yk, rk)dz −
∫
Z

F (z, y, r)dz = Ak +Bk,

where

Ak :=

∫
Z

F (z, yk, rk)dz −
∫
Z

F (z, y, rk)dz,

Bk :=

∫
Z

F (z, y, rk)dz −
∫
Z

F (z, y, r)dz.

Since (rk) converges to r in R, we have Bk → 0. Since yki → yi in Lsi(Z;RN )
strongly, i = 1, ...,K, we have also

∥∥yki ∥∥ → ∥yi∥ in Lsi(Z) strongly. Hence there
exist (see Theorem IV.9 in [3]) subsequences (same notation) and functions ȳi ∈
Lsi(Z) such that yki (z) → yi(z), i = 1, ...,K a.e. in Z and∥∥yki (z)∥∥ ≤ ȳi(z), in Z − Sk

i , i = 1, ...,K, if si < +∞,

with meas(Sk
i ) = 0. If si = +∞, we have also, for k ≥ k0 (for some k0)∥∥yki (z)∥∥ ≤ Ci, in Z − Sk

i ,

with meas(Sk
i ) = 0. We then have, for every k ≥ k0∣∣F (z, yk(z), rk(z))∣∣ ≤ Φ(z) + Ψ(z)

K∏
i=1

ξi(∥ȳi(z)∥) := F̄ (z), in Z − ∪
1≤i≤K

Sk
i ,

i.e. a.e. in Z, where F̄ ∈ L1(Z), by the multiple Hölder inequality. By the uniform
continuity of F , for z fixed, on the compact set B(z) × U , where B(z) is a closed
ball in RNK with center y(z) and containing yk(z) for every k (or for k ≥ k′), we
have, since rk ∈M1(U)∣∣F (z,yk(z), rk(z))−F (z, y(z), rk(z))∣∣=∣∣∣∣∫

U

[F (z, yk(z), u)−F (z, y(z), u)]rk(du)
∣∣∣∣≤∫

U

∣∣F (z, yk(z), u)−F (z, y(z), u)∣∣ rk(du)≤max
u∈U

∣∣F (z, yk(z), u)−F (z, y(z), u)∣∣→0

a.e. in Z. The result follows then from Lebesgue’s dominated convergence theorem
and the uniqueness of the limit. �

The following lemma can be proved by using techniques similar to [7] and [16].

Lemma 2.1. Under Assumptions (H1-H4), the operator r 7→ yr from R to L2(I, V )
is continuous. Under Assumptions (H1-H5), the functionals r 7→ Gm(r) on R, are
continuous.

The following Theorems 2.2 and 2.3 have the advantage (as compared to classical
ones) of avoiding various convexity assumptions (e.g. Cesari property) in proving
existence and necessary optimality conditions.

Theorem 2.2. Under Assumptions (H1-H5), if the relaxed problem is feasible, then
it has a solution.

Proof. The theorem follows from Lemma 2.1 and the compacteness of R. �
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Since W ⊂ R, we generally have

(20) cR := min
constraints on r

G0(r) ≤ inf
constraints on w

G0(w) := cW ,

where the equality holds, in particular, if there are no state constraints, as W is
dense in R. Since usually approximation methods slightly violate the state con-
straints, approximating an optimal relaxed control by a relaxed or a classical one,
hence the possibly lower relaxed optimal cost cR, is not a drawback in practice (see
[19], p. 259).

Next, we give some useful results concerning necessary/sufficient conditions for
optimality, which can be proved by using the techniques of [19], [7] (see also [11]).

Lemma 2.2. Under Assumptions (H1-H7), dropping the index m in the function-
als, the directional derivative of G defined on R is given by
(21)

DG(r, r′ − r):= lim
ε→0+

G(r + ε(r′−r))−G(r)
ε

=

∫
Σ1

H(x, t, y, z, r′(x, t)−r(x, t))dγdt,

for r, r′ ∈ R, where the Hamiltonian H is defined by

(22) H(x, t, y, z, u) := zf1(x, t, u) + g1(x, t, y, u),

and the adjoint state z := zr satisfies the linear adjoint equation
(23)

−<zt, v>+a(t, v, z)=(zf0y(y)+g0y(y), v)+(g1y(y, r), v)Γ1
, ∀v∈V, a.e. in I,

z(t) ∈ V a.e. in I, z(T ) = 0,with y := yr.

The mappings r 7→ zr, from R to L2(Q), and (r, r′) 7→ DG(r, r′ − r), from R × R
to R, are continuous.

The following theorem states necessary conditions for optimality.

Theorem 2.3. Under Assumptions (H1-H7), if r ∈ R is optimal for either the
relaxed or the classical optimal control problem, then r is strongly extremal relaxed,
i.e. there exist multipliers λm ∈ R, m = 0, ..., q, with λ0 ≥ 0, λm ≥ 0, m =

p+ 1, ..., q,
q∑

m=0
|λm| = 1, such that

(24)

q∑
m=0

λmDGm(r, r′ − r) ≥ 0, ∀r′ ∈ R,

(25) λmGm(r) = 0,m = p+ 1, ..., q (complementary slackness conditions).

The condition (24) is equivalent to the strong relaxed pointwise minimum principle

(26) H(x, t, y(x, t), z(x, t), r(x, t)) = min
u∈U

H(x, t, y(x, t), z(x, t), u), a.e. inΣ1,

where the complete Hamiltonian H is defined with g1 :=
q∑

m=0
λmg1m and the adjoint

z is defined with g0 :=
q∑

m=0
λmg0m and g1 :=

q∑
m=0

λmg1m.

The next theorem gives sufficient conditions for optimality.

Theorem 2.4. Under Assumptions (H1-H7) and the additional assumption that
the data are such that G0, Gp+1, ..., Gq are convex and G1, G2, ..., Gp are affine, if
r ∈ R is admissible and extremal for the control problem, with λ0 > 0, then r is
optimal for this problem.
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Proof. The assumptions imply that the functional G(r) :=
q∑

m=0
λmGm(r) is convex.

The condition (24) is then satisfied if and only if r minimizes G on R. Suppose
now that r is not optimal for the relaxed problem, in which case there exists r′ ∈ R
satisfying the state constraints and such that G0(r

′) < G0(r). We then have, using
the state constraints and the complementary slackness conditions (25),

G(r′) = λ0G0(r
′) +

p∑
m=1

λmGm(r′) +
q∑

m=p+1
λmGm(r′)

= λ0G0(r
′) +

q∑
m=p+1

λmGm(r′)

< λ0G0(r) = λ0G0(r) +
p∑

m=1
λmGm(r) +

q∑
m=p+1

λmGm(r) = G(r),

which is a contradiction. Therefore, r is optimal for the relaxed problem. �

Remark 2.1. In the absence of equality state constraints, it can be shown that if
the optimal control r is regular, i.e. there exists r′ ∈ R, such that

Gm(r) +DGm(r, r′ − r) < 0, m = p+ 1, ..., q, (Slater condition),

then λ0 ̸= 0 for any set of multipliers as in Theorem 2.3.

3. The discrete optimal control problems

We introduce the following additional assumptions.
(H8) For simplicity reasons we consider that Γ is polyhedral, a is independent of
t, f0, f0y, f1, g0m, g0my, g1m, g1my are continuous (or continuous in (x, t), piecewise
w.r.t t) on the closure of their domains of definition and y0 ∈ V.

Under Assumptions (H8), for each integer n ≥ 0, let {En
i }M

n

i=1 be an admissible
regular quasi-uniform triangulation of Ω into closed d-simplices (finite elements),
with hn = maxi[diam(En

i )] → 0 as n → ∞, and {Inj }N
n

j=1, a subdivision of the

interval Ī into intervals Inj = [tnj−1, t
n
j ), j = 1, ..., Nn − 1, InNn =

[
tnNn−1, t

n
Nn

]
with tn0 = 0 and tnNn = T . The intervals are of equal length ∆tn, with ∆tn → 0 as

n → ∞. We define the panels Sn
kj = Fn

k × Inj , where {Fn
k }P

n

k=1 are the boundary
edges on Γ1 of the triangles En

i that reach the boundary Γ1. Let V n ⊂ V be the
subspace of functions that are continuous on Ω̄ and linear (i.e. affine) on each En

i .
The set of discrete classical controls Wn ⊂W is the subset of classical controls that
are constant on the interior of each panel Sn

kj . The set of discrete relaxed controls
Rn ⊂ R is the subset of relaxed controls of the form rnkj , k = 1, 2, ..., Pn, j =

1, ..., Nn, that are equal to a constant measure in M1(U) on each panel Sn
kj . The

set Rn is endowed with the relative weak star topology of M(U)P
nNn

.
For a given discrete control rn ∈ Rn, the corresponding discrete state yn :=

(yn0 , ..., y
n
Nn) is given by the discrete relaxed state equation (partially implicit scheme)

(27)

1
∆tn

(
ynj −ynj−1, v

)
+a(ynj , v)=

(
f0(t

n
j−1, y

n
j−1), v

)
+
(
f1(t

n
j−1, r

n
j−1), v

)
Γ1
,

∀v ∈ V n, j = 1, ..., Nn,
(yn0 − y0, v)1 = 0, for every v ∈ V n,
ynj ∈ V n, j = 1, ..., Nn.

The implicit discrete scheme (27) reduces to a regular linear system which has a
unique solution for every control.
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The discrete control constraint is rn ∈ Rn and the discrete functionals are
(28)

Gn
m(rn) :=∆tn

Nn∑
j=1

(∫
Ω

g0m(tnj−1, y
n
j−1)dx+

∫
Γ1

g1m(tnj−1, y
n
j−1, r

n
j )dγ

)
,m=0, ..., q.

The discrete state constraints are either of the two following ones

(29) Case (a) |Gn
m(rn)| ≤ εnm, m = 1, ..., p,

(30) Case (b) Gn
m(rn) = εnm, m = 1, ..., p,

and

(31) Gn
m(rn) ≤ εnm, εnm ≥ 0, m = p+ 1, ..., q,

where the feasibility perturbations εnm are given numbers converging to zero, to be
defined later. The discrete cost functional to be minimized is Gn

0 (r
n).

Theorem 3.1. Under Assumptions (H2-H5) and (H8), the mappings rn 7→ ynj and
rn 7→ Gn

m(rn), defined on Rn, are continuous. If any of the discrete problems is
feasible, then it has a solution.

Proof. The continuity of the operators rn 7→ ynj is easily proved by induction on j
(or by using the discrete Bellman-Gronwall inequality, see [17]). The continuity of
rn → Gn

m(rn) follows from the continuity of g0m, g1m. The existence of an optimal
control follows then from the compactness of Rn. �

The proofs of the following lemma and theorem parallel the continuous case and
are omitted.

Lemma 3.1. We drop the index m in the functionals. Under Assumptions (H2-
H8), the directional derivative of the functional Gn is given by

(32) DGn(rn, r′n − rn) = ∆tn
Nn∑
j=1

∫
Γ1

H(tnj−1, y
n
j−1, z

n
j , r

′n
j − rnj )dγ, r

n, r′n ∈ Rn,

where the discrete adjoint zn is given by the linear adjoint scheme

(33)

− 1
∆tn (z

n
j −znj−1, v)+a(v, z

n
j−1)=

(
znj f0y(t

n
j−1, y

n
j−1)+g0y(t

n
j−1, y

n
j−1), v

)
+
(
g1y(t

n
j−1, y

n
j−1, r

n
j ), v

)
Γ1
, ∀v ∈ V n, j = Nn, ..., 1,

znNn = 0, znj ∈ V n, j = 1, ..., Nn,

which has a unique solution znj−1 for each j = Nn, ..., 1, (regular system). Moreover,
the mappings rn 7→ zn and (rn, r′n) 7→ DGn(rn, r′n − rn) are continuous.

Theorem 3.2. (i) Under Assumptions (H2-H8), if rn ∈ Rn is optimal for the
discrete problem with state constraints, Case (b), then it is extremal, i.e. there
exist multipliers λnm ∈ R, m = 0, ..., q, with λn0 ≥ 0, λnm ≥ 0, m = p + 1, ..., q,
q∑

m=0
|λnm| = 1, such that

(34)

q∑
m=0

λnmDG
n
m(rn, r′n − rn) =

∆tn
Nn∑
j=1

∫
Γ1

H(tnj−1, y
n
j−1, z

n
j , r

′n
j − rnj )dγ ≥ 0, ∀r′n ∈ Rn,

(35) λnm[Gm(rn)− εnm] = 0, m = p+ 1, ..., q,
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where the Hamiltonian H is defined with g1 :=
q∑

m=0
λnmg1m and the adjoint zn is

defined with g0 :=
q∑

m=0
λnmg0m and g1 :=

q∑
m=0

λnmg1m. The global condition (34) is

equivalent to the strong discrete panelwise minimum principle

(36)

∫
Fn

k
H(tnj−1, y

n
j−1, z

n
j , r

n
kj)dγ = min

u∈U

∫
Fn

k
H(tnj−1, y

n
j−1, z

n
j , u)dγ,

k = 1, ..., Pn, j = 1, ..., Nn.

(ii) With Assumptions (H2-H8), we suppose in addition that the data are such that
G0, Gp+1, ..., Gq are convex and G1, ..., Gp are affine. If rn ∈ Rn is admissible and
extremal for the discrete problem, Case (b), with λn0 > 0, then rn is optimal for this
problem.

4. Behavior in the limit

The following control approximation result is proved in [7].

Proposition 4.1. Under Assumptions (H8) on Γ, for every r ∈ R, there exists a
sequence (wn ∈Wn ⊂ Rn) that converges to r in R.

Lemma 4.1 (Stability). Under Assumptions (H2-H4) and (H8), if ∆tn is suffi-
ciently small, for every rn ∈ Rn, we have the following inequalities, where c denotes
various constants independent of n and rn

(37)
∥∥ynj ∥∥ ≤ c, j = 0, ..., Nn,

(38)
Nn∑
j=1

∥∥ynj − ynj−1

∥∥2 ≤ c,

(39) ∆tn
Nn∑
j=1

∥∥ynj ∥∥21 ≤ c.

Proof. yn0 is clearly bounded by definition. Dropping the index n for simplicity of
notation, setting v = yj∆t in the discrete equation (27) we have

(40)
1
2 ∥yj − yj−1∥2 + 1

2 ∥yj∥
2 − 1

2 ∥yj−1∥2 +∆t a(yj , yj)
≤ ∆t |(f0(tj−1, yj−1), yj)|+∆t |(f1(tj−1, rj−1), yj)Γ1 | .

Using the Trace Theorem and assumptions (H2-H4) we then take

(41)

1
2

(
∥yj − yj−1∥2 + ∥yj∥2 − ∥yj−1∥2

)
+∆t a2 ∥yj∥21

≤ ∆t
(
(∥f0(tj−1, yj−1)∥ ∥yj∥+ ∥f1(tj−1, rj−1)∥Γ1

∥yj∥Γ1

)
≤ ∆t

(
(∥ψ0∥+ γ ∥yj−1∥) ∥yj∥+ c ∥ψ1∥Γ1

∥yj∥1
)

≤ ∆t
(
∥ψ0∥+ γ ∥yj−1∥ ∥yj − yj−1∥+ γ ∥yj−1∥2 + c ∥ψ1∥Γ1

∥yj∥1
)

≤ ∆t
(
∥ψ0∥+ γ

β1
∥yj−1∥2 + γβ1 ∥yj − yj−1∥2

)
+∆t

(
γ ∥yj−1∥2 + c 1

β2
∥ψ1∥2Γ1

+ cβ2 ∥yj∥21
)

≤ ∆t
(
∥ψ0∥+c ∥yj−1∥2+γβ1 ∥yj−yj−1∥2+c 1

β2
∥ψ1∥2Γ1

+cβ2 ∥yj∥21
)
.

For ∆t sufficiently small, it follows

(42)
(1− 2∆t γβ1) ∥yj − yj−1∥2 + ∥yj∥2 − ∥yj−1∥2 + 2∆t (a2 − cβ2) ∥yj∥21

≤ 2∆t ∥ψ0∥+ 2c∆t ∥yj−1∥2 + 2c∆t
β2

∥ψ1∥2Γ1
.
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By summation over j = 1, . . . , k, where 1 ≤ k ≤ N , we obtain

(43) c

k∑
j=1

∥yj − yj−1∥2 + ∥yk∥2 + c∆t

k∑
j=1

∥yj∥21 ≤ ∥y0∥2 + c∆t

k∑
j=1

∥yj−1∥2 + cT.

Dropping the first and third term and using the discrete Bellman-Gronwall in-
equality (see [17]) we obtain (37). The inequalities (38) and (39) follow then from
(43). �

For given values v0, ..., vN in a vector space, we define the piecewise constant
and continuous piecewise linear functions

v−(t) := vj−1, v+(t) := vj , t ∈
o

Inj , j = 1, ..., Nn,

v∧(t) := vj−1 +
t− tnj−1

∆tn
(vj − vj−1), t ∈ Inj , j = 1, ..., Nn.

Lemma 4.2 (Consistency of states and functionals). Under Assumptions (H2-H4)
and (H8), if r

n → r in R, then the corresponding discrete states yn∧, y
n
−, y

n
+ converge

to yr in L2(I, L2(Ω)) = L2(Q) strongly and

(44) lim
n→∞

Gn
m(rn) = Gm(r), m = 0, ..., q.

Proof. Since, by inequality (39), yn− and yn+ are bounded in L2(I, V ), it follows that
yn∧ is also bounded in L2(I, V ). By extracting subsequences, we can suppose that
yn∧ → y in L2(I, V ) weakly (hence in L2(Q) weakly). The discrete state equation
(27) can be written in the form

d

dt
(yn∧(t), v) = (Φn(t), v)1, ∀v ∈ V n, a.e. in (0, T ),

in the scalar distribution sense, where the piecewise constant function Φn is defined,
for j = 1, ..., Nn, using Riesz’s representation theorem, by

(Φn
j (t), v)1 := −a(ynj , v) + (f0(t

n
j−1, y

n
j−1), v) + (f1(t

n
j−1, r

n
j−1), v)Γ1

, in
o

Inj .

By Assumptions (H2-H4), we have, for j = 1, ..., Nn∣∣(Φn
j , v)1

∣∣ ≤ c
[∥∥ynj ∥∥1 ∥v∥1 + (1 + ∥∥ynj−1

∥∥) ∥v∥1] .
Therefore, using inequality (39) it follows

(45)

∫ T

0

∥Φn(t)∥1 dt ≤ c

(
1 +

∫ T

0

∥∥yn+∥∥21 dt+ ∫ T

0

∥∥yn−∥∥2 dt
)

≤ c,

which shows that Φn belongs to L1(I, V ). Now, let, Φ̃n denote the extension of Φn

by 0 outside [0, T ]. We then have, on R
d

dt
(yn∧(t), v) = (Φ̃n(t), v)1 + (yn0 , v)δ0 − (ynN , v)δT , ∀v ∈ V n,

where δ0, δT are the Dirac distributions at 0 and T . Taking the Fourier transforms
(Φ̂n Fourier transform of Φ̃n), we have

2iπτ(ŷn∧, v) = (Φ̂n(τ), v)1 + (yn0 , v)− (ynN , v)e
−2iπτT .

Setting v = ŷn∧(τ) and taking absolute values we get, since yn0 , y
n
N are bounded in

L2(Ω),

(46) 2π |τ | ∥ŷn∧(τ)∥
2 ≤

∥∥∥Φ̂n(τ)
∥∥∥
1
∥ŷn∧(τ)∥1 + c ∥ŷn∧(τ)∥ .



RELAXED OPTIMAL BOUNDARY CONTROL PROBLEMS 741

By the definition of the Fourier transform and (45) we obtain∥∥∥Φ̂n(τ)
∥∥∥
1
≤
∫ T

0

∥Φn(t)∥1 dt ≤ c,

therefore from (46)

(47) |τ | ∥ŷn∧(τ)∥
2 ≤ c ∥ŷn∧(τ)∥1 .

Following Temam [17], for ρ ∈ [0, 1/4), the next inequality holds on R

(48) |τ |2ρ ≤ c
1 + |τ |

1 + |τ |1−2ρ .

Using (47), (48) and Cauchy-Schwarz inequality we have∫ +∞

−∞
|τ |2ρ ∥ŷn∧(τ)∥

2
dτ ≤ c

∫ +∞

−∞
∥ŷn∧(τ)∥

2
dτ + c′

∫ +∞

−∞

∥ŷn∧(τ)∥1
1+|τ |1−2ρ dτ

(49) ≤c
∫ +∞

−∞
∥ŷn∧(τ)∥

2
dτ+c′

(∫ +∞

−∞

dτ

(1+|τ |1−2ρ
)2

)1/2(∫ +∞

−∞
∥ŷn∧(τ)∥

2
1 dτ

)1/2
.

The integral
∫ +∞
−∞

dτ
(1+|τ |1−2ρ)2

is finite for ρ < 1/4 and by the Parseval’s identity we

have ∫ +∞

−∞
∥ŷn∧(τ)∥

2
dτ ≤ c

∫ +∞

−∞
∥ŷn∧(τ)∥

2
1 dτ = c

∫ T

0

∥yn∧(t)∥
2
1 dt ≤ c.

Therefore, from (49) we obtain∫ +∞

−∞
|τ |2ρ ∥ŷn∧(τ)∥

2
dτ ≤ c.

By the Compactness Theorem 2.2, Chapter III, in [17], and since the injection of
H1(Ω) into H1−ε(Ω), ε ∈ (0, 1], is compact, and the injection of H1−ε(Ω) into
L2(Ω) is continuous, there exists a subsequence (same notation) such that yn∧ → ỹ
in L2(I,H1−ε(Ω)) strongly and in L2(Q) strongly, for some ỹ, and we must have
ỹ = y, since ŷn∧ → y also in L2(Q) weakly. From Lemma 4.1 (inequality (38)
multiplied by ∆t) follows that yn+ − yn− → 0 in L2(Q) strongly. Therefore yn+ → y
and yn− → y in L2(Q) strongly and in L2(I, V ) weakly.

Now, to show that y = yr, we proceed similarly to the proof of Lemma 4.3 in [7],
i.e. we pass to the limit in the discrete equation, integrated in t, with appropriate
interpolating test functions φn(t)vn(x); for the passage to the limit in the nonlinear
terms containing f0 and f1 we use Proposition 2.1.

Finally, convergences (44) follow from Proposition 2.1. �
We suppose in the sequel that the continuous relaxed problem is feasible. The

following (theoretical, in the presence of state constraints) theorem addresses the
behavior in the limit of optimal discrete controls.

Theorem 4.1. We suppose that Assumptions (H2-H5) and (H8) are satisfied. In
the presence of state constraints, we suppose in addition that the sequences (εnm) in
the discrete state constraints, Case (a), converge to zero as n→ ∞ and satisfy

|Gn
m(r̃n)| ≤ εnm, m = 1, ..., p, Gn

m(r̃n) ≤ εnm, ε
n
m ≥ 0, m = p+ 1, ..., q,

for every n, where (r̃n ∈ Rn) is a sequence converging in R to an optimal control
r̃ ∈ R of the relaxed problem. For each n, let rn be optimal for the discrete problem,
Case (a). Then every accumulation point of the sequence (rn) is optimal for the
continuous relaxed problem.
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Proof. Note that our assumption implies that the discrete problems are feasible
for every n. Let (rn) be a subsequence (same notation) that converges to some
r ∈ R. Since rn is optimal, hence admissible, and r̃n is admissible, for the discrete
problem, we have

Gn
0 (r

n) ≤ Gn
0 (r̃

n) and |Gn
m(rn)| ≤ εnm, m = 1, ..., p,

Gn
m(rn) ≤ εnm, m = p+ 1, ..., q.

Passing to the limit and using Lemma 4.2, we see that r is optimal for the continuous
relaxed problem. If there are no state constraints, by taking a sequence converging
to some continuous optimal control, we arrive directly to the same conclusion. �

Lemma 4.3 (Consistency of adjoint and functional derivatives). Under Assump-
tions (H2-H8), if rn → r in R, then the corresponding discrete adjoint states
zn−, z

n
+, z

n
∧ converge to zr in L2(Q) strongly. If rn → r and r′n → r′, then

lim
n→∞

DGn
m(rn, r′n − rn) = DGm(r, r′ − r), m = 0, ..., q.

Proof. The proof is similar to that of Lemma 4.2, using also the consistency of
states. �

Next, we study the behavior in the limit of extremal discrete controls. Consider
the discrete problem with state constraints, Case (b). We shall construct sequences
of perturbations (εnm) converging to zero and such that the discrete problem is
feasible for every n. Let r′n ∈ Rn be any solution of the problem without state
constraints

(50) cn := min
rn∈Rn

{
p∑

m=1

[Gn
m(rn)]2 +

q∑
m=p+1

[max(0, Gn
m(rn))]2},

and set

(51) εnm := Gn
m(r′n), m = 1, ..., p, εnm := max(0, Gn

m(r′n)), m = p+ 1, ..., q.

Let r̃ be an admissible control for the continuous relaxed problem, and (r̃n ∈ Rn)
a sequence converging to r̃ in R (Proposition 4.1). We have

lim
n→∞

[Gn
m(r̃n)]2 = [Gm(r̃)]2 = 0, m = 1, ..., p,

lim
n→∞

[max(0, Gn
m(r̃n))]2 = [max(0, Gm(r̃))]2 = 0, m = p+ 1, ..., q,

which imply a fortiori that cn → 0, hence εnm → 0, m = 1, ..., q. Then clearly the
discrete problem, Case (b), is feasible for every n, for these perturbations εnm. We
suppose in the sequel that the perturbations εnm are chosen as in the above minimum
feasibility procedure. Note that in practice we usually have cn = 0, for sufficiently
large n, due to sufficient discrete controllability, in which case the perturbations εnm
are equal to zero, i.e. the discrete problem with zero perturbations is feasible.

Theorem 4.2. Under Assumptions (H2-H8), for each n, let rn be admissible and
extremal for the discrete problem, Case (b). Then every accumulation point of the
sequence (rn) is admissible and extremal for the continuous relaxed problem.

Proof. Since R is compact and
q∑

m=0
|λnm| = 1, let (rn), (λnm), m = 0, ..., q, be sub-

sequences such that rn → r in R and λnm → λm, m = 0, ..., q. Let any r′ ∈ R and
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(r′n) be a sequence such that r′n → r′. Consider the discrete principle in global
form, which can be written as

(52)

∫
Σ1

H(x, t, ynj−1, z
n
j , r

′n − rn)dγdt ≥ 0, ∀n.

Passing to the limit in (52), by Lemmas 4.2, 4.3 and Proposition 2.1, we obtain

(53)

∫
Σ1

H(x, t, y, z, r′(x, t)− r(x, t))dγdt ≥ 0, ∀r′ ∈ R.

On the other hand, we have similarly

λmGm(r) = lim
n→∞

λnm[Gn
m(rn)− εnm] = 0, m = p+ 1, ..., q,

Gm(r) = lim
n→∞

[Gn
m(rn)− εnm] = 0, m = 1, ..., p,

Gm(r) = lim
n→∞

[Gn
m(rn)− εnm] ≤ 0, m = p+ 1, ..., q,

and λ0 ≥ 0, λm ≥ 0, m = p+ 1, ..., q,
q∑

m=0
|λm| = 1, which show with (53) that r is

admissible and extremal for the continuous relaxed problem. �

5. Conclusion

In the absence of convexity assumptions on the control set and the state con-
straints and due to the non-linear state equations, the optimal control problem
considered here does not have in general classical solutions. Introducing relaxed
controls, the existence of optimal controls was proven here under weaker assump-
tions. In addition, it was shown that necessary and sufficient conditions for relaxed
optimality can also be derived in the form of a relaxed pointwise Pontryagin mini-
mum principle. Finally, the continuous problem has been discretized in space and
time, and the behaviour in the limit of sequences of optimal and admissible extremal
controls has been studied.
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[18] F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Ap-

plications, American Mathematical Society, 2010.
[19] J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New

York, 1972.

Department of Mathematics, School of Applied Mathematical and Physical Sciences, National
Technical University of Athens, Zografou Campus, 15780 Athens, Greece

E-mail : bkok@math.ntua.gr
URL: http://semfe.ntua.gr/el/faculty-members/kokkinis


